1
|
Gu H, Zhao Z, Wei Y, Li P, Lu Q, Liu Y, Wang T, Hu N, Wan S, Zhang B, Hu S, Peng R. Genome-Wide Identification and Functional Analysis of RF2 Gene Family and the Critical Role of GhRF2-32 in Response to Drought Stress in Cotton. PLANTS (BASEL, SWITZERLAND) 2023; 12:2613. [PMID: 37514228 PMCID: PMC10385120 DOI: 10.3390/plants12142613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/27/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023]
Abstract
Cotton is an important natural fiber crop. The RF2 gene family is a member of the bZIP transcription factor superfamily, which plays an important role in plant resistance to environmental stresses. In this paper, the RF2 gene family of four cotton species was analyzed genome-wide, and the key gene RF2-32 was cloned for functional verification. A total of 113 RF2 genes were identified in the four cotton species, and the RF2 family was relatively conserved during the evolution of cotton. Chromosome mapping and collinear analysis indicated that fragment replication was the main expansion mode of RF2 gene family during evolution. Cis-element analysis showed that there were many elements related to light response, hormone response and abiotic stress response in the promoters of RF2 genes. The transcriptome and qRT-PCR analysis of RF2 family genes in upland cotton showed that RF2 family genes responded to salt stress and drought stress. GhRF2-32 protein was localized in the cell nucleus. Silencing the GhRF2-32 gene showed less leaf wilting and increased total antioxidant capacity under drought and salt stress, decreased malondialdehyde content and increased drought and salt tolerance. This study revealed the evolutionary and functional diversity of the RF2 gene family, which laid a foundation for the further study of stress-resistant genes in cotton.
Collapse
Affiliation(s)
- Haonan Gu
- College of Agriculture, Tarim University, Alar 843300, China
- Anyang Institute of Technology, Anyang 455000, China
| | - Zilin Zhao
- College of Agriculture, Tarim University, Alar 843300, China
- Anyang Institute of Technology, Anyang 455000, China
| | - Yangyang Wei
- Anyang Institute of Technology, Anyang 455000, China
| | - Pengtao Li
- Anyang Institute of Technology, Anyang 455000, China
| | - Quanwei Lu
- Anyang Institute of Technology, Anyang 455000, China
| | - Yuling Liu
- Anyang Institute of Technology, Anyang 455000, China
| | - Tao Wang
- Anyang Institute of Technology, Anyang 455000, China
| | - Nan Hu
- Anyang Institute of Technology, Anyang 455000, China
| | - Sumei Wan
- College of Agriculture, Tarim University, Alar 843300, China
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Shoulin Hu
- College of Agriculture, Tarim University, Alar 843300, China
| | - Renhai Peng
- College of Agriculture, Tarim University, Alar 843300, China
- Anyang Institute of Technology, Anyang 455000, China
| |
Collapse
|
2
|
Gao Y, Chen H, Chen D, Hao G. Genetic and evolutionary dissection of melatonin response signaling facilitates the regulation of plant growth and stress responses. J Pineal Res 2023; 74:e12850. [PMID: 36585354 DOI: 10.1111/jpi.12850] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/19/2022] [Accepted: 12/24/2022] [Indexed: 01/01/2023]
Abstract
The expansion of gene families during evolution could generate functional diversity among their members to regulate plant growth and development. Melatonin, a phylogenetically ancient molecule, is vital for many aspects of a plant's life. Understanding the functional diversity of the molecular players involved in melatonin biosynthesis, signaling, and metabolism will facilitate the regulation of plant phenotypes. However, the molecular mechanism of melatonin response signaling elements in regulating this network still has many challenges. Here, we provide an in-depth analysis of the functional diversity and evolution of molecular components in melatonin signaling pathway. Genetic analysis of multiple mutants in plant species will shed light on the role of gene families in melatonin regulatory pathways. Phylogenetic analysis of these genes was performed, which will facilitate the identification of melatonin-related genes for future study. Based on the abovementioned signal networks, the mechanism of these genes was summarized to provide reference for studying the regulatory mechanism of melatonin in plant phenotypes. We hope that this work will facilitate melatonin research in higher plants and finely tuned spatio-temporal regulation of melatonin signaling.
Collapse
Affiliation(s)
- Yangyang Gao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, P. R. China
| | - Huimin Chen
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, China
| | - Dongyu Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, P. R. China
| | - Gefei Hao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, P. R. China
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, China
| |
Collapse
|
3
|
Ahmad I, Song X, Hussein Ibrahim ME, Jamal Y, Younas MU, Zhu G, Zhou G, Adam Ali AY. The role of melatonin in plant growth and metabolism, and its interplay with nitric oxide and auxin in plants under different types of abiotic stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1108507. [PMID: 36866369 PMCID: PMC9971941 DOI: 10.3389/fpls.2023.1108507] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 01/09/2023] [Indexed: 06/01/2023]
Abstract
Melatonin is a pleiotropic signaling molecule that reduces the adverse effects of abiotic stresses, and enhances the growth and physiological function of many plant species. Several recent studies have demonstrated the pivotal role of melatonin in plant functions, specifically its regulation of crop growth and yield. However, a comprehensive understanding of melatonin, which regulates crop growth and yield under abiotic stress conditions, is not yet available. This review focuses on the progress of research on the biosynthesis, distribution, and metabolism of melatonin, and its multiple complex functions in plants and its role in the mechanisms of metabolism regulation in plants grown under abiotic stresses. In this review, we focused on the pivotal role of melatonin in the enhancement of plant growth and regulation of crop yield, and elucidated its interactions with nitric oxide (NO) and auxin (IAA, indole-3-acetic acid) when plants are grown under various abiotic stresses. The present review revealed that the endogenousapplication of melatonin to plants, and its interactions with NO and IAA, enhanced plant growth and yield under various abiotic stresses. The interaction of melatonin with NO regulated plant morphophysiological and biochemical activities, mediated by the G protein-coupled receptor and synthesis genes. The interaction of melatonin with IAA enhanced plant growth and physiological function by increasing the levels of IAA, synthesis, and polar transport. Our aim was to provide a comprehensive review of the performance of melatonin under various abiotic stresses, and, therefore, further explicate the mechanisms that plant hormones use to regulate plant growth and yield under abiotic stresses.
Collapse
Affiliation(s)
- Irshad Ahmad
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Xudong Song
- Department of Agronomy, Institute of Agricultural, Sudan University of Science and Technology, Khartoum, Sudan
| | - Muhi Eldeen Hussein Ibrahim
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, College of Agriculture, Yangzhou University, Yangzhou, China
- Jiangsu Yanjiang Area, Institute of Agricultural Sciences, Nantong, China
| | - Yousaf Jamal
- Department of Agronomy, Faculty of Agriculture, University of Swabi, Swabi, Pakistan
| | - Muhammad Usama Younas
- Department of Crop Genetics and Breeding, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Guanglong Zhu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Guisheng Zhou
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, College of Agriculture, Yangzhou University, Yangzhou, China
- Key Lab of Crop Genetics & Physiology of Jiangsu Province, Yangzhou University, Yangzhou, China
| | - Adam Yousif Adam Ali
- Department of Agronomy, Faculty of Agricultural and Environmental Science, University of Gadarif, Al Gadarif, Sudan
| |
Collapse
|
4
|
Qari SH, Hassan MU, Chattha MU, Mahmood A, Naqve M, Nawaz M, Barbanti L, Alahdal MA, Aljabri M. Melatonin Induced Cold Tolerance in Plants: Physiological and Molecular Responses. FRONTIERS IN PLANT SCIENCE 2022; 13:843071. [PMID: 35371159 PMCID: PMC8967244 DOI: 10.3389/fpls.2022.843071] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/31/2022] [Indexed: 05/24/2023]
Abstract
Cold stress is one of the most limiting factors for plant growth and development. Cold stress adversely affects plant physiology, molecular and biochemical processes by determining oxidative stress, poor nutrient and water uptake, disorganization of cellular membranes and reduced photosynthetic efficiency. Therefore, to recover impaired plant functions under cold stress, the application of bio-stimulants can be considered a suitable approach. Melatonin (MT) is a critical bio-stimulant that has often shown to enhance plant performance under cold stress. Melatonin application improved plant growth and tolerance to cold stress by maintaining membrane integrity, plant water content, stomatal opening, photosynthetic efficiency, nutrient and water uptake, redox homeostasis, accumulation of osmolytes, hormones and secondary metabolites, and the scavenging of reactive oxygen species (ROS) through improved antioxidant activities and increase in expression of stress-responsive genes. Thus, it is essential to understand the mechanisms of MT induced cold tolerance and identify the diverse research gaps necessitating to be addressed in future research programs. This review discusses MT involvement in the control of various physiological and molecular responses for inducing cold tolerance. We also shed light on engineering MT biosynthesis for improving the cold tolerance in plants. Moreover, we highlighted areas where future research is needed to make MT a vital antioxidant conferring cold tolerance to plants.
Collapse
Affiliation(s)
- Sameer H. Qari
- Department of Biology, Al-Jumum University College, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Muhammad Umair Hassan
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang, China
| | | | - Athar Mahmood
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Maria Naqve
- Department of Botany, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Nawaz
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Lorenzo Barbanti
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Maryam A. Alahdal
- Department of Biology, Faculty of Applied Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Maha Aljabri
- Department of Biology, Faculty of Applied Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
- Department of Biology, Research Laboratories Centre, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
5
|
Zhang Y, Rui C, Fan Y, Xu N, Zhang H, Wang J, Sun L, Dai M, Ni K, Chen X, Lu X, Wang D, Wang J, Wang S, Guo L, Zhao L, Feng X, Chen C, Ye W. Identification of SNAT Family Genes Suggests GhSNAT3D Functional Reponse to Melatonin Synthesis Under Salinity Stress in Cotton. Front Mol Biosci 2022; 9:843814. [PMID: 35223998 PMCID: PMC8867073 DOI: 10.3389/fmolb.2022.843814] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 01/18/2022] [Indexed: 11/24/2022] Open
Abstract
Serotonin N-acetyltransferase (SNAT) is a key enzyme in the biosynthesis of melatonin, and plays an important role in the regulation of melatonin synthesis. The study of SNAT is of great significance to understand the function of melatonin. In this study, we analyzed the structural characteristics, phylogenetic relationship, gene structure, expression pattern, evolutionary relationship and stress response of the members of the SNAT gene family in upland cotton through bioinformatics. A putative Serotonin n-acetyltransferase gene GhSNAT3D was identified, and preliminarily function of GhSNAT3D was verified by virus-induced gene silencing. We identified a total of 52 SNAT genes in the whole genome of G. hirsutum, and part of the GhSNATs were regulated by exogenous melatonin. The content of melatonin, antioxidant enzyme activity and Ca2+ content of GhSNAT3D gene silenced plants decreased, and the salt tolerance of GhSNAT3D gene silenced plants was reduced. Exogenous melatonin supplementation restored the salt tolerance of GhSNAT3D gene silenced plants. GhSNAT3D may interact with GhSNAT25D and ASMT to regulate melatonin synthesis. This study provided an important basis for further study on the regulation of melatonin in cotton against abiotic stress.
Collapse
|