1
|
Rudaks LI, Yeow D, Ng K, Deveson IW, Kennerson ML, Kumar KR. An Update on the Adult-Onset Hereditary Cerebellar Ataxias: Novel Genetic Causes and New Diagnostic Approaches. CEREBELLUM (LONDON, ENGLAND) 2024; 23:2152-2168. [PMID: 38760634 PMCID: PMC11489183 DOI: 10.1007/s12311-024-01703-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/07/2024] [Indexed: 05/19/2024]
Abstract
The hereditary cerebellar ataxias (HCAs) are rare, progressive neurologic disorders caused by variants in many different genes. Inheritance may follow autosomal dominant, autosomal recessive, X-linked or mitochondrial patterns. The list of genes associated with adult-onset cerebellar ataxia is continuously growing, with several new genes discovered in the last few years. This includes short-tandem repeat (STR) expansions in RFC1, causing cerebellar ataxia, neuropathy, vestibular areflexia syndrome (CANVAS), FGF14-GAA causing spinocerebellar ataxia type 27B (SCA27B), and THAP11. In addition, the genetic basis for SCA4, has recently been identified as a STR expansion in ZFHX3. Given the large and growing number of genes, and different gene variant types, the approach to diagnostic testing for adult-onset HCA can be complex. Testing methods include targeted evaluation of STR expansions (e.g. SCAs, Friedreich ataxia, fragile X-associated tremor/ataxia syndrome, dentatorubral-pallidoluysian atrophy), next generation sequencing for conventional variants, which may include targeted gene panels, whole exome, or whole genome sequencing, followed by various potential additional tests. This review proposes a diagnostic approach for clinical testing, highlights the challenges with current testing technologies, and discusses future advances which may overcome these limitations. Implementing long-read sequencing has the potential to transform the diagnostic approach in HCA, with the overall aim to improve the diagnostic yield.
Collapse
Affiliation(s)
- Laura Ivete Rudaks
- Molecular Medicine Laboratory and Neurology Department, Concord Repatriation General Hospital, Sydney, Australia.
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia.
- Genomics and Inherited Disease Program, The Garvan Institute of Medical Research, Sydney, Australia.
- Clinical Genetics Unit, Royal North Shore Hospital, Sydney, Australia.
| | - Dennis Yeow
- Molecular Medicine Laboratory and Neurology Department, Concord Repatriation General Hospital, Sydney, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Genomics and Inherited Disease Program, The Garvan Institute of Medical Research, Sydney, Australia
- Neurodegenerative Service, Prince of Wales Hospital, Sydney, Australia
- Neuroscience Research Australia, Sydney, Australia
| | - Karl Ng
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Neurology Department, Royal North Shore Hospital, Sydney, Australia
| | - Ira W Deveson
- Genomics and Inherited Disease Program, The Garvan Institute of Medical Research, Sydney, Australia
- Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Marina L Kennerson
- Molecular Medicine Laboratory and Neurology Department, Concord Repatriation General Hospital, Sydney, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- The Northcott Neuroscience Laboratory, ANZAC Research Institute, Sydney Local Health District, Sydney, Australia
| | - Kishore Raj Kumar
- Molecular Medicine Laboratory and Neurology Department, Concord Repatriation General Hospital, Sydney, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Genomics and Inherited Disease Program, The Garvan Institute of Medical Research, Sydney, Australia
- Faculty of Medicine, University of New South Wales, Sydney, Australia
- Faculty of Medicine, St Vincent's Healthcare Campus, UNSW Sydney, Sydney, Australia
| |
Collapse
|
2
|
Mandler JM, Härtl J, Cordts I, Sturm M, Hedderich DM, Bafligil C, Baki E, Becker B, Machetanz G, Haack TB, Berthele A, Hemmer B, Deschauer M. Uncovering genetic mimics in multiple sclerosis: A single-center clinical exome sequencing study. Mult Scler J Exp Transl Clin 2024; 10:20552173241263491. [PMID: 39072298 PMCID: PMC11273569 DOI: 10.1177/20552173241263491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/05/2024] [Indexed: 07/30/2024] Open
Abstract
Background Multiple sclerosis (MS) shares clinical/radiological features with several monogenic diseases that can mimic MS. Objective We aimed to determine if exome sequencing can identify monogenic diseases in patients diagnosed with MS according to the McDonald criteria thus uncovering them as being misdiagnosed. Methods We performed whole exome sequencing in a cohort of 278 patients with MS, clinically or radiologically isolated syndrome without cerebrospinal fluid-specific oligoclonal bands (CSF-OCBs) (n = 228), a positive family history of MS (n = 44), or both (n = 6), thereby focusing on individuals potentially more likely to have underlying monogenic conditions mimicking MS. We prioritized 495 genes associated with monogenic diseases sharing features with MS. Results A disease-causing variant in NOTCH3 was identified in one patient without CSF-OCBs, no spinal lesions, with non-response to immunotherapy, and a family history of dementia, thereby converting the diagnosis to cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). Moreover, 18 patients (6.5% of total) carried variants of unclear significance. Conclusion Monogenic diseases being misdiagnosed as MS seem rare in patients diagnosed with MS according to the McDonald criteria, even in CSF-OCB negative cases. The detected pathogenic NOTCH3 variant emphasizes CADASIL as a rare differential diagnosis and highlights the relevance of genetic testing in selected MS cases with atypical presentations.
Collapse
Affiliation(s)
- Julia M Mandler
- Department of Neurology, Klinikum rechts der Isar, School of Medicine and Health, Technical University of Munich, München, Germany
| | - Johanna Härtl
- Department of Neurology, Klinikum rechts der Isar, School of Medicine and Health, Technical University of Munich, München, Germany
| | - Isabell Cordts
- Department of Neurology, Klinikum rechts der Isar, School of Medicine and Health, Technical University of Munich, München, Germany
| | - Marc Sturm
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Dennis M Hedderich
- Department of Neuroradiology, Klinikum rechts der Isar, School of Medicine and Health, Technical University of Munich, München, Germany
| | - Cemsel Bafligil
- Department of Neurology, Klinikum rechts der Isar, School of Medicine and Health, Technical University of Munich, München, Germany
| | - Enayatullah Baki
- Department of Neurology, Klinikum rechts der Isar, School of Medicine and Health, Technical University of Munich, München, Germany
| | - Benedikt Becker
- Department of Neurology, Klinikum rechts der Isar, School of Medicine and Health, Technical University of Munich, München, Germany
| | - Gerrit Machetanz
- Department of Neurology, Klinikum rechts der Isar, School of Medicine and Health, Technical University of Munich, München, Germany
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- Centre for Rare Diseases, University of Tübingen, Tübingen, Germany
| | - Achim Berthele
- Department of Neurology, Klinikum rechts der Isar, School of Medicine and Health, Technical University of Munich, München, Germany
| | - Bernhard Hemmer
- Department of Neurology, Klinikum rechts der Isar, School of Medicine and Health, Technical University of Munich, München, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Marcus Deschauer
- Department of Neurology, Klinikum rechts der Isar, School of Medicine and Health, Technical University of Munich, München, Germany
| |
Collapse
|
3
|
Teive HA, Coutinho L, Meira AT, Franklin GL, Camargo CHF, Munhoz RP. Autosomal Recessive Cerebellar Ataxias: New Acronyms, Old Eponyms, and the Butterfly Life Cycle. Mov Disord Clin Pract 2023; 10:1297-1301. [PMID: 37772306 PMCID: PMC10525046 DOI: 10.1002/mdc3.13835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/14/2023] [Accepted: 06/26/2023] [Indexed: 09/30/2023] Open
Affiliation(s)
- Hélio A.G. Teive
- Movement Disorders Unit, Neurology Service, Internal Medicine Department, Hospital de ClínicasFederal University of ParanáCuritibaParanáBrazil
- Neurological Diseases Group, Graduate Program in Internal Medicine, Internal Medicine Department, Hospital de ClínicasFederal University of ParanáCuritibaParanáBrazil
| | - Léo Coutinho
- Movement Disorders Unit, Neurology Service, Internal Medicine Department, Hospital de ClínicasFederal University of ParanáCuritibaParanáBrazil
| | - Alex T. Meira
- Movement Disorders Unit, Neurology Service, Internal Medicine DepartmentFederal University of ParaíbaJoão PessoaParaíbaBrazil
| | - Gustavo L. Franklin
- Internal Medicine DepartmentPontifical Catholic University of ParanáCuritibaParanáBrazil
| | - Carlos Henrique F. Camargo
- Neurological Diseases Group, Graduate Program in Internal Medicine, Internal Medicine Department, Hospital de ClínicasFederal University of ParanáCuritibaParanáBrazil
| | - Renato Puppi Munhoz
- Division of NeurologyUniversity of Toronto, Toronto Western Hospital–University Health Network, Morton and Gloria Shulman Movement Disorders Centre and Edmond J. Safra Program in Parkinson's DiseaseTorontoOntarioCanada
| |
Collapse
|
4
|
Isa HM, Alkaabi JF, Alhammadi WH, Marjan KA. Recurrent Acute Liver Failure in a Bahraini Child With a Novel Mutation of Spinocerebellar Ataxia-21. Cureus 2023; 15:e36249. [PMID: 37069859 PMCID: PMC10105628 DOI: 10.7759/cureus.36249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
Acute liver failure (ALF) in children is a rare life-threatening condition. ALF is caused by different etiologies. The most common causes are drug-induced liver injury, infections, and metabolic diseases. Other rare causes of ALF are genetic disorders including spinocerebellar ataxia-21 (SCAR21). Herein, we describe the first Bahraini child who was diagnosed with a novel homozygous mutation in the SCYL1 gene. He was admitted to the hospital twice by the age of two and five years due to acute hepatic failure triggered by a febrile illness. Drug-induced, infectious causes, and metabolic diseases were excluded. The liver function then gradually recovered. The patient had delayed gross motor development as he started to walk at 20 months of age. After the first episode of ALF, he had progressive difficulty in walking leading to frequent falls and ending with a complete inability to walk. A whole-exome sequencing (WES) test revealed that the patient has previously unreported autosomal recessive pathogenic non-sense variation c.895A>T (p.Lys299Ter) in exon 7 of the SCYL1 gene in a homozygous status. It is confirmed that the pathogenicity of this variant in the SCYL1 gene was associated with SCAR21 disease.
Collapse
|
5
|
Baviera-Muñoz R, Carretero-Vilarroig L, Vázquez-Costa JF, Morata-Martínez C, Campins-Romeu M, Muelas N, Sastre-Bataller I, Martínez-Torres I, Pérez-García J, Sivera R, Sevilla T, Vilchez JJ, Jaijo T, Espinós C, Millán JM, Bataller L, Aller E. Diagnostic Efficacy of Genetic Studies in a Series of Hereditary Cerebellar Ataxias in Eastern Spain. NEUROLOGY GENETICS 2022; 8:e200038. [DOI: 10.1212/nxg.0000000000200038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022]
Abstract
Background and ObjectivesTo determine the diagnostic efficacy of clinical exome-targeted sequencing (CES) and spinocerebellar ataxia 36 (SCA36) screening in a real-life cohort of patients with cerebellar ataxia (CA) from Eastern Spain.MethodsA total of 130 unrelated patients with CA, negative for common trinucleotide repeat expansions (SCA1, SCA2, SCA3, SCA6, SCA7, SCA8, SCA12, SCA17, dentatorubral pallidoluysian atrophy [DRPLA], and Friedreich ataxia), were studied with CES. Bioinformatic and genotype-phenotype analyses were performed to assess the pathogenicity of the variants encountered. Copy number variants were analyzed when appropriate. In undiagnosed dominant and sporadic cases, repeat primed PCR was used to screen for the presence of a repeat expansion in theNOP56gene.ResultsCES identified pathogenic or likely pathogenic variants in 50 families (39%), including 23 novel variants. Overall, there was a high genetic heterogeneity, and the most frequent genetic diagnosis wasSPG7(n = 15), followed bySETX(n = 6),CACNA1A(n = 5),POLR3A(n = 4), andSYNE1(n = 3). In addition, 17 families displayed likely pathogenic/pathogenic variants in 14 different genes:KCND3(n = 2),KIF1C(n = 2),CYP27A1A(n = 2),AFG3L2(n = 1),ANO10(n = 1),CAPN1(n = 1),CWF19L1(n = 1),ITPR1(n = 1),KCNA1(n = 1),OPA1(n = 1),PNPLA6(n = 1),SPG11(n = 1),SPTBN2(n = 1), andTPP1(n = 1). Twenty-two novel variants were characterized. SCA36 was diagnosed in 11 families, all with autosomal dominant (AD) presentation. SCA36 screening increased the total diagnostic rate to 47% (n = 61/130). Ultimately, undiagnosed patients showed delayed age at onset (p< 0.05) and were more frequently sporadic.DiscussionOur study provides insight into the genetic landscape of CA in Eastern Spain. Although CES was an effective approach to capture genetic heterogeneity, most patients remained undiagnosed. SCA36 was found to be a relatively frequent form and, therefore, should be tested prior to CES in familial AD presentations in particular geographical regions.
Collapse
|
6
|
刘 小, 段 晓, 张 朔, 孙 阿, 张 英, 樊 东. [Genetic distribution in Chinese patients with hereditary peripheral neuropathy]. BEIJING DA XUE XUE BAO. YI XUE BAN = JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2022; 54:874-883. [PMID: 36241230 PMCID: PMC9568373 DOI: 10.19723/j.issn.1671-167x.2022.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Indexed: 06/16/2023]
Abstract
OBJECTIVE To analyze the distribution characteristics of hereditary peripheral neuropathy (HPN) pathogenic genes in Chinese Han population, and to explore the potential pathogenesis and treatment prospects of HPN and related diseases. METHODS Six hundred and fifty-six index patients with HPN were enrolled in Peking University Third Hospital and China-Japan Friendship Hospital from January 2007 to May 2022. The PMP22 duplication and deletion mutations were screened and validated by multiplex ligation probe amplification technique. The next-generation sequencing gene panel or whole exome sequencing was used, and the suspected genes were validated by Sanger sequencing. RESULTS Charcot-Marie-Tooth (CMT) accounted for 74.3% (495/666) of the patients with HPN, of whom 69.1% (342/495) were genetically confirmed. The most common genes of CMT were PMP22 duplication, MFN2 and GJB1 mutations, which accounted for 71.3% (244/342) of the patients with genetically confirmed CMT. Hereditary motor neuropathy (HMN) accounted for 16.1% (107/666) of HPN, and 43% (46/107) of HPN was genetically confirmed. The most common genes of HMN were HSPB1, aminoacyl tRNA synthetases and SORD mutations, which accounted for 56.5% (26/46) of the patients with genetically confirmed HMN. Most genes associated with HMN could cause different phenotypes. HMN and CMT shared many genes (e.g. HSPB1, GARS, IGHMBP2). Some genes associated with dHMN-plus shared genes associated with amyotrophic lateral sclerosis (KIF5A, FIG4, DCTN1, SETX, VRK1), hereditary spastic paraplegia (KIF5A, ZFYVE26, BSCL2) and spinal muscular atrophy (MORC2, IGHMBP, DNAJB2), suggesting that HMN was a continuum rather than a distinct entity. Hereditary sensor and autosomal neuropathy (HSAN) accounted for a small proportion of 2.6% (17/666) in HPN. The most common pathogenic gene was SPTLC1 mutation. TTR was the main gene causing hereditary amyloid peripheral neuropathy. The most common types of gene mutations were p.A117S and p.V50M. The symptoms were characterized by late-onset and prominent autonomic nerve involvement. CONCLUSION CMT and HMN are the most common diseases of HPN. There is a large overlap between HMN and motor-CMT2 pathogenic genes, and some HMN pathogenic genes overlap with amyotrophic lateral sclerosis, hereditary spastic hemiplegia and spinal muscular atrophy, suggesting that there may be a potential common pathogenic pathway between different diseases.
Collapse
Affiliation(s)
- 小璇 刘
- 北京大学第三医院神经内科,北京 100191Department of Neurology, Peking University Third Hospital, Beijing 100191, China
| | - 晓慧 段
- 中日友好医院神经内科,北京 100029Department of Neurology, China-Japan Friendship Hospital, Beijing 100029, China
| | - 朔 张
- 北京大学第三医院神经内科,北京 100191Department of Neurology, Peking University Third Hospital, Beijing 100191, China
| | - 阿萍 孙
- 北京大学第三医院神经内科,北京 100191Department of Neurology, Peking University Third Hospital, Beijing 100191, China
| | - 英爽 张
- 北京大学第三医院神经内科,北京 100191Department of Neurology, Peking University Third Hospital, Beijing 100191, China
| | - 东升 樊
- 北京大学第三医院神经内科,北京 100191Department of Neurology, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
7
|
Zhao J, Zhang H, Fan X, Yu X, Huai J. Lipid Dyshomeostasis and Inherited Cerebellar Ataxia. Mol Neurobiol 2022; 59:3800-3828. [PMID: 35420383 PMCID: PMC9148275 DOI: 10.1007/s12035-022-02826-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/01/2022] [Indexed: 12/04/2022]
Abstract
Cerebellar ataxia is a form of ataxia that originates from dysfunction of the cerebellum, but may involve additional neurological tissues. Its clinical symptoms are mainly characterized by the absence of voluntary muscle coordination and loss of control of movement with varying manifestations due to differences in severity, in the site of cerebellar damage and in the involvement of extracerebellar tissues. Cerebellar ataxia may be sporadic, acquired, and hereditary. Hereditary ataxia accounts for the majority of cases. Hereditary ataxia has been tentatively divided into several subtypes by scientists in the field, and nearly all of them remain incurable. This is mainly because the detailed mechanisms of these cerebellar disorders are incompletely understood. To precisely diagnose and treat these diseases, studies on their molecular mechanisms have been conducted extensively in the past. Accumulating evidence has demonstrated that some common pathogenic mechanisms exist within each subtype of inherited ataxia. However, no reports have indicated whether there is a common mechanism among the different subtypes of inherited cerebellar ataxia. In this review, we summarize the available references and databases on neurological disorders characterized by cerebellar ataxia and show that a subset of genes involved in lipid homeostasis form a new group that may cause ataxic disorders through a common mechanism. This common signaling pathway can provide a valuable reference for future diagnosis and treatment of ataxic disorders.
Collapse
Affiliation(s)
- Jin Zhao
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China
| | - Huan Zhang
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China
| | - Xueyu Fan
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China
| | - Xue Yu
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China
| | - Jisen Huai
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China.
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
8
|
Gana S, Serpieri V, Valente EM. Genotype-phenotype correlates in Joubert syndrome: A review. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2022; 190:72-88. [PMID: 35238134 PMCID: PMC9314610 DOI: 10.1002/ajmg.c.31963] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/04/2022] [Accepted: 02/15/2022] [Indexed: 01/20/2023]
Abstract
Joubert syndrome (JS) is a genetically heterogeneous primary ciliopathy characterized by a pathognomonic cerebellar and brainstem malformation, the “molar tooth sign,” and variable organ involvement. Over 40 causative genes have been identified to date, explaining up to 94% of cases. To date, gene‐phenotype correlates have been delineated only for a handful of genes, directly translating into improved counseling and clinical care. For instance, JS individuals harboring pathogenic variants in TMEM67 have a significantly higher risk of liver fibrosis, while pathogenic variants in NPHP1, RPGRIP1L, and TMEM237 are frequently associated to JS with renal involvement, requiring a closer monitoring of liver parameters, or renal functioning. On the other hand, individuals with causal variants in the CEP290 or AHI1 need a closer surveillance for retinal dystrophy and, in case of CEP290, also for chronic kidney disease. These examples highlight how an accurate description of the range of clinical symptoms associated with defects in each causative gene, including the rare ones, would better address prognosis and help guiding a personalized management. This review proposes to address this issue by assessing the available literature, to confirm known, as well as to propose rare gene‐phenotype correlates in JS.
Collapse
Affiliation(s)
- Simone Gana
- Neurogenetics Research Center, IRCCS Mondino Foundation, Pavia, Italy
| | | | - Enza Maria Valente
- Neurogenetics Research Center, IRCCS Mondino Foundation, Pavia, Italy.,Department of Molecular Medicine, University of Pavia, Pavia, Italy
| |
Collapse
|
9
|
A Novel SETX Mutation in a Taiwanese Patient with Autosomal Recessive Cerebellar Ataxia Detected by Targeted Next-Generation Sequencing, and a Literature Review. Brain Sci 2022; 12:brainsci12020173. [PMID: 35203940 PMCID: PMC8869917 DOI: 10.3390/brainsci12020173] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 12/04/2022] Open
Abstract
Ataxia with oculomotor apraxia type 2 (AOA2), also known as autosomal recessive spinocerebellar ataxia with axonal neuropathy-2 (SCAN2) (OMIM #606002), is a neurodegenerative disorder characterized by early-onset progressive cerebellar ataxia, polyneuropathy, and elevated levels of alpha-fetoprotein. It is caused by mutations in the SETX (OMIM #608465) gene. The prevalence of this disease is widely varied, from non-existent up to 1/150,000, depending on the region. Until now, no cases of AOA2/SCAN2 have been reported in Taiwan. Methods: Next-generation sequencing was used to detect disease-causing mutations of SETX in a Taiwanese patient presenting with autosomal recessive cerebellar ataxia, polyneuropathy, and elevated alpha-fetoprotein. The candidate mutations were further confirmed by polymerase chain reaction (PCR) and Sanger sequencing. Results: A compound heterozygous mutation of SETX c.6859C > T (p.R2287X) and c.7034-7036del was identified. The c.6859C > T (p.R2287X) has been previously found in a Saudi Arabia family, whereas c.7034-7036del is a novel mutation. Both mutations were predicted by bioinformatics programs to be likely pathogenic (having a damaging effect). We also reviewed the literature to address the reported clinical features of AOA2 from different populations. Conclusions: To our knowledge, we are the first to report a Taiwanese patient with AOA2/SCAN2, a result obtained by utilizing next-generation sequencing. The literature review shows that ataxia, polyneuropathy, and elevated AFP are common features and ocular motor apraxia (OMA) is a variable sign of AOA2 from different populations. OMA is rare and saccadic ocular pursuit and nystagmus are common in East Asian AOA2.
Collapse
|
10
|
Dragašević-Mišković N, Stanković I, Milovanović A, Kostić VS. Autosomal recessive adult onset ataxia. J Neurol 2021; 269:504-533. [PMID: 34499204 DOI: 10.1007/s00415-021-10763-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 11/24/2022]
Abstract
Autosomal recessive ataxias (ARCA) represent a complex group of diseases ranging from primary ataxias to rare and complex metabolic disorders in which ataxia is a part of the clinical picture. Small number of ARCA manifest exclusively in adulthood, while majority of typical childhood onset ARCA may also start later with atypical clinical presentation. We have systematically searched the literature for ARCA with adult onset, both in the group of primary ataxias including those that are less frequently described in isolated or in a small number of families, and also in the group of complex and metabolic diseases in which ataxia is only part of the clinical picture. We propose an algorithm that could be used when encountering a patient with adult onset sporadic or recessive ataxia in whom the acquired causes are excluded. ARCA are frequently neglected in the differential diagnosis of adult-onset ataxias. Rising awareness of their clinical significance is important, not only because some of these disorders may be potentially treatable, but also for prognostic implications and inclusion of patients to future clinical trials with disease modifying agents.
Collapse
Affiliation(s)
- Nataša Dragašević-Mišković
- Neurology Clinic, Clinical Center of Serbia, School of Medicine, University of Belgrade, Dr Subotića 6, 11000, Belgrade, Serbia.
| | - Iva Stanković
- Neurology Clinic, Clinical Center of Serbia, School of Medicine, University of Belgrade, Dr Subotića 6, 11000, Belgrade, Serbia
| | - Andona Milovanović
- Neurology Clinic, Clinical Center of Serbia, School of Medicine, University of Belgrade, Dr Subotića 6, 11000, Belgrade, Serbia
| | - Vladimir S Kostić
- Neurology Clinic, Clinical Center of Serbia, School of Medicine, University of Belgrade, Dr Subotića 6, 11000, Belgrade, Serbia
| |
Collapse
|
11
|
Sahin I, Saat H. Hereditary spastic paraplegia: new insights into clinical variability and spasticity-ataxia phenotype, and novel mutations. Acta Neurol Belg 2021; 122:1529-1535. [PMID: 34420199 DOI: 10.1007/s13760-021-01779-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/16/2021] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Hereditary spastic paraplegias (HSPs), a genetically heterogeneous group of neurodegenerative diseases, have an incidence of around 3 to 9 individuals every 100,000. Due to the broad clinical and genetic variability of HSPs, it is challenging to diagnose the disorder quickly and precisely. Hereditary spastic ataxias (HSAs) and HSPs are overlapping diseases, and their intersection has been gradually identified by next-generation sequencing. The idea of the spasticity-ataxia phenotype (SAP) spectrum is further substantiated by the similarities in phenotypes and underlying genes in ataxias and inherited spastic paraplegias and the related cellular processes and disease mechanisms these disorders exhibit. METHODS Whole-exome sequencing was performed on the 25 spastic or spastic-ataxic gait patients. RESULTS Twenty-two specific HSPs-HSAs-SAP mutations, including 14 novel mutations, were found in 25 cases from 18 Turkish and 2 Syrian families. This research discovers many novel hereditary spastic paraplegia (HSP) mutations and shows a robust genotype-phenotype heterogeneity in the disease. CONCLUSIONS This research helped expand the clinical and molecular scope of HSP and clarified the concept of the spasticity-ataxia phenotype, further enhancing our understanding of the complicated form of HSP and its association with ataxia. Our data broadens the spectrum of HSPs and HSAs related gene mutations and provides insights for genotype-phenotype correlations for HSPs and HSAs.
Collapse
|
12
|
Nayler S, Agarwal D, Curion F, Bowden R, Becker EBE. High-resolution transcriptional landscape of xeno-free human induced pluripotent stem cell-derived cerebellar organoids. Sci Rep 2021; 11:12959. [PMID: 34155230 PMCID: PMC8217544 DOI: 10.1038/s41598-021-91846-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 05/26/2021] [Indexed: 01/22/2023] Open
Abstract
Current protocols for producing cerebellar neurons from human pluripotent stem cells (hPSCs) often rely on animal co-culture and mostly exist as monolayers, limiting their capability to recapitulate the complex processes in the developing cerebellum. Here, we employed a robust method, without the need for mouse co-culture to generate three-dimensional cerebellar organoids from hPSCs that display hallmarks of in vivo cerebellar development. Single-cell profiling followed by comparison to human and mouse cerebellar atlases revealed the presence and maturity of transcriptionally distinct populations encompassing major cerebellar cell types. Encapsulation with Matrigel aimed to provide more physiologically-relevant conditions through recapitulation of basement-membrane signalling, influenced both growth dynamics and cellular composition of the organoids, altering developmentally relevant gene expression programmes. We identified enrichment of cerebellar disease genes in distinct cell populations in the hPSC-derived cerebellar organoids. These findings ascertain xeno-free human cerebellar organoids as a unique model to gain insight into cerebellar development and its associated disorders.
Collapse
Affiliation(s)
- Samuel Nayler
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, United Kingdom.
| | - Devika Agarwal
- Weatherall Institute for Molecular Medicine, University of Oxford, Oxford, OX3 7BN, United Kingdom
| | - Fabiola Curion
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, United Kingdom
| | - Rory Bowden
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, United Kingdom
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
| | - Esther B E Becker
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, United Kingdom.
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, United Kingdom.
| |
Collapse
|
13
|
Zebrafish Models of Autosomal Recessive Ataxias. Cells 2021; 10:cells10040836. [PMID: 33917666 PMCID: PMC8068028 DOI: 10.3390/cells10040836] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 12/11/2022] Open
Abstract
Autosomal recessive ataxias are much less well studied than autosomal dominant ataxias and there are no clearly defined systems to classify them. Autosomal recessive ataxias, which are characterized by neuronal and multisystemic features, have significant overlapping symptoms with other complex multisystemic recessive disorders. The generation of animal models of neurodegenerative disorders increases our knowledge of their cellular and molecular mechanisms and helps in the search for new therapies. Among animal models, the zebrafish, which shares 70% of its genome with humans, offer the advantages of being small in size and demonstrating rapid development, making them optimal for high throughput drug and genetic screening. Furthermore, embryo and larval transparency allows to visualize cellular processes and central nervous system development in vivo. In this review, we discuss the contributions of zebrafish models to the study of autosomal recessive ataxias characteristic phenotypes, behavior, and gene function, in addition to commenting on possible treatments found in these models. Most of the zebrafish models generated to date recapitulate the main features of recessive ataxias.
Collapse
|
14
|
Cocozza S, Pontillo G, De Michele G, Di Stasi M, Guerriero E, Perillo T, Pane C, De Rosa A, Ugga L, Brunetti A. Conventional MRI findings in hereditary degenerative ataxias: a pictorial review. Neuroradiology 2021; 63:983-999. [PMID: 33733696 PMCID: PMC8213578 DOI: 10.1007/s00234-021-02682-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/25/2021] [Indexed: 12/15/2022]
Abstract
Purpose Cerebellar ataxias are a large and heterogeneous group of disorders. The evaluation of brain parenchyma via MRI plays a central role in the diagnostic assessment of these conditions, being mandatory to exclude the presence of other underlying causes in determining the clinical phenotype. Once these possible causes are ruled out, the diagnosis is usually researched in the wide range of hereditary or sporadic ataxias. Methods We here propose a review of the main clinical and conventional imaging findings of the most common hereditary degenerative ataxias, to help neuroradiologists in the evaluation of these patients. Results Hereditary degenerative ataxias are all usually characterized from a neuroimaging standpoint by the presence, in almost all cases, of cerebellar atrophy. Nevertheless, a proper assessment of imaging data, extending beyond the mere evaluation of cerebellar atrophy, evaluating also the pattern of volume loss as well as concomitant MRI signs, is crucial to achieve a proper diagnosis. Conclusion The integration of typical neuroradiological characteristics, along with patient’s clinical history and laboratory data, could allow the neuroradiologist to identify some conditions and exclude others, addressing the neurologist to the more appropriate genetic testing.
Collapse
Affiliation(s)
- Sirio Cocozza
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini, 5, 80131, Naples, Italy.
| | - Giuseppe Pontillo
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini, 5, 80131, Naples, Italy.,Department of Electrical Engineering and Information Technology, University of Naples "Federico II", Naples, Italy
| | - Giovanna De Michele
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University of Naples "Federico II", Naples, Italy
| | - Martina Di Stasi
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini, 5, 80131, Naples, Italy
| | - Elvira Guerriero
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini, 5, 80131, Naples, Italy
| | - Teresa Perillo
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini, 5, 80131, Naples, Italy
| | - Chiara Pane
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University of Naples "Federico II", Naples, Italy
| | - Anna De Rosa
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University of Naples "Federico II", Naples, Italy
| | - Lorenzo Ugga
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini, 5, 80131, Naples, Italy
| | - Arturo Brunetti
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini, 5, 80131, Naples, Italy
| |
Collapse
|
15
|
Abstract
Hereditary myelopathies are an important and likely underappreciated component of neurogenetic disease. While previously distinctions have been made by age of onset, the growing power and availability of high-quality neuroimaging and next-generation sequencing are increasingly expanding classical phenotypes and diminishing the utility of age-based classifications. Increasingly, cases of "atypical" disease presentations are challenging past assumptions regarding the age of onset and survival in many disorders and identifying allelic syndromes in others. Despite this, there is poor awareness of the potential for spinal involvement in many diseases that typically affect the brain. Broadly speaking, congenital myelopathies can be neuroanatomically grouped into motor neuron, axonopathy, spinocerebellar, cerebroleukodystrophy, and pan-neuraxis (generally central nervous system predominant with associated axonopathy) disorders.Here, we review hereditary causes of myelopathy, organized by neuroanatomy, and highlight atypical presentations. We discuss findings concerning an underlying genetic etiology for myelopathy, as well as practical, technical, and ethical considerations of diagnostic genetic testing.
Collapse
Affiliation(s)
- Melissa A Walker
- Division of Child Neurology, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
16
|
Application of a Clinical Workflow May Lead to Increased Diagnostic Precision in Hereditary Spastic Paraplegias and Cerebellar Ataxias: A Single Center Experience. Brain Sci 2021; 11:brainsci11020246. [PMID: 33669240 PMCID: PMC7919782 DOI: 10.3390/brainsci11020246] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/02/2021] [Accepted: 02/11/2021] [Indexed: 11/17/2022] Open
Abstract
The molecular characterization of Hereditary Spastic Paraplegias (HSP) and inherited cerebellar ataxias (CA) is challenged by their clinical and molecular heterogeneity. The recent application of Next Generation Sequencing (NGS) technologies is increasing the diagnostic rate, which can be influenced by patients’ selection. To assess if a clinical diagnosis of CA/HSP received in a third-level reference center might impact the molecular diagnostic yield, we retrospectively evaluated the molecular diagnostic rate reached in our center on 192 unrelated families (90 HSP and 102 CA) (i) before NGS and (ii) with the use of NGS gene panels. Overall, 46.3% of families received a genetic diagnosis by first-tier individual gene screening: 43.3% HSP and 50% spinocerebellar ataxias (SCA). The diagnostic rate was 56.7% in AD-HSP, 55.5% in AR-HSP, and 21.2% in sporadic HSP. On the other hand, 75% AD-, 52% AR- and 33% sporadic CA were diagnosed. So far, 32 patients (24 CA and 8 HSP) were further assessed by NGS gene panels, and 34.4% were diagnosed, including 29.2% CA and 50% HSP patients. Eleven novel gene variants classified as (likely) pathogenic were identified. Our results support the role of experienced clinicians in the diagnostic assessment and the clinical research of CA and HSP even in the next generation era.
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW This article provides an overview of Charcot-Marie-Tooth disease (CMT) and other inherited neuropathies. These disorders encompass a broad spectrum with variable motor, sensory, autonomic, and other organ system involvement. Considerable overlap exists, both phenotypically and genetically, among these separate categories, all eventually exhibiting axonal injury and neurologic impairment. Depending on the specific neural and non-neural localizations, patients experience varying morbidity and mortality. Neurologic evaluations, including neurophysiologic testing, can help diagnose and predict patient disabilities. Diagnosis is often complex, especially when genetic and acquired components overlap. RECENT FINDINGS Next-generation sequencing has greatly improved genetic diagnosis, with many third-party reimbursement parties now embracing phenotype-based panel evaluations. Through the advent of comprehensive gene panels, symptoms previously labeled as idiopathic or atypical now have a better chance to receive a specific diagnosis. A definitive molecular diagnosis affords patients improved care and counsel. The new classification scheme for inherited neuropathies emphasizes the causal gene names. A specific genetic diagnosis is important as considerable advances are being made in gene-specific therapeutics. Emerging therapeutic approaches include small molecule chaperones, antisense oligonucleotides, RNA interference, and viral gene delivery therapies. New therapies for hereditary transthyretin amyloidosis and Fabry disease are discussed. SUMMARY Comprehensive genetic testing through a next-generation sequencing approach is simplifying diagnostic algorithms and affords significantly improved decision-making processes in neuropathy care. Genetic diagnosis is essential for pathogenic understanding and for gene therapy development. Gene-targeted therapies have begun entering the clinic. Currently, for most inherited neuropathy categories, specific symptomatic management and family counseling remain the mainstays of therapy.
Collapse
|
18
|
Gauquelin L, Hartley T, Tarnopolsky M, Dyment DA, Brais B, Geraghty MT, Tétreault M, Ahmed S, Rojas S, Choquet K, Majewski J, Bernier F, Innes AM, Rouleau G, Suchowersky O, Boycott KM, Yoon G. Channelopathies Are a Frequent Cause of Genetic Ataxias Associated with Cerebellar Atrophy. Mov Disord Clin Pract 2020; 7:940-949. [PMID: 33163565 DOI: 10.1002/mdc3.13086] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/11/2020] [Accepted: 08/18/2020] [Indexed: 11/08/2022] Open
Abstract
Background Cerebellar atrophy is a nonspecific imaging finding observed in a number of neurological disorders. Genetic ataxias associated with cerebellar atrophy are a heterogeneous group of conditions, rendering the approach to diagnosis challenging. Objectives To define the spectrum of genetic ataxias associated with cerebellar atrophy in a Canadian cohort and the diagnostic yield of exome sequencing for this group of conditions. Methods A total of 92 participants from 66 families with cerebellar atrophy were recruited for this multicenter prospective cohort study. Exome sequencing was performed for all participants between 2011 and 2017 as part of 1 of 2 national research programs, Finding of Rare Genetic Disease Genes or Enhanced Care for Rare Genetic Diseases in Canada. Results A genetic diagnosis was established in 53% of families (35/66). Pathogenic variants were found in 21 known genes, providing a diagnosis for 31/35 families (89%), and in 4 novel genes, accounting for 4/35 families (11%). Of the families, 31/66 (47%) remained without a genetic diagnosis. The most common diagnoses were channelopathies, which were established in 9/35 families (26%). Additional clinical findings provided useful clues to specific diagnoses. Conclusions We report on the high frequency of channelopathies as a cause of genetic ataxias associated with cerebellar atrophy and the utility of exome sequencing for this group of conditions.
Collapse
Affiliation(s)
- Laurence Gauquelin
- Division of Clinical and Metabolic Genetics, Department of Paediatrics The Hospital for Sick Children, University of Toronto Toronto Ontario Canada.,Division of Paediatric Neurology, Department of Paediatrics The Hospital for Sick Children, University of Toronto Toronto Ontario Canada
| | - Taila Hartley
- Children's Hospital of Eastern Ontario Research Institute University of Ottawa Ottawa Ontario Canada
| | - Mark Tarnopolsky
- Department of Paediatrics McMaster University Medical Centre Hamilton Ontario Canada
| | - David A Dyment
- Children's Hospital of Eastern Ontario Research Institute University of Ottawa Ottawa Ontario Canada
| | - Bernard Brais
- Department of Neurology and Neurosurgery McGill University, Montreal Neurological Institute Montreal Qubec Canada.,Department of Human Genetics McGill University Montreal Qubec Canada
| | - Michael T Geraghty
- Children's Hospital of Eastern Ontario Research Institute University of Ottawa Ottawa Ontario Canada
| | - Martine Tétreault
- Department of Human Genetics McGill University Montreal Qubec Canada.,Department of Neuroscience Université de Montréal CHUM, Montreal Qubec Canada
| | - Sohnee Ahmed
- Division of Clinical and Metabolic Genetics, Department of Paediatrics The Hospital for Sick Children, University of Toronto Toronto Ontario Canada
| | - Samantha Rojas
- Children's Hospital of Eastern Ontario Research Institute University of Ottawa Ottawa Ontario Canada
| | - Karine Choquet
- Department of Neurology and Neurosurgery McGill University, Montreal Neurological Institute Montreal Qubec Canada
| | - Jacek Majewski
- Department of Human Genetics McGill University Montreal Qubec Canada
| | - François Bernier
- Department of Medical Genetics University of Calgary Calgary Alberta Canada
| | | | - Guy Rouleau
- Department of Neurology and Neurosurgery McGill University, Montreal Neurological Institute Montreal Qubec Canada
| | - Oksana Suchowersky
- Department of Medicine Division of Neurology, University of Alberta Edmonton Alberta Canada
| | - Kym M Boycott
- Children's Hospital of Eastern Ontario Research Institute University of Ottawa Ottawa Ontario Canada
| | - Grace Yoon
- Division of Clinical and Metabolic Genetics, Department of Paediatrics The Hospital for Sick Children, University of Toronto Toronto Ontario Canada.,Division of Paediatric Neurology, Department of Paediatrics The Hospital for Sick Children, University of Toronto Toronto Ontario Canada
| |
Collapse
|
19
|
Paternoster L, Soblet J, Aeby A, De Tiège X, Goldman S, Yue WW, Coppens S, Smits G, Vilain C, Deconinck N. Novel homozygous variant of carbonic anhydrase 8 gene expanding the phenotype of cerebellar ataxia, mental retardation, and disequilibrium syndrome subtype 3. Am J Med Genet A 2020; 182:2685-2693. [PMID: 32808436 DOI: 10.1002/ajmg.a.61805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 11/11/2022]
Abstract
We report the case of an 11-year-old Syrian girl born to consanguineous parents, who presents an ataxic gait from early childhood. On clinical examination, she presented a severe static - kinetic cerebellar syndrome, walking without support is possible for short distances only. Strikingly, three consecutive MRIs did not show any sign of cerebellar abnormalities, but a brain positron emission tomography (PET) using [18F]-fluorodeoxyglucose (FDG) demonstrated a clear decrease in glucose metabolism in the cerebellum as well as the anterior and medial temporal lobe bilaterally. A clinical exome analysis identified a novel homozygous c.251A > G (p.Asn84Ser) likely pathogenic variant in the carbonic anhydrase 8 (CA8) gene. CA8 mutations cause cerebellar ataxia, mental retardation, and disequilibrium syndrome subtype 3 (CAMRQ3), a rare genetically autosomal recessive disorder, only described in four families, so far with the frequent observation of quadrupedal gait. The proband differed with other reported CA8 mutations by the absence of clear cerebellar signs on brain MRI and the presence of focal seizures. This report expands the clinical spectrum associated with mutations in CA8 and illustrates the possible discrepancy between (mild) neuro-radiological images (MRI) and (severe) clinical phenotype in young individuals. In contrast, the observation of clear cerebellar abnormal metabolic findings suggests that the FDG-PET scan may be used as an early marker for hereditary ataxia.
Collapse
Affiliation(s)
- Lionel Paternoster
- Faculté de Médecine ULB, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Julie Soblet
- Department of Genetics, Hôpital Universitaire des Enfants Reine Fabiola, ULB Center of Human Genetics, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Department of Genetics, Hôpital Erasme, ULB Center of Human Genetics, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Alec Aeby
- Department of Pediatric Neurology, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Xavier De Tiège
- Department of Functional Neuroimaging, Service of Nuclear Medicine, CUB Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels, Belgium.,Laboratoire de Cartographie fonctionnelle du Cerveau, ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Serge Goldman
- Department of Functional Neuroimaging, Service of Nuclear Medicine, CUB Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels, Belgium.,Laboratoire de Cartographie fonctionnelle du Cerveau, ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Wyatt W Yue
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Sandra Coppens
- Department of Genetics, Hôpital Universitaire des Enfants Reine Fabiola, ULB Center of Human Genetics, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Neuromuscular Reference Center, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Guillaume Smits
- Department of Genetics, Hôpital Universitaire des Enfants Reine Fabiola, ULB Center of Human Genetics, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Department of Genetics, Hôpital Erasme, ULB Center of Human Genetics, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Catheline Vilain
- Department of Genetics, Hôpital Universitaire des Enfants Reine Fabiola, ULB Center of Human Genetics, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Department of Genetics, Hôpital Erasme, ULB Center of Human Genetics, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Nicolas Deconinck
- Department of Pediatric Neurology, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Neuromuscular Reference Center, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
20
|
Ababneh NA, Ali D, Al-Kurdi B, Sallam M, Alzibdeh AM, Salah B, Ryalat AT, Azab B, Sharrack B, Awidi A. Identification of APTX disease-causing mutation in two unrelated Jordanian families with cerebellar ataxia and sensitivity to DNA damaging agents. PLoS One 2020; 15:e0236808. [PMID: 32750061 PMCID: PMC7402469 DOI: 10.1371/journal.pone.0236808] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/13/2020] [Indexed: 11/26/2022] Open
Abstract
Background Ataxia with oculomotor apraxia type 1 (AOA1) is a rare autosomal recessive cerebellar ataxia, caused by mutations in the APTX gene. The disease is characterized by early-onset cerebellar ataxia, oculomotor apraxia and severe axonal polyneuropathy. The aim of this study was to detect the disease-causing variants in two unrelated consanguineous Jordanian families with cerebellar ataxia using whole exome sequencing (WES), and to correlate the identified mutation(s) with the clinical and cellular phenotypes. Methods WES was performed in three affected individuals and segregation analysis of p.W279* APTX candidate variant was performed. Expression levels of APTX were measured in patients’ skin fibroblasts and peripheral blood mononuclear cells, followed by western blot analysis in skin fibroblasts. Genotoxicity assay was performed to detect the sensitivity of APTX mutated cells to H2O2, MMC, MMS and etoposide. Results A recurrent homozygous nonsense variant in APTX gene (c.837G>A, p.W279*) was revealed in all affected individuals. qRT-PCR showed normal APTX levels in peripheral blood and lower levels in fibroblast cells. However, western blot showed the absence of APTX protein in patients’ skin fibroblasts. Significant hypersensitivity to H2O2, MMC and etoposide and lack of sensitivity to MMS were noted. Conclusions This is the first study to report the identification of a nonsense variant in the APTX gene (c.837G>A; p.W279*) in AOA1 patients within the Jordanian population. This study confirmed the need of WES to assist in the diagnosis of cerebellar ataxia and it emphasizes the importance of studying the pathophysiology of the APTX gene.
Collapse
Affiliation(s)
- Nidaa A. Ababneh
- Cell Therapy Center, The University of Jordan, Amman, Jordan
- * E-mail: , (NAA); (AA)
| | - Dema Ali
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | - Ban Al-Kurdi
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | - Malik Sallam
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman, Jordan
- Department of Clinical Laboratories and Forensic Medicine, Jordan University Hospital, Amman, Jordan
- Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | | | - Bareqa Salah
- General Surgery Department/Plastic & Reconstructive, Jordan University Hospital, The University of Jordan, Amman, Jordan
| | | | - Belal Azab
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman, Jordan
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Basil Sharrack
- Academic Department of Neuroscience and Sheffield NIHR Neuroscience BRC, Royal Hallamshire Hospital and The University of Sheffield, Sheffield, United Kingdom
| | - Abdalla Awidi
- Cell Therapy Center, The University of Jordan, Amman, Jordan
- Hemostasis and Thrombosis Laboratory, School of Medicine, the University of Jordan, Amman, Jordan
- Department of Hematology and Oncology, Jordan University Hospital, Amman, Jordan
- * E-mail: , (NAA); (AA)
| |
Collapse
|
21
|
Magrinelli F, Latorre A, Balint B, Mackenzie M, Mulroy E, Stamelou M, Tinazzi M, Bhatia KP. Isolated and combined genetic tremor syndromes: a critical appraisal based on the 2018 MDS criteria. Parkinsonism Relat Disord 2020; 77:121-140. [PMID: 32818815 DOI: 10.1016/j.parkreldis.2020.04.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 04/13/2020] [Accepted: 04/18/2020] [Indexed: 12/12/2022]
Abstract
The 2018 consensus statement on the classification of tremors proposes a two-axis categorization scheme based on clinical features and etiology. It also defines "isolated" and "combined" tremor syndromes depending on whether tremor is the sole clinical manifestation or is associated with other neurological or systemic signs. This syndromic approach provides a guide to investigate the underlying etiology of tremors, either genetic or acquired. Several genetic defects have been proven to cause tremor disorders, including autosomal dominant and recessive, X-linked, and mitochondrial diseases, as well as chromosomal abnormalities. Furthermore, some tremor syndromes are recognized in individuals with a positive family history, but their genetic confirmation is pending. Although most genetic tremor disorders show a combined clinical picture, there are some distinctive conditions in which tremor may precede the appearance of other neurological signs by years or remain the prominent manifestation throughout the disease course, previously leading to misdiagnosis as essential tremor (ET). Advances in the knowledge of genetically determined tremors may have been hampered by the inclusion of heterogeneous entities in previous studies on ET. The recent classification of tremors therefore aims to provide more consistent clinical data for deconstructing the genetic basis of tremor syndromes in the next-generation and long-read sequencing era. This review outlines the wide spectrum of tremor disorders with defined or presumed genetic etiology, both isolated and combined, unraveling diagnostic clues of these conditions and focusing mainly on ET-like phenotypes. Furthermore, we suggest a phenotype-to-genotype algorithm to support clinicians in identifying tremor syndromes and guiding genetic investigations.
Collapse
Affiliation(s)
- Francesca Magrinelli
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom; Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.
| | - Anna Latorre
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom.
| | - Bettina Balint
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom; Department of Neurology, University Hospital Heidelberg, Heidelberg, Germany.
| | - Melissa Mackenzie
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom.
| | - Eoin Mulroy
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom.
| | - Maria Stamelou
- Department of Neurology, Attikon University Hospital, Athens, Greece.
| | - Michele Tinazzi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom.
| |
Collapse
|
22
|
Ababneh NA, Al-Kurdi B, Ali D, Abuarqoub D, Barham R, Alzibdeh AM, Khanfar AN, Altantawi AM, Ryalat AT, Sharrack B, Awidi A. Generation and characterization of induced pluripotent stem cell (iPSC) line (JUCTCi002-A) from a patient with ataxia with oculomotor apraxia type 1 (AOA1) harboring a homozygous mutation in the APTX gene. Stem Cell Res 2020; 48:101925. [PMID: 32769066 DOI: 10.1016/j.scr.2020.101925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/24/2020] [Accepted: 07/19/2020] [Indexed: 10/23/2022] Open
Abstract
Ataxia with Oculomotor Apraxia Type 1 (AOA1) is an autosomal-recessive cerebellar ataxia characterized by early-onset cerebellar atrophy and axonal sensorimotor polyneuropathy. AOA1 is related to mutations in the aprataxin (APTX) gene encoding for the aprataxin protein. The aprataxin protein has been reported to be involved in DNA single-strand break repair (SSBR) machinery and it localizes to the mitochondria to preserve the mitochondrial function. Here, we demonstrate the generation of induced pluripotent stem cell (iPSC) line (JUCTCi002-A) from AOA1 patient's skin dermal fibroblasts. The selected line showed normal karyotype, expression of pluripotency markers and the ability to differentiatie in vitro into the three germ layers.
Collapse
Affiliation(s)
- Nidaa A Ababneh
- Cell Therapy Center, The University of Jordan, Amman, Jordan.
| | - Ban Al-Kurdi
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | - Dema Ali
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | - Duaa Abuarqoub
- Cell Therapy Center, The University of Jordan, Amman, Jordan; Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
| | - Raghda Barham
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | | | - Asim N Khanfar
- School of Medicine, The University of Jordan, Amman, Jordan
| | | | | | - Basil Sharrack
- Academic Department of Neuroscience and Sheffield NIHR Neuroscience BRC, Royal Hallamshire Hospital and the University of Sheffield, Glossop Road, Sheffield S10 2JF, UK
| | - Abdalla Awidi
- Cell Therapy Center, The University of Jordan, Amman, Jordan; Hemostasis and Thrombosis Laboratory, School of Medicine, The University of Jordan, Amman, Jordan; Department of Hematology and Oncology, Jordan University Hospital, Amman, Jordan
| |
Collapse
|
23
|
Mohamed NV, Larroquette F, Beitel LK, Fon EA, Durcan TM. One Step Into the Future: New iPSC Tools to Advance Research in Parkinson's Disease and Neurological Disorders. JOURNAL OF PARKINSONS DISEASE 2020; 9:265-281. [PMID: 30741685 PMCID: PMC6597965 DOI: 10.3233/jpd-181515] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Studying Parkinson’s disease (PD) in the laboratory presents many challenges, the main one being the limited availability of human cells and tissue from affected individuals. As PD is characterized by a loss of dopaminergic (DA) neurons in the brain, it is nearly impossible for researchers to access and extract these cells from living patients. Thus, in the past PD research has focused on the use of patients’ post-mortem tissues, animal models, or immortalized cell lines to dissect cellular pathways of interest. While these strategies deepened our knowledge of pathological mechanisms in PD, they failed to faithfully capture key mechanisms at play in the human brain. The emergence of induced pluripotent stem cell (iPSC) technology is revolutionizing PD research, as it allows for the differentiation and growth of human DA neurons in vitro, holding immense potential not only for modelling PD, but also for identifying novel therapies. However, to reproduce the complexity of the brain’s environment, researchers are recognizing the need to further develop and refine iPSC-based tools. In this review, we provide an overview of different systems now available for the study of PD, with a particular emphasis on the potential and limitations of iPSC as research tools to generate more relevant models of PD pathophysiology and advance the drug discovery process.
Collapse
Affiliation(s)
- Nguyen-Vi Mohamed
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Frédérique Larroquette
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Lenore K Beitel
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Edward A Fon
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Thomas M Durcan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
24
|
Gana S, Valente EM. Movement Disorders in Genetic Pediatric Ataxias. Mov Disord Clin Pract 2020; 7:383-393. [PMID: 32373654 DOI: 10.1002/mdc3.12937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/24/2020] [Accepted: 03/08/2020] [Indexed: 11/06/2022] Open
Abstract
Background Genetic pediatric ataxias are heterogeneous rare disorders, mainly inherited as autosomal-recessive traits. Most forms are progressive and lack effective treatment, with relevant socioeconomical impact. Albeit ataxia represents the main clinical feature, the phenotype can be more complex, with additional neurological and nonneurological signs being described in several forms. Methods and Results In this review, we provide an overview of the occurrence and spectrum of movement disorders in the most relevant forms of childhood-onset genetic ataxias. All types of hypokinetic and hyperkinetic movement disorders of variable severity have been reported. Movement disorders occasionally represent the symptom of onset, predating ataxia even of a few years and therefore challenging an early diagnosis. Their pathogenesis still remains poorly defined, as it is not yet clear whether movement disorders may directly relate to the cerebellar pathology or result from an extracerebellar dysfunction, including the basal ganglia. Conclusion Recognition of the complete movement disorder phenotype in genetic pediatric ataxias has important implications for diagnosis, management, and genetic counseling.
Collapse
Affiliation(s)
| | - Enza Maria Valente
- IRCCS Mondino Foundation Pavia Italy.,Department of Molecular Medicine University of Pavia Pavia Italy
| |
Collapse
|
25
|
Olszewska DA, Kinsella JA. Extending the Phenotypic Spectrum Associated with STUB1 Mutations: A Case of Dystonia. Mov Disord Clin Pract 2020; 7:318-324. [PMID: 32258232 PMCID: PMC7111583 DOI: 10.1002/mdc3.12914] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/27/2020] [Accepted: 02/06/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Mutations in the STIP1 homology and U-box containing protein 1 gene were first described in 2013 and lead to disorders with symptoms including ataxia and dysarthria, such as spinocerebellar autosomal-recessive ataxia type 16 (SCAR16), Gordon-Holmes syndrome, and spinocerebellar ataxia type 48. There have been 15 families described to date with SCAR16. CASES We describe a 45-year-old right-handed woman with dysarthria, ataxia, and cervical dystonia with SCAR16 with 2 compound heterozygous variants in the STIP1 homology and U-box containing protein 1 gene, and a family history significant for her 47-year-old sister with dysarthria and cognitive problems. CONCLUSION We present a comprehensive overview of the phenotypic data of all 15 families with SCAR16 and expand the phenotype by describing a third patient with SCAR16 and dystonia reported to date in the literature.
Collapse
Affiliation(s)
- Diana A. Olszewska
- Department of NeurologyDublin Neurological Institute at the Mater Misericordiae University HospitalDublinIreland
- Department of NeurologySt. Vincent's University HospitalDublinIreland
| | | |
Collapse
|
26
|
Embryonic Cerebellar Graft Morphology Differs in Two Mouse Models of Cerebellar Degeneration. THE CEREBELLUM 2020; 18:855-865. [PMID: 31418135 DOI: 10.1007/s12311-019-01067-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Cerebellar diseases causing substantial cell loss often lead to severe functional deficits and restoration of cerebellar function is difficult. Neurotransplantation therapy could become a hopeful method, but there are still many limitations and unknown aspects. Studies in a variety of cerebellar mutant mice reflecting heterogeneity of human cerebellar degenerations show promising results as well as new problems and questions to be answered. The aim of this work was to compare the development of embryonic cerebellar grafts in adult B6CBA Lurcher and B6.BR pcd mutant mice and strain-matched healthy wild type mice. Performance in the rotarod test, graft survival, structure, and volume was examined 2 months after the transplantation or sham-operation. The grafts survived in most of the mice of all types. In both B6CBA and B6.BR wild type mice and in pcd mice, colonization of the host's cerebellum was a common finding, while in Lurcher mice, the grafts showed a low tendency to infiltrate the host's cerebellar tissue. There were no significant differences in graft volume between mutant and wild type mice. Nevertheless, B6CBA mice had smaller grafts than their B6.BR counterparts. The transplantation did not improve the performance in the rotarod test. The study showed marked differences in graft integration into the host's cerebellum in two types of cerebellar mutants, suggesting disease-specific factors influencing graft fate.
Collapse
|
27
|
|
28
|
Caglayan AO, Gumus H, Sandford E, Kubisiak TL, Ma Q, Ozel AB, Per H, Li JZ, Shakkottai VG, Burmeister M. COQ4 Mutation Leads to Childhood-Onset Ataxia Improved by CoQ10 Administration. THE CEREBELLUM 2019; 18:665-669. [PMID: 30847826 DOI: 10.1007/s12311-019-01011-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ahmet Okay Caglayan
- Department of Medical Genetics, School of Medicine, Demiroglu Bilim University, 34394, Istanbul, Turkey
| | - Hakan Gumus
- Division of Pediatric Neurology, Department of Pediatrics, School of Medicine, Erciyes University, 38039, Kayseri, Turkey
| | - Erin Sandford
- Molecular & Behavioral Neuroscience Institute, University of Michigan, 5061 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - Thomas L Kubisiak
- Molecular & Behavioral Neuroscience Institute, University of Michigan, 5061 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - Qianyi Ma
- Departments of Computational Medicine & Bioinformatics, Psychiatry and Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - A Bilge Ozel
- Departments of Computational Medicine & Bioinformatics, Psychiatry and Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Huseyin Per
- Division of Pediatric Neurology, Department of Pediatrics, School of Medicine, Erciyes University, 38039, Kayseri, Turkey
| | - Jun Z Li
- Departments of Computational Medicine & Bioinformatics, Psychiatry and Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Vikram G Shakkottai
- Department of Neurology, Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Margit Burmeister
- Molecular & Behavioral Neuroscience Institute, University of Michigan, 5061 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA. .,Departments of Computational Medicine & Bioinformatics, Psychiatry and Human Genetics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
29
|
Beaudin M, Matilla-Dueñas A, Soong BW, Pedroso JL, Barsottini OG, Mitoma H, Tsuji S, Schmahmann JD, Manto M, Rouleau GA, Klein C, Dupre N. The Classification of Autosomal Recessive Cerebellar Ataxias: a Consensus Statement from the Society for Research on the Cerebellum and Ataxias Task Force. CEREBELLUM (LONDON, ENGLAND) 2019; 18:1098-1125. [PMID: 31267374 PMCID: PMC6867988 DOI: 10.1007/s12311-019-01052-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
There is currently no accepted classification of autosomal recessive cerebellar ataxias, a group of disorders characterized by important genetic heterogeneity and complex phenotypes. The objective of this task force was to build a consensus on the classification of autosomal recessive ataxias in order to develop a general approach to a patient presenting with ataxia, organize disorders according to clinical presentation, and define this field of research by identifying common pathogenic molecular mechanisms in these disorders. The work of this task force was based on a previously published systematic scoping review of the literature that identified autosomal recessive disorders characterized primarily by cerebellar motor dysfunction and cerebellar degeneration. The task force regrouped 12 international ataxia experts who decided on general orientation and specific issues. We identified 59 disorders that are classified as primary autosomal recessive cerebellar ataxias. For each of these disorders, we present geographical and ethnical specificities along with distinctive clinical and imagery features. These primary recessive ataxias were organized in a clinical and a pathophysiological classification, and we present a general clinical approach to the patient presenting with ataxia. We also identified a list of 48 complex multisystem disorders that are associated with ataxia and should be included in the differential diagnosis of autosomal recessive ataxias. This classification is the result of a consensus among a panel of international experts, and it promotes a unified understanding of autosomal recessive cerebellar disorders for clinicians and researchers.
Collapse
Affiliation(s)
- Marie Beaudin
- Axe Neurosciences, CHU de Québec-Université Laval, Québec, QC, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Antoni Matilla-Dueñas
- Department of Neuroscience, Health Sciences Research Institute Germans Trias i Pujol (IGTP), Universitat Autònoma de Barcelona, Badalona, Barcelona, Spain
| | - Bing-Weng Soong
- Department of Neurology, Shuang Ho Hospital and Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan, Republic of China
- National Yang-Ming University School of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China
| | - Jose Luiz Pedroso
- Ataxia Unit, Department of Neurology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Orlando G Barsottini
- Ataxia Unit, Department of Neurology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Hiroshi Mitoma
- Medical Education Promotion Center, Tokyo Medical University, Tokyo, Japan
| | - Shoji Tsuji
- The University of Tokyo, Tokyo, Japan
- International University of Health and Welfare, Chiba, Japan
| | - Jeremy D Schmahmann
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Mario Manto
- Service de Neurologie, Médiathèque Jean Jacquy, CHU-Charleroi, 6000, Charleroi, Belgium
- Service des Neurosciences, UMons, Mons, Belgium
| | | | | | - Nicolas Dupre
- Axe Neurosciences, CHU de Québec-Université Laval, Québec, QC, Canada.
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada.
| |
Collapse
|
30
|
|
31
|
Upadhyay U, Zhuang GZ, Diatchenko L, Parisien M, Kang Y, Sarantopoulos KD, Martin ER, Smith SB, Maixner W, Levitt RC. Profound analgesia is associated with a truncated peptide resulting from tissue specific alternative splicing of DRG CA8-204 regulated by an exon-level cis-eQTL. PLoS Genet 2019; 15:e1008226. [PMID: 31199789 PMCID: PMC6615631 DOI: 10.1371/journal.pgen.1008226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 07/09/2019] [Accepted: 05/31/2019] [Indexed: 12/13/2022] Open
Abstract
Carbonic anhydrase-8 (CA8) is an intracellular protein that functions as an allosteric inhibitor of inositol trisphosphate receptor-1 (ITPR1) critical to intracellular Ca++ release, synaptic functions and neuronal excitability. We showed previously that murine nociception and analgesic responses are regulated by the expression of this gene in dorsal root ganglion (DRG) associated with a cis-eQTL. In this report, we identify an exon-level cis-eQTL (rs6471859) that regulates human DRG CA8 alternative splicing, producing a truncated 1,697bp transcript (e.g., CA8-204). Our functional genomic studies show the “G” allele at rs6471859 produces a cryptic 3’UTR splice site regulating expression of CA8-204. We developed constructs to study the expression and function of the naturally occurring CA8-204G transcript (G allele at rs6471859), CA8-204C (C allele at rs6471859 reversion mutation) and CA8-201 (full length transcript). CA8-204G transcript expression occurred predominantly in non-neuronal cells (HEK293), while CA8-204C expression was restricted to neuronal derived cells (NBL) in vitro. CA8-204G produced a stable truncated transcript in HEK293 cells that was barely detectable in NBL cells. We also show CA8-204 produces a stable peptide that inhibits pITPR1 and Ca++ release in HEK293 cells. These results imply homozygous G/G individuals at rs6471859, which are common in the general population, produce exclusively CA8-204G that is barely detectable in neuronal cells. CA8 null mutations that greatly impact neuronal functions are associated with severe forms of spinal cerebellar ataxia, and our data suggest G/G homozygotes should display a similar phenotype. To address this question, we show in vivo using AAV8-FLAG-CA8-204G and AAV8-V5-CA8-201 gene transfer delivered via intra-neural sciatic nerve injection (SN), that these viral constructs are able to transduce DRG cells and produce similar analgesic and anti-hyperalgesic responses to inflammatory pain. Immunohistochemistry (IHC) examinations of DRG tissues further show CA8-204G peptide is expressed in advillin expressing neuronal cells, but to a lesser extent compared to glial cells. These findings explain why G/G homozygotes that exclusively produce this truncated functional peptide in DRG evade a severe phenotype. These genomic studies significantly advance the literature regarding structure-function studies on CA8-ITPR1 critical to calcium signaling pathways, synaptic functioning, neuronal excitability and analgesic responses. Carbonic anhydrase-8 (CA8) inhibits IP3 binding to the inositol trisphosphate receptor-1(ITPR1), which regulates intracellular calcium signaling critical to neuronal functions. Recessive CA8-null mutants are associated with spinocerebellar ataxia and neurodegenerative disorders. We have previously demonstrated that nociception and analgesic responses are associated with a DRG cis-eQTL that regulates murine expression of this gene. This study focuses on a human DRG exon-level cis-eQTL (rs6471859) that regulates CA8-204 alternative splicing producing a truncated 1,697bp transcript. Herein, we demonstrate the “G” allele at rs6471859 produces a cryptic 3’UTR splice site regulating tissue-specific CA8-204 expression. In vitro studies show the “G” allele (CA8-204G) produces a stable peptide that inhibits ITPR1 activation and Ca++ release in non-neuronal cells, but not in neuronal cells. However, using AAV8 gene transfer in vivo we show CA8-204G peptide is expressed in both glial and to a lesser extent in neuronal cells, producing profound analgesia and anti-hyperalgesia using inflammatory pain models, similar to the full length CA8-201 positive control. These data significantly extend our understanding of CA8 structure-function, demonstrating the truncated peptide may represent a novel therapeutic candidate.
Collapse
Affiliation(s)
- Udita Upadhyay
- Department of Anesthesiology, Perioperative Medicine and Pain Management, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Gerald Z. Zhuang
- Department of Anesthesiology, Perioperative Medicine and Pain Management, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Luda Diatchenko
- Alan Edwards Centre for Research on Pain, McGill University Department of Anesthesiology, Montreal, Quebec, Canada
| | - Marc Parisien
- Alan Edwards Centre for Research on Pain, McGill University Department of Anesthesiology, Montreal, Quebec, Canada
| | - Yuan Kang
- Department of Anesthesiology, Perioperative Medicine and Pain Management, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Konstantinos D. Sarantopoulos
- Department of Anesthesiology, Perioperative Medicine and Pain Management, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Eden R. Martin
- John T. MacDonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Shad B. Smith
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - William Maixner
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Roy C. Levitt
- Department of Anesthesiology, Perioperative Medicine and Pain Management, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- John T. MacDonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- * E-mail:
| |
Collapse
|
32
|
Nanetti L, Sarto E, Castaldo A, Magri S, Mongelli A, Rossi Sebastiano D, Canafoglia L, Grisoli M, Malaguti C, Rivieri F, D’Amico MC, Di Bella D, Franceschetti S, Mariotti C, Taroni F. ANO10 mutational screening in recessive ataxia: genetic findings and refinement of the clinical phenotype. J Neurol 2018; 266:378-385. [DOI: 10.1007/s00415-018-9141-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 11/22/2018] [Accepted: 11/24/2018] [Indexed: 12/22/2022]
|
33
|
Barros FS, Marussi VHR, Amaral LLF, da Rocha AJ, Campos CMS, Freitas LF, Huisman TAGM, Soares BP. The Rare Neurocutaneous Disorders: Update on Clinical, Molecular, and Neuroimaging Features. Top Magn Reson Imaging 2018; 27:433-462. [PMID: 30516694 DOI: 10.1097/rmr.0000000000000185] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Phakomatoses, also known as neurocutaneous disorders, comprise a vast number of entities that predominantly affect structures originated from the ectoderm such as the central nervous system and the skin, but also the mesoderm, particularly the vascular system. Extensive literature exists about the most common phakomatoses, namely neurofibromatosis, tuberous sclerosis, von Hippel-Lindau and Sturge-Weber syndrome. However, recent developments in the understanding of the molecular underpinnings of less common phakomatoses have sparked interest in these disorders. In this article, we review the clinical features, current pathogenesis, and modern neuroimaging findings of melanophakomatoses, vascular phakomatoses, and other rare neurocutaneous syndromes that may also include tissue overgrowth or neoplastic predisposition.
Collapse
Affiliation(s)
- Felipe S Barros
- Division of Neuroradiology, BP Medicina Diagnóstica, Hospital da Beneficência Portuguesa de São Paulo
| | - Victor Hugo R Marussi
- Division of Neuroradiology, BP Medicina Diagnóstica, Hospital da Beneficência Portuguesa de São Paulo
| | - Lázaro L F Amaral
- Division of Neuroradiology, BP Medicina Diagnóstica, Hospital da Beneficência Portuguesa de São Paulo
| | - Antônio José da Rocha
- Division of Neuroradiology, Department of Radiology, Santa Casa de São Paulo School of Medical Sciences, São Paulo, Brazil
| | - Christiane M S Campos
- Division of Neuroradiology, BP Medicina Diagnóstica, Hospital da Beneficência Portuguesa de São Paulo
| | - Leonardo F Freitas
- Division of Neuroradiology, BP Medicina Diagnóstica, Hospital da Beneficência Portuguesa de São Paulo
| | - Thierry A G M Huisman
- Division of Pediatric Radiology and Pediatric Neuroradiology, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Bruno P Soares
- Division of Pediatric Radiology and Pediatric Neuroradiology, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
34
|
Kumari R, Kumar D, Brahmachari SK, Srivastava AK, Faruq M, Mukerji M. Paradigm for disease deconvolution in rare neurodegenerative disorders in Indian population: insights from studies in cerebellar ataxias. J Genet 2018; 97:589-609. [PMID: 30027898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Cerebellar ataxias are a group of rare progressive neurodegenerative disorders with an average prevalence ranges from 4.8 to 13.8 in 100,000 individuals. The inherited disorders affect multiple members of the families, or a community that is endogamous or consanguineous. Presence of more than 3000 mutations in different genes with overlapping clinical symptoms, genetic anticipation and pleiotropy, as well as incomplete penetrance and variable expressivity due to modifiers pose challenges in genotype-phenotype correlation. Development of a diagnostic algorithm could reduce the time as well as cost in clinicogenetic diagnostics and also help in reducing the economic and social burden of the disease. In a unique research collaboration spanning over 20 years, we have been able to develop a paradigm for studying cerebellar ataxias in the Indian population which would also be relevant in other rare diseases. This has involved clinical and genetic analysis of thousands of families from diverse Indian populations. The extensive resource on ataxia has led to the development of a clinicogenetic algorithm for cost-effective screening of ataxia and a unique ataxia clinic in the tertiary referral centre in All India Institute of Medical Sciences. Utilizing a population polymorphism scanning approach, we have been able to dissect the mechanisms of repeat instability and expansion in many ataxias, and also identify founders, and trace the mutational histories in the Indian population. This provides information for genetic testing of at-risk as well as protected individuals and populations. To dissect uncharacterized cases which comprises more than 50% of the cases, we have explored the potential of next-generation sequencing technologies coupled with the extensive resource of baseline data generated in-house and other public domains. We have also developed a repository of patient-derived peripheral blood mononuclear cells, lymphoblastoid cell lines and neuronal lineages (derived from iPSCs) for ascribing functionality to novel genes/mutations. Through integrating these technologies, novel genes have been identified that has broadened the diagnostic panel, increased the diagnostic yield to over 75%, helped in ascribing pathogenicity to novel mutations and enabled understanding of disease mechanisms. It has also provided a platform for testing novel molecules for amelioration of pathophysiological phenotypes. This review through a perspective on CAs suggests a generic paradigm fromdiagnostics to therapeutic interventions for rare disorders in the context of heterogeneous Indian populations.
Collapse
Affiliation(s)
- Renu Kumari
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), Mathura Road, New Delhi 110 025, India. E-mail:
| | | | | | | | | | | |
Collapse
|
35
|
Kumari R, Kumar D, Brahmachari SK, Srivastava AK, Faruq M, Mukerji M. Paradigm for disease deconvolution in rare neurodegenerative disorders in Indian population: insights from studies in cerebellar ataxias. J Genet 2018. [DOI: 10.1007/s12041-018-0948-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
36
|
Mathis S, Tazir M, Solé G, Magy L, Le Masson G, Couratier P, Ghorab K, Duval F, Lacoste I, Goizet C, Vallat JM. Some new proposals for the classification of inherited myopathies. J Neurol Sci 2018; 391:118-119. [PMID: 30103959 DOI: 10.1016/j.jns.2018.06.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 06/14/2018] [Accepted: 06/18/2018] [Indexed: 11/19/2022]
Affiliation(s)
- Stéphane Mathis
- Department of Neurology, Nerve-Muscle Unit (National reference center 'maladies neuromusculaires du grand sud-ouest'), University Hospital of Bordeaux (groupe hospitalier Pellegrin), Place Amélie Raba-Léon, 33000 Bordeaux, France
| | - Meriem Tazir
- Department of Neurology, University Hospital Mustapha Bacha, Algiers, Algeria; Laboratoire de Neurosciences, University of Algiers 1, Algiers, Algeria
| | - Guilhem Solé
- Department of Neurology, Nerve-Muscle Unit (National reference center 'maladies neuromusculaires du grand sud-ouest'), University Hospital of Bordeaux (groupe hospitalier Pellegrin), Place Amélie Raba-Léon, 33000 Bordeaux, France
| | - Laurent Magy
- Department of Neurology (National reference center 'neuropathies périphériques rares'), University Hospital Dupuytren, 2 avenue Martin Luther King, 87042 Limoges, France
| | - Gwendal Le Masson
- Department of Neurology, Nerve-Muscle Unit (National reference center 'maladies neuromusculaires du grand sud-ouest'), University Hospital of Bordeaux (groupe hospitalier Pellegrin), Place Amélie Raba-Léon, 33000 Bordeaux, France
| | - Philippe Couratier
- Department of Neurology (National reference center 'neuropathies périphériques rares'), University Hospital Dupuytren, 2 avenue Martin Luther King, 87042 Limoges, France
| | - Karima Ghorab
- Department of Neurology (National reference center 'neuropathies périphériques rares'), University Hospital Dupuytren, 2 avenue Martin Luther King, 87042 Limoges, France
| | - Fanny Duval
- Department of Neurology, Nerve-Muscle Unit (National reference center 'maladies neuromusculaires du grand sud-ouest'), University Hospital of Bordeaux (groupe hospitalier Pellegrin), Place Amélie Raba-Léon, 33000 Bordeaux, France
| | - Idoia Lacoste
- Department of Neurology, Nerve-Muscle Unit (National reference center 'maladies neuromusculaires du grand sud-ouest'), University Hospital of Bordeaux (groupe hospitalier Pellegrin), Place Amélie Raba-Léon, 33000 Bordeaux, France
| | - Cyril Goizet
- Department of Medical Genetics (National reference center 'maladies neuromusculaires du grand sud-ouest'), University Hospital of Bordeaux (groupe hospitalier Pellegrin), place Amélie Raba-Léon, 33076 Bordeaux, France; MRGM Laboratory, INSERM U1211, University of Bordeaux, place Amélie Raba-Léon, 33076 Bordeaux, France
| | - Jean-Michel Vallat
- Department of Neurology (National reference center 'neuropathies périphériques rares'), University Hospital Dupuytren, 2 avenue Martin Luther King, 87042 Limoges, France.
| |
Collapse
|
37
|
Heidelberg D, Ronsin S, Bonneville F, Hannoun S, Tilikete C, Cotton F. Main inherited neurodegenerative cerebellar ataxias, how to recognize them using magnetic resonance imaging? J Neuroradiol 2018; 45:265-275. [PMID: 29920348 DOI: 10.1016/j.neurad.2018.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 05/09/2018] [Accepted: 05/28/2018] [Indexed: 12/12/2022]
Abstract
Ataxia is a neurodegenerative disease resulting from brainstem, cerebellar, and/or spinocerebellar tracts impairments. Symptoms onset could vary widely from childhood to late-adulthood. Autosomal cerebellar ataxias are considered as one of the most complex group in neurogenetics. In addition to their genetic heterogeneity, there is an important phenotypic variability in the expression of cerebellar impairment, complicating the genetic mutation research. A pattern recognition approach using brain MRI measures of atrophy, hyperintensities and iron-induced hypointensity of the dentate nuclei, could be therefore helpful in guiding genetic research. This review will discuss a pattern recognition approach that, associated with the age at disease onset, and clinical manifestations, may help neuroradiologists differentiate the most frequent profiles of ataxia.
Collapse
Affiliation(s)
- D Heidelberg
- Faculty of Medicine, Claude-Bernard Lyon 1 University, 69000 Lyon, France; Service de radiologie and Laboratoire d'anatomie de Rockefeller, centre hospitalier Lyon Sud, hospices civils de Lyon, 69000 Lyon, France
| | - S Ronsin
- Neuro-ophtalmology unit and neurology D, Neurological and Neurosurgical Hospital P. Wertheimer, Hospices Civils de Lyon, 69000 Lyon, France
| | - F Bonneville
- Service de neuroradiologie diagnostique et thérapeutique, Hôpitaux de Toulouse, Hôpital Pierre-Paul-Riquet, 31000 Toulouse, France
| | - S Hannoun
- Nehme and Therese Tohme Multiple Sclerosis Center, American University of Beirut Medical Center, 1107, 2020 Beirut, Lebanon
| | - C Tilikete
- Faculty of Medicine, Claude-Bernard Lyon 1 University, 69000 Lyon, France; Neuro-ophtalmology unit and neurology D, Neurological and Neurosurgical Hospital P. Wertheimer, Hospices Civils de Lyon, 69000 Lyon, France; Lyon neuroscience research center, Inserm U1028, CNRS UMR5292, Impact Team, 69000 Lyon, France
| | - F Cotton
- Faculty of Medicine, Claude-Bernard Lyon 1 University, 69000 Lyon, France; Service de radiologie and Laboratoire d'anatomie de Rockefeller, centre hospitalier Lyon Sud, hospices civils de Lyon, 69000 Lyon, France; CREATIS, Inserm U1044/CNRS UMR 5220, 69000 Lyon, France.
| |
Collapse
|
38
|
Seong E, Insolera R, Dulovic M, Kamsteeg EJ, Trinh J, Brüggemann N, Sandford E, Li S, Ozel AB, Li JZ, Jewett T, Kievit AJ, Münchau A, Shakkottai V, Klein C, Collins C, Lohmann K, van de Warrenburg BP, Burmeister M. Mutations in VPS13D lead to a new recessive ataxia with spasticity and mitochondrial defects. Ann Neurol 2018; 83:1075-1088. [PMID: 29604224 PMCID: PMC6105379 DOI: 10.1002/ana.25220] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 03/11/2018] [Accepted: 03/19/2018] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To identify novel causes of recessive ataxias, including spinocerebellar ataxia with saccadic intrusions, spastic ataxias, and spastic paraplegia. METHODS In an international collaboration, we independently performed exome sequencing in 7 families with recessive ataxia and/or spastic paraplegia. To evaluate the role of VPS13D mutations, we evaluated a Drosophila knockout model and investigated mitochondrial function in patient-derived fibroblast cultures. RESULTS Exome sequencing identified compound heterozygous mutations in VPS13D on chromosome 1p36 in all 7 families. This included a large family with 5 affected siblings with spinocerebellar ataxia with saccadic intrusions (SCASI), or spinocerebellar ataxia, recessive, type 4 (SCAR4). Linkage to chromosome 1p36 was found in this family with a logarithm of odds score of 3.1. The phenotypic spectrum in our 12 patients was broad. Although most presented with ataxia, additional or predominant spasticity was present in 5 patients. Disease onset ranged from infancy to 39 years, and symptoms were slowly progressive and included loss of independent ambulation in 5. All but 2 patients carried a loss-of-function (nonsense or splice site) mutation on one and a missense mutation on the other allele. Knockdown or removal of Vps13D in Drosophila neurons led to changes in mitochondrial morphology and impairment in mitochondrial distribution along axons. Patient fibroblasts showed altered morphology and functionality including reduced energy production. INTERPRETATION Our study demonstrates that compound heterozygous mutations in VPS13D cause movement disorders along the ataxia-spasticity spectrum, making VPS13D the fourth VPS13 paralog involved in neurological disorders. Ann Neurol 2018.
Collapse
Affiliation(s)
- Eunju Seong
- Molecular & Behavioral Neuroscience Institute, University of
Michigan, Ann Arbor, MI 48109, USA
| | - Ryan Insolera
- Department of Molecular, Cellular, and Developmental Biology,
University of Michigan, Ann Arbor, MI 48109, USA
| | - Marija Dulovic
- Institute of Neurogenetics, University of Lübeck,
Germany
| | - Erik-Jan Kamsteeg
- Department of Human Genetics, Radboud University Medical Centre,
Nijmegen, The Netherlands
| | - Joanne Trinh
- Institute of Neurogenetics, University of Lübeck,
Germany
| | | | - Erin Sandford
- Molecular & Behavioral Neuroscience Institute, University of
Michigan, Ann Arbor, MI 48109, USA
| | | | - Ayse Bilge Ozel
- Department of Human Genetics, University of Michigan, Ann Arbor, MI
48109, USA
| | - Jun Z. Li
- Department of Human Genetics, University of Michigan, Ann Arbor, MI
48109, USA
- Department of Computational Medicine & Bioinformatics,
University of Michigan, Ann Arbor, MI 48109, USA
| | - Tamison Jewett
- Department of Pediatrics, Section on Medical Genetics, Wake Forest
School of Medicine, Winston-Salem, North Carolina, USA
| | | | | | - Vikram Shakkottai
- Departments of Neurology and of Molecular and Integrative
Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Catherine Collins
- Department of Molecular, Cellular, and Developmental Biology,
University of Michigan, Ann Arbor, MI 48109, USA
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck,
Germany
| | - Bart P. van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition and
Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Margit Burmeister
- Molecular & Behavioral Neuroscience Institute, University of
Michigan, Ann Arbor, MI 48109, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI
48109, USA
- Department of Computational Medicine & Bioinformatics,
University of Michigan, Ann Arbor, MI 48109, USA
- Department of Psychiatry, University of Michigan, Ann Arbor, MI
48109, USA
| |
Collapse
|
39
|
Langer Y, Aran A, Gulsuner S, Abu Libdeh B, Renbaum P, Brunetti D, Teixeira PF, Walsh T, Zeligson S, Ruotolo R, Beeri R, Dweikat I, Shahrour M, Weinberg-Shukron A, Zahdeh F, Baruffini E, Glaser E, King MC, Levy-Lahad E, Zeviani M, Segel R. Mitochondrial PITRM1 peptidase loss-of-function in childhood cerebellar atrophy. J Med Genet 2018; 55:599-606. [PMID: 29764912 DOI: 10.1136/jmedgenet-2018-105330] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 03/28/2018] [Accepted: 04/10/2018] [Indexed: 12/28/2022]
Abstract
OBJECTIVE To identify the genetic basis of a childhood-onset syndrome of variable severity characterised by progressive spinocerebellar ataxia, mental retardation, psychotic episodes and cerebellar atrophy. METHODS Identification of the underlying mutations by whole exome and whole genome sequencing. Consequences were examined in patients' cells and in yeast. RESULTS Two brothers from a consanguineous Palestinian family presented with progressive spinocerebellar ataxia, mental retardation and psychotic episodes. Serial brain imaging showed severe progressive cerebellar atrophy. Whole exome sequencing revealed a novel mutation: pitrilysin metallopeptidase 1 (PITRM1) c.2795C>T, p.T931M, homozygous in the affected children and resulting in 95% reduction in PITRM1 protein. Whole genome sequencing revealed a chromosome X structural rearrangement that also segregated with the disease. Independently, two siblings from a second Palestinian family presented with similar, somewhat milder symptoms and the same PITRM1 mutation on a shared haplotype. PITRM1T931M carrier frequency was 0.027 (3/110) in the village of the first family evaluated, and 0/300 among Palestinians from other locales. PITRM1 is a mitochondrial matrix enzyme that degrades 10-65 amino acid oligopeptides, including the mitochondrial fraction of amyloid-beta peptide. Analysis of peptide cleavage activity by the PITRM1T931M protein revealed a significant decrease in the degradation capacity specifically of peptides ≥40 amino acids. CONCLUSION PITRM1T931M results in childhood-onset recessive cerebellar pathology. Severity of PITRM1-related disease may be affected by the degree of impairment in cleavage of mitochondrial long peptides. Disruption and deletion of X linked regulatory segments may also contribute to severity.
Collapse
Affiliation(s)
- Yeshaya Langer
- Department of Pediatrics, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Adi Aran
- Department of Pediatrics, Neuropediatrics Unit, Shaare Zedek Medical Center and Hebrew University-Hadassah School of Medicine, Jerusalem, Israel
| | - Suleyman Gulsuner
- Departments of Medicine and Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Bassam Abu Libdeh
- Departments of Pediatrics and Genetics, Makassed Hospital, Al-Quds University, Jerusalem, Israel
| | - Paul Renbaum
- Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Dario Brunetti
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Pedro-Filipe Teixeira
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden
| | - Tom Walsh
- Departments of Medicine and Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Sharon Zeligson
- Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Roberta Ruotolo
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Rachel Beeri
- Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Imad Dweikat
- Departments of Pediatrics and Genetics, Makassed Hospital, Al-Quds University, Jerusalem, Israel
| | - Maher Shahrour
- Departments of Pediatrics and Genetics, Makassed Hospital, Al-Quds University, Jerusalem, Israel
| | | | - Fouad Zahdeh
- Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Enrico Baruffini
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Elzbieta Glaser
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden
| | - Mary-Claire King
- Departments of Medicine and Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Ephrat Levy-Lahad
- Medical Genetics Institute, Shaare Zedek Medical Center, Hebrew University-Hadassah School of Medicine, Jerusalem, Israel
| | - Massimo Zeviani
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Reeval Segel
- Department of Pediatrics, Medical Genetics Institute, Shaare Zedek Medical Center, Hebrew University-Hadassah School of Medicine, Jerusalem, Israel
| |
Collapse
|
40
|
Rossi M, Anheim M, Durr A, Klein C, Koenig M, Synofzik M, Marras C, van de Warrenburg BP. The genetic nomenclature of recessive cerebellar ataxias. Mov Disord 2018; 33:1056-1076. [PMID: 29756227 DOI: 10.1002/mds.27415] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/15/2018] [Accepted: 03/25/2018] [Indexed: 12/17/2022] Open
Abstract
The recessive cerebellar ataxias are a large group of degenerative and metabolic disorders, the diagnostic management of which is difficult because of the enormous clinical and genetic heterogeneity. Because of several limitations, the current classification systems provide insufficient guidance for clinicians and researchers. Here, we propose a new nomenclature for the genetically confirmed recessive cerebellar ataxias according to the principles and criteria laid down by the International Parkinson and Movement Disorder Society Task Force on Classification and Nomenclature of Genetic Movement Disorders. We apply stringent criteria for considering an association between gene and phenotype to be established. The newly proposed list of recessively inherited cerebellar ataxias includes 62 disorders that were assigned an ATX prefix, followed by the gene name, because these typically present with ataxia as a predominant and/or consistent feature. An additional 30 disorders that often combine ataxia with a predominant or consistent other movement disorder received a double prefix (e.g., ATX/HSP). We also identified a group of 89 entities that usually present with complex nonataxia phenotypes, but may occasionally present with cerebellar ataxia. These are listed separately without the ATX prefix. This new, transparent and adaptable nomenclature of the recessive cerebellar ataxias will facilitate the clinical recognition of recessive ataxias, guide diagnostic testing in ataxia patients, and help in interpreting genetic findings. © 2018 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Malco Rossi
- Movement Disorders Section, Neuroscience Department, Raul Carrea Institute for Neurological Research, Buenos Aires, Argentina
| | - Mathieu Anheim
- Département de Neurologie, Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre, Strasbourg, France.,Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM-U964/CNRS-UMR7104/Université de Strasbourg, Illkirch, France.,Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Alexandra Durr
- Brain and Spine Institute, Sorbonne Université, Inserm U1127, CNRS UMR 7225, Pitié-Salpêtrière University Hospital, Paris, France.,Department of Genetics, AP-HP, Pitié-Salpêtrière University Hospital, 7501, Paris, France
| | - Christine Klein
- Institute of Neurogenetics, University of Luebeck, Luebeck, Germany.,Department of Neurology, University Hospital Schleswig-Holstein, Campus Lübeck, Germany
| | - Michel Koenig
- Laboratoire de Génétique de Maladies Rares, EA7402, Institut Universitaire de Recherche Clinique, Université de Montpellier, CHU Montpellier, Montpellier, France
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Connie Marras
- Toronto Western Hospital Morton, Gloria Shulman Movement Disorders Centre, and the Edmond J. Safra Program in Parkinson's Disease, University of Toronto, Toronto, Canada
| | - Bart P van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition & Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | | |
Collapse
|
41
|
Consensus Paper: Neurophysiological Assessments of Ataxias in Daily Practice. THE CEREBELLUM 2018; 17:628-653. [DOI: 10.1007/s12311-018-0937-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
42
|
Zeitlberger A, Ging H, Nethisinghe S, Giunti P. Advances in the understanding of hereditary ataxia – implications for future patients. Expert Opin Orphan Drugs 2018. [DOI: 10.1080/21678707.2018.1444477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Anna Zeitlberger
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Heather Ging
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Suran Nethisinghe
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Paola Giunti
- Department of Molecular Neuroscience, UCL, Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, UK
| |
Collapse
|
43
|
|
44
|
Magy L, Mathis S, Le Masson G, Goizet C, Tazir M, Vallat JM. Updating the classification of inherited neuropathies: Results of an international survey. Neurology 2018; 90:e870-e876. [PMID: 29429969 DOI: 10.1212/wnl.0000000000005074] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 12/04/2017] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE The continual discovery of disease-causing gene mutations has led to difficulties in the complex classification of Charcot-Marie-Tooth diseases (CMT) that needs to be revised. METHODS We recently published a proposal to update the classification of inherited neuropathies. The reactions from colleagues prompted us to diffuse the proposal and ask people if they would be ready for such a change. We therefore performed an internet survey (from October 1, 2016, to December 1, 2016) that included more than 300 CMT worldwide specialists (practitioners and scientists) from various countries. A questionnaire (with proposals to update and simplify the way in which CMT is classified) was sent by e-mail to all participants in the last International Charcot-Marie-Tooth and Related Neuropathy Consortium meeting held in Venice, September 8-10, 2016 (as identified through an e-mail list). RESULTS Of the 107 CMT specialists who answered the survey, 65% considered that changes are needed and that our proposals constituted an improvement over the historical classification of CMT. CONCLUSIONS Based on recent proposals in the medical literature, these results highlight that most specialists think that changes are needed to the classification of CMT.
Collapse
Affiliation(s)
- Laurent Magy
- From the Department of Neurology (L.M., J.-M.V.), Centre de Référence Neuropathies Rares, CHU Limoges; Department of Neurology, Nerve-Muscle Unit (S.M., G.L.M.), and Department of Neurogenetics (C.G.), CHU Bordeaux (Pellegrin Hospital), France; and Department of Neurology (M.T.), CHU Mustapha Bacha, Algiers, Algeria.
| | - Stéphane Mathis
- From the Department of Neurology (L.M., J.-M.V.), Centre de Référence Neuropathies Rares, CHU Limoges; Department of Neurology, Nerve-Muscle Unit (S.M., G.L.M.), and Department of Neurogenetics (C.G.), CHU Bordeaux (Pellegrin Hospital), France; and Department of Neurology (M.T.), CHU Mustapha Bacha, Algiers, Algeria
| | - Gwendal Le Masson
- From the Department of Neurology (L.M., J.-M.V.), Centre de Référence Neuropathies Rares, CHU Limoges; Department of Neurology, Nerve-Muscle Unit (S.M., G.L.M.), and Department of Neurogenetics (C.G.), CHU Bordeaux (Pellegrin Hospital), France; and Department of Neurology (M.T.), CHU Mustapha Bacha, Algiers, Algeria
| | - Cyril Goizet
- From the Department of Neurology (L.M., J.-M.V.), Centre de Référence Neuropathies Rares, CHU Limoges; Department of Neurology, Nerve-Muscle Unit (S.M., G.L.M.), and Department of Neurogenetics (C.G.), CHU Bordeaux (Pellegrin Hospital), France; and Department of Neurology (M.T.), CHU Mustapha Bacha, Algiers, Algeria
| | - Meriem Tazir
- From the Department of Neurology (L.M., J.-M.V.), Centre de Référence Neuropathies Rares, CHU Limoges; Department of Neurology, Nerve-Muscle Unit (S.M., G.L.M.), and Department of Neurogenetics (C.G.), CHU Bordeaux (Pellegrin Hospital), France; and Department of Neurology (M.T.), CHU Mustapha Bacha, Algiers, Algeria
| | - Jean-Michel Vallat
- From the Department of Neurology (L.M., J.-M.V.), Centre de Référence Neuropathies Rares, CHU Limoges; Department of Neurology, Nerve-Muscle Unit (S.M., G.L.M.), and Department of Neurogenetics (C.G.), CHU Bordeaux (Pellegrin Hospital), France; and Department of Neurology (M.T.), CHU Mustapha Bacha, Algiers, Algeria
| |
Collapse
|
45
|
Wallace SE, Bird TD. Molecular genetic testing for hereditary ataxia: What every neurologist should know. Neurol Clin Pract 2018. [PMID: 29517052 DOI: 10.1212/cpj.0000000000000421] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Purpose of review Because of extensive clinical overlap among many forms of hereditary ataxia, molecular genetic testing is often required to establish a diagnosis. Interrogation of multiple genes has become a popular diagnostic approach as the cost of sequence analysis has decreased and the number of genes associated with overlapping phenotypes has increased. We describe the benefits and limitations of molecular genetic tests commonly used to determine the etiology of hereditary ataxia. Recent findings There are more than 300 hereditary disorders associated with ataxia. The most common causes of hereditary ataxia are expansion of nucleotide repeats within 7 genes: ATXN1, ATXN2, ATXN3, ATXN7, ATXN8, CACNA1A (spinocerebellar ataxia type 6), and FXN (Friedreich ataxia). Recent reports describing the use of clinical exome sequencing to identify causes of hereditary ataxia may lead neurologists to start their clinical investigation with a less sensitive molecular test providing a misleading "negative" result. Summary The majority of individuals with hereditary ataxias have nucleotide repeat expansions, pathogenic variants that are not detectable with clinical exome sequencing. Multigene panels that include specific assays to determine nucleotide repeat lengths should be considered first in individuals with hereditary ataxia.
Collapse
Affiliation(s)
- Stephanie E Wallace
- Division of Genetic Medicine, Department of Pediatrics (SEW), and Departments of Neurology and Medicine (TDB), University of Washington, Seattle
| | - Thomas D Bird
- Division of Genetic Medicine, Department of Pediatrics (SEW), and Departments of Neurology and Medicine (TDB), University of Washington, Seattle
| |
Collapse
|
46
|
|
47
|
Abstract
The cerebellum plays an integral role in the control of limb and ocular movements, balance, and walking. Cerebellar disorders may be classified as sporadic or hereditary with clinical presentation varying with the extent and site of cerebellar damage and extracerebellar signs. Deficits in balance and walking reflect the cerebellum's proposed role in coordination, sensory integration, coordinate transformation, motor learning, and adaptation. Cerebellar dysfunction results in increased postural sway, hypermetric postural responses to perturbations and optokinetic stimuli, and postural responses that are poorly coordinated with volitional movement. Gait variability is characteristic and may arise from a combination of balance impairments, interlimb incoordination, and incoordination between postural activity and leg movement. Intrinsic problems with balance lead to a high prevalence of injurious falls. Evidence for pharmacologic management is limited, although aminopyridines reduce attacks in episodic ataxias and may have a role in improving gait ataxia in other conditions. Intensive exercises targeting balance and coordination lead to improvements in balance and walking but require ongoing training to maintain/maximize any effects. Noninvasive brain stimulation of the cerebellum may become a useful adjunct to therapy in the future. Walking aids, orthoses, specialized footwear and seating may be required for more severe cases of cerebellar ataxia.
Collapse
Affiliation(s)
- Jonathan F Marsden
- Department of Rehabilitation, School of Health Professions, University of Plymouth, Plymouth, United Kingdom.
| |
Collapse
|
48
|
Abstract
The autosomal-recessive cerebellar ataxias comprise more than half of the known genetic forms of ataxia and represent an extensive group of clinically heterogeneous disorders that can occur at any age but whose onset is typically prior to adulthood. In addition to ataxia, patients often present with polyneuropathy and clinical symptoms outside the nervous system. The most common of these diseases is Friedreich ataxia, caused by mutation of the frataxin gene, but recent advances in genetic analysis have greatly broadened the ever-expanding number of causative genes to over 50. In this review, the clinical neurogenetics of the recessive cerebellar ataxias will be discussed, including updates on recently identified novel ataxia genes, advancements in unraveling disease-specific molecular pathogenesis leading to ataxia, potential treatments under development, technologic improvements in diagnostic testing such as clinical exome sequencing, and what the future holds for clinicians and geneticists.
Collapse
Affiliation(s)
- Brent L Fogel
- Program in Neurogenetics, Departments of Neurology and Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, United States.
| |
Collapse
|