1
|
Popescu D, Amza CG. 3D Printing onto Textiles: A Systematic Analysis of the Adhesion Studies. 3D PRINTING AND ADDITIVE MANUFACTURING 2024; 11:e586-e606. [PMID: 38689919 PMCID: PMC11057686 DOI: 10.1089/3dp.2022.0100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The article reviews the literature focused on investigating the adhesion strength between the 3D-printed polymers and the textile substrates, and its dependence on different factors related to materials, printing parameters, and fabrics type and structure. 3D printing (3DP) onto textiles is a domain in expansion as it allows developing products with new functionalities by gathering the advantages of design freedom, tailor-fit, comfort, variety, and mass customization provided by both the textiles and the additive manufacturing technology. In this context, it becomes important to document and understand how the adherence of different 3D-printed molten polymer to diverse textiles substrates can be improved for obtaining products more resistant to specific conditions, such as washing, wear, or ironing. Following a systematic search of electronic databases, 28 articles were selected for the full-text read and data extraction. The summarized information was grouped per 3DP material and analyzed factors, and then discussed in terms of variables influencing the adherence, including pretreatments and post-treatments applied to fabrics or 3D-printed onto fabrics specimens and objects. A case study of a customized polylactic acid-cotton-elastane wrist-hand orthosis is also presented to exemplify the modality in which the information synthetized in this review can be used in the development process of a new product.
Collapse
Affiliation(s)
- Diana Popescu
- Faculty of Industrial Engineering and Robotics, University Politehnica of Bucharest, Bucharest, Romania
| | - Cătălin Gheorghe Amza
- Faculty of Industrial Engineering and Robotics, University Politehnica of Bucharest, Bucharest, Romania
| |
Collapse
|
2
|
Franco Urquiza EA. Advances in Additive Manufacturing of Polymer-Fused Deposition Modeling on Textiles: From 3D Printing to Innovative 4D Printing-A Review. Polymers (Basel) 2024; 16:700. [PMID: 38475383 DOI: 10.3390/polym16050700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/16/2023] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Technological advances and the development of new and advanced materials allow the transition from three-dimensional (3D) printing to the innovation of four-dimensional (4D) printing. 3D printing is the process of precisely creating objects with complex shapes by depositing superimposed layers of material. Current 3D printing technology allows two or more filaments of different polymeric materials to be placed, which, together with the development of intelligent materials that change shape over time or under the action of an external stimulus, allow us to innovate and move toward an emerging area of research, innovative 4D printing technology. 4D printing makes it possible to manufacture actuators and sensors for various technological applications. Its most significant development is currently in the manufacture of intelligent textiles. The potential of 4D printing lies in modular manufacturing, where fabric-printed material interaction enables the creation of bio-inspired and biomimetic devices. The central part of this review summarizes the effect of the primary external stimuli on 4D textile materials, followed by the leading applications. Shape memory polymers attract current and potential opportunities in the textile industry to develop smart clothing for protection against extreme environments, auxiliary prostheses, smart splints or orthoses to assist the muscles in their medical recovery, and comfort devices. In the future, intelligent textiles will perform much more demanding roles, thus envisioning the application fields of 4D printing in the next decade.
Collapse
Affiliation(s)
- Edgar Adrian Franco Urquiza
- Advanced Manufacturing Department, Center for Engineering and Industrial Development, CIDESI-Airport, Carretera Estatal 200, km 23, Queretaro 76270, Mexico
| |
Collapse
|
3
|
Kozior T, Ehrmann A. First Proof-of-Principle of PolyJet 3D Printing on Textile Fabrics. Polymers (Basel) 2023; 15:3536. [PMID: 37688162 PMCID: PMC10489880 DOI: 10.3390/polym15173536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Possibilities of direct 3D printing on textile fabrics have been investigated with increasing intensity during the last decade, leading to composites which can combine the positive properties of both parts, i.e., the fast production and lateral strength of textile fabrics with the flexural strength and point-wise definable properties of 3D printed parts. These experiments, however, were mostly performed using fused deposition modeling (FDM), which is an inexpensive and broadly available technique, but which suffers from the high viscosity of the molten polymers, often impeding a form-locking connection between polymer and textile fibers. One study reported stereolithography (SLA) to be usable for direct printing on textile fabrics, but this technique suffers from the problem that the textile material is completely soaked in resin during 3D printing. Combining the advantages of FDM (material application only at defined positions) and SLA (low-viscous resin which can easily flow into a textile fabric) is possible with PolyJet modeling (PJM) printing. Here, we report the first proof-of-principle of PolyJet printing on textile fabrics. We show that PJM printing with a common resin on different textile fabrics leads to adhesion forces according to DIN 53530 in the range of 30-35 N, which is comparable with the best adhesion forces yet reported for fused deposition modeling (FDM) printing with rigid polymers on textile fabrics.
Collapse
Affiliation(s)
- Tomasz Kozior
- Faculty of Mechatronics and Mechanical Engineering, Kielce University of Technology, 25-314 Kielce, Poland;
| | - Andrea Ehrmann
- Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences and Arts, 33619 Bielefeld, Germany
| |
Collapse
|
4
|
Ferrari F, Striani R, Fico D, Alam MM, Greco A, Esposito Corcione C. An Overview on Wood Waste Valorization as Biopolymers and Biocomposites: Definition, Classification, Production, Properties and Applications. Polymers (Basel) 2022; 14:polym14245519. [PMID: 36559886 PMCID: PMC9787771 DOI: 10.3390/polym14245519] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Bio-based polymers, obtained from natural biomass, are nowadays considered good candidates for the replacement of traditional fossil-derived plastics. The need for substituting traditional synthetic plastics is mainly driven by many concerns about their detrimental effects on the environment and human health. The most innovative way to produce bioplastics involves the use of raw materials derived from wastes. Raw materials are of vital importance for human and animal health and due to their economic and environmental benefits. Among these, wood waste is gaining popularity as an innovative raw material for biopolymer manufacturing. On the other hand, the use of wastes as a source to produce biopolymers and biocomposites is still under development and the processing methods are currently being studied in order to reach a high reproducibility and thus increase the yield of production. This study therefore aimed to cover the current developments in the classification, manufacturing, performances and fields of application of bio-based polymers, especially focusing on wood waste sources. The work was carried out using both a descriptive and an analytical methodology: first, a description of the state of art as it exists at present was reported, then the available information was analyzed to make a critical evaluation of the results. A second way to employ wood scraps involves their use as bio-reinforcements for composites; therefore, the increase in the mechanical response obtained by the addition of wood waste in different bio-based matrices was explored in this work. Results showed an increase in Young's modulus up to 9 GPa for wood-reinforced PLA and up to 6 GPa for wood-reinforced PHA.
Collapse
|
5
|
Baek E, Haines S, Fares OH, Huang Z, Hong Y, Lee SHM. Defining digital fashion: Reshaping the field via a systematic review. COMPUTERS IN HUMAN BEHAVIOR 2022. [DOI: 10.1016/j.chb.2022.107407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Tang TO, Holmes S, Boyd BJ, Simon GP. Extrusion and 3D printing of novel lipid-polymer blends for oral drug applications. BIOMATERIALS ADVANCES 2022; 137:212818. [PMID: 35929236 DOI: 10.1016/j.bioadv.2022.212818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 04/06/2022] [Accepted: 04/18/2022] [Indexed: 11/24/2022]
Abstract
Lipids are interesting biological materials that can offer a number of pharmaceutical benefits when used as carriers for drug delivery. However, 3D printing of lipids alone by fused deposition processing techniques is very difficult as they have very poor mechanical properties that cause their filaments to fail when they are loaded into a fused deposition 3D printer. If this problem could be overcome, then lipids could be 3D printed into bespoke tablets and assist progress towards such personalised medicines. This work aims to improve the mechanical properties of lipid filaments by developing novel lipid-EVA (ethylene vinyl acetate) blends suitable for 3D printing. Different types of lipids in varying proportions were melt blended with EVA and extruded using a micro compounder. The ultimate printability of the materials was tested by feeding the filaments into a material extrusion 3D printer. Flexural testing of the extruded blends demonstrates that a good balance between the strength and flexibility is required for a material to be printable and it was found that a filament has to have a modulus/strength ratio between 8 and 25 in order to be printable. SEM analysis of the fracture surface shows a network structure within the lipid matrix that could be playing a role in the improved properties of the best performing blends. DSC thermograms show a shift in thermal transitions, suggesting some level of miscibility of the components that could have contributed to a more robust structure. The TGA results show an onset of degradation of the blends greater than 200 °C, indicating that the materials can readily withstand the extrusion and printing temperatures. This study demonstrates the successful extrusion and 3D printing of novel EVA-lipid blends with lipid contents of up to 90%.
Collapse
Affiliation(s)
- Tiffany O Tang
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, VIC 3800, Australia; Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Research Way, Clayton, VIC 3168, Australia.
| | - Susan Holmes
- Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Research Way, Clayton, VIC 3168, Australia.
| | - Ben J Boyd
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Pde, Parkville, 3052 Victoria, Australia.
| | - George P Simon
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
7
|
Fico D, Rizzo D, Casciaro R, Esposito Corcione C. A Review of Polymer-Based Materials for Fused Filament Fabrication (FFF): Focus on Sustainability and Recycled Materials. Polymers (Basel) 2022; 14:polym14030465. [PMID: 35160455 PMCID: PMC8839523 DOI: 10.3390/polym14030465] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/04/2022] [Accepted: 01/17/2022] [Indexed: 02/08/2023] Open
Abstract
Recently, Fused Filament Fabrication (FFF), one of the most encouraging additive manufacturing (AM) techniques, has fascinated great attention. Although FFF is growing into a manufacturing device with considerable technological and material innovations, there still is a challenge to convert FFF-printed prototypes into functional objects for industrial applications. Polymer components manufactured by FFF process possess, in fact, low and anisotropic mechanical properties, compared to the same parts, obtained by using traditional building methods. The poor mechanical properties of the FFF-printed objects could be attributed to the weak interlayer bond interface that develops during the layer deposition process and to the commercial thermoplastic materials used. In order to increase the final properties of the 3D printed models, several polymer-based composites and nanocomposites have been proposed for FFF process. However, even if the mechanical properties greatly increase, these materials are not all biodegradable. Consequently, their waste disposal represents an important issue that needs an urgent solution. Several scientific researchers have therefore moved towards the development of natural or recyclable materials for FFF techniques. This review details current progress on innovative green materials for FFF, referring to all kinds of possible industrial applications, and in particular to the field of Cultural Heritage.
Collapse
Affiliation(s)
- Daniela Fico
- Dipartimento di Ingegneria dell’Innovazione, Università del Salento, Edificio P, Campus Ecotekne, S.P. 6 Lecce-Monteroni, 73100 Lecce, Italy;
| | - Daniela Rizzo
- Dipartimento di Beni Culturali, Università del Salento, Via D. Birago 64, 73100 Lecce, Italy; (D.R.); (R.C.)
| | - Raffaele Casciaro
- Dipartimento di Beni Culturali, Università del Salento, Via D. Birago 64, 73100 Lecce, Italy; (D.R.); (R.C.)
| | - Carola Esposito Corcione
- Dipartimento di Ingegneria dell’Innovazione, Università del Salento, Edificio P, Campus Ecotekne, S.P. 6 Lecce-Monteroni, 73100 Lecce, Italy;
- Correspondence:
| |
Collapse
|
8
|
Basurto-Vázquez O, Sánchez-Rodríguez EP, McShane GJ, Medina DI. Load Distribution on PET-G 3D Prints of Honeycomb Cellular Structures under Compression Load. Polymers (Basel) 2021; 13:polym13121983. [PMID: 34204196 PMCID: PMC8234775 DOI: 10.3390/polym13121983] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 11/16/2022] Open
Abstract
Energy resulting from an impact is manifested through unwanted damage to objects or persons. New materials made of cellular structures have enhanced energy absorption (EA) capabilities. The hexagonal honeycomb is widely known for its space-filling capacity, structural stability, and high EA potential. Additive manufacturing (AM) technologies have been effectively useful in a vast range of applications. The evolution of these technologies has been studied continuously, with a focus on improving the mechanical and structural characteristics of three-dimensional (3D)-printed models to create complex quality parts that satisfy design and mechanical requirements. In this study, 3D honeycomb structures of novel material polyethylene terephthalate glycol (PET-G) were fabricated by the fused deposition modeling (FDM) method with different infill density values (30%, 70%, and 100%) and printing orientations (edge, flat, and upright). The effectiveness for EA of the design and the effect of the process parameters of infill density and layer printing orientation were investigated by performing in-plane compression tests, and the set of parameters that produced superior results for better EA was determined by analyzing the area under the curve and the welding between the filament layers in the printed object via FDM. The results showed that the printing parameters implemented in this study considerably affected the mechanical properties of the 3D-printed PET-G honeycomb structure. The structure with the upright printing direction and 100% infill density exhibited an extension to delamination and fragmentation, thus, a desirable performance with a long plateau region in the load-displacement curve and major absorption of energy.
Collapse
Affiliation(s)
- Olimpia Basurto-Vázquez
- Tecnologico de Monterrey, School of Engineering and Science, Atizapan de Zaragoza 52926, Estado de Mexico, Mexico; (O.B.-V.); (E.P.S.-R.)
| | - Elvia P. Sánchez-Rodríguez
- Tecnologico de Monterrey, School of Engineering and Science, Atizapan de Zaragoza 52926, Estado de Mexico, Mexico; (O.B.-V.); (E.P.S.-R.)
| | - Graham J. McShane
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, UK;
| | - Dora I. Medina
- Tecnologico de Monterrey, School of Engineering and Science, Atizapan de Zaragoza 52926, Estado de Mexico, Mexico; (O.B.-V.); (E.P.S.-R.)
- Correspondence:
| |
Collapse
|
9
|
Determining the Optimal Conditions for the Production by Supercritical CO 2 of Biodegradable PLGA Foams for the Controlled Release of Rutin as a Medical Treatment. Polymers (Basel) 2021; 13:polym13101645. [PMID: 34069337 PMCID: PMC8158779 DOI: 10.3390/polym13101645] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/14/2021] [Accepted: 05/14/2021] [Indexed: 01/09/2023] Open
Abstract
Poly(D,L,-lactide-co-glycolide) (PLGA) foam samples impregnated with rutin were successfully produced by supercritical foaming processes. A number of parameters such as pressure (80–200 bar), temperature (35–55 °C), depressurization rate (5–100 bar/min), ratio lactide:glycolide of the poly(D,L,-lactide-co-glycolide) (50:50 and 75:25) were studied to determine their effect on the expansion factor and on the glass transition temperature of the polymer foams and their consequences on the release profile of the rutin entrapped in them. The impregnated foams were characterized by scanning electron microscopy, differential scanning calorimetry, and mercury intrusion porosimetry. A greater impregnation of rutin into the polymer foam pores was observed as pressure was increased. The release of rutin in a phosphate buffer solution was investigated. The controlled release tests confirmed that the modification of certain variables would result in considerable differences in the drug release profiles. Thus, five-day drug release periods were achieved under high pressure and temperature while the depressurization rate remained low.
Collapse
|