1
|
Zhu Y, Mei O, Zhang H, You W, Zhong J, Collins CP, Shen G, Luo C, Wu X, Li J, Shu Y, Wen Y, Luu HH, Shi LL, Fan J, He TC, Ameer GA, Sun C, Wen L, Reid RR. Establishment and characterization of a rat model of scalp-cranial composite defect for multilayered tissue engineering. RESEARCH SQUARE 2024:rs.3.rs-4643966. [PMID: 39108474 PMCID: PMC11302684 DOI: 10.21203/rs.3.rs-4643966/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
Composite cranial defects have individual functional and aesthetic ramifications, as well as societal burden, while posing significant challenges for reconstructive surgeons. Single-stage composite reconstruction of these deformities entail complex surgeries that bear many short- and long-term risks and complications. Current research on composite scalp-cranial defects is sparse and one-dimensional, often focusing solely on bone or skin. Thus, there is an unmet need for a simple, clinically relevant composite defect model in rodents, where there is a challenge in averting healing of the skin component via secondary intention. By utilizing a customizable (3D-printed) wound obturator, the scalp wound can be rendered non-healing for a long period (more than 6 weeks), with the cranial defect patent. The wound obturator shows minimal biotoxicity and will not cause severe endocranium-granulation adhesion. This composite defect model effectively slowed the scalp healing process and preserved the cranial defect, embodying the characteristics of a "chronic composite defect". In parallel, an autologous reconstruction model was established as the positive control. This positive control exhibited reproducible healing of the skin within 3 weeks with variable degrees of osseointegration, consistent with clinical practice. Both models provide a stable platform for subsequent research not only for composite tissue engineering and scaffold design but also for mechanistic studies of composite tissue healing.
Collapse
Affiliation(s)
- Yi Zhu
- The University of Chicago Medical Center
| | - Ou Mei
- The University of Chicago Medical Center
| | - Hui Zhang
- The University of Chicago Medical Center
| | - Wulin You
- The University of Chicago Medical Center
| | | | | | | | | | - Xingye Wu
- The University of Chicago Medical Center
| | | | - Yi Shu
- The University of Chicago Medical Center
| | - Ya Wen
- Capital Medical University
| | - Hue H Luu
- The University of Chicago Medical Center
| | | | | | | | | | | | - Liangyuan Wen
- Chinese Academy of Medical Sciences & Peking Union Medical College
| | | |
Collapse
|
2
|
Lee JH, Vu HD, Park MH, Huynh PT, Youn SW, Kwon DR. Microcurrent wave alleviates mouse intracranial arterial dolichoectasia development. Sci Rep 2024; 14:7496. [PMID: 38553592 PMCID: PMC10980802 DOI: 10.1038/s41598-024-58333-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 03/27/2024] [Indexed: 04/02/2024] Open
Abstract
Intracranial arterial dolichoectasia (IADE) is associated with the interaction of hypertension and inflammation, and microcurrent can be effective in hypertension. Therefore, this study aimed to investigate the therapeutic effect of microcurrent electrical stimulation in a mouse IADE model. This study randomly categorized 20 mice into five groups: group 1-C (healthy control), group 2-D (IADE model), group 3-M + D (microcurrent administration before nephrectomy and until brain surgery), group 4-D + M (microcurrent administration for 4 weeks following brain surgery), and group 5-M (microcurrent administration for 4 weeks). Cerebral artery diameter and thickness and cerebral arterial wall extracellular matrix components were assessed. Among the five groups, group 2-D showed significantly higher cerebral arterial wall diameter (117.79 ± 17.05 µm) and proportion of collagen (42.46 ± 14.12%) and significantly lower arterial wall thickness (9.31 ± 2.26 µm) and proportion of smooth muscle cell (SMC) and elastin in the cerebral arterial wall (SMC: 38.05 ± 10.32%, elastin: 11.11 ± 6.97%). Additionally, group 4-D + M exhibited a non-significantly lower diameter (100.28 ± 25.99 µm) and higher thickness (12.82 ± 5.17 µm). Group 5-M demonstrated no evidence of toxicity in the liver and brain. The pilot study revealed that microcurrent is effective in preventing IADE development, although these beneficial effects warrant further investigation.
Collapse
Affiliation(s)
- Jae Hee Lee
- Department of Rehabilitation Medicine, Daegu Catholic University School of Medicine, Daegu, South Korea
| | - Huy Duc Vu
- Department of Radiology, Kyungpook National University, Daegu, South Korea
| | - Min Hee Park
- Department of Radiology, Kyungpook National University, Daegu, South Korea
| | - Phuong Tu Huynh
- Department of Radiology, Kyungpook National University, Daegu, South Korea
| | - Sung Won Youn
- Department of Radiology, Kyungpook National University, Daegu, South Korea.
| | - Dong Rak Kwon
- Department of Rehabilitation Medicine, Daegu Catholic University School of Medicine, Daegu, South Korea.
| |
Collapse
|
3
|
Dong Z, Wu J, Cao H, Lu J. Improving depression-like behaviors caused by diabetes is likely to offer a new perspective for the treatment of non-healing chronic wounds. Front Behav Neurosci 2024; 18:1348898. [PMID: 38440257 PMCID: PMC10910048 DOI: 10.3389/fnbeh.2024.1348898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 01/30/2024] [Indexed: 03/06/2024] Open
Abstract
Background Three phases are often involved in the intricate process of wound healing: inflammatory exudation, cell proliferation, and tissue remodeling. It is challenging for wounds to heal if conditions like ischemia, persistent pressure, infection, repetitive trauma, or systemic or localized illnesses arise during the healing process. Chronic wounds are persistent injuries that do not follow the normal healing process and fail to progress through the stages of healing within a reasonable timeframe, like diabetic ulcers, vascular ulcers, pressure sores, and infectious wounds. Various factors affect chronic wound healing. A large body of research has illuminated that psychological distress may often be related to wound healing in clinical settings. Our observations have indicated that the pace of wound healing in diabetic mice is generally slower than that of healthy mice, and mice induced by streptozotocin (STZ) and fed a high-fat diet generally exhibit depression-like behavior. Our experiment delves into whether there is an inherent correlation and provides new ideas for clinical treatment to promote wound healing. Methods In order to explore the relationship between diabetes, depression, and wound healing, we observed wound healing through HE staining, Masson's trichrome staining, and IHC staining for CD31 and detected the depressive condition through behavioral tests. Then, RT-PCR was used to detect the mRNA expression levels of α-SMA, Col1, CD31, and VEGF in wound tissue. Finally, the related brain areas were regulated through chemical genetic methods and the process of wound healing was observed. Conclusion It has been observed that the lateral habenula (LHb) areas are associated with depression-like behavior induced by diabetes. Inhibiting LHb neuronal activity mitigates these depressive symptoms and enhances wound healing. Refractory wounds can be improved by considering patients' emotional issues from a broad standpoint, which provides fresh concepts for potential clinical treatments in the future.
Collapse
Affiliation(s)
- Zhiqin Dong
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
- Key Laboratory of Regenerative Medicine, Ministry of Education, Guangzhou, Guangdong Province, China
| | - Jijin Wu
- Physiology Department, School of Medicine, Jinan University, Guangzhou, Guangdong Province, China
| | - Hanchen Cao
- Department of Plastic Surgery, The Fifth Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Jinqiang Lu
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| |
Collapse
|
4
|
Pundkar A, Shrivastav S, Chandanwale R, Jaiswal AM, Goyal S. Vasopressin-Induced Gangrene of the Bilateral Foot Digits and Right Index Finger Managed With Platelet-Rich Plasma Treatment. Cureus 2024; 16:e52229. [PMID: 38352093 PMCID: PMC10861378 DOI: 10.7759/cureus.52229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/13/2024] [Indexed: 02/16/2024] Open
Abstract
Bilateral foot digit gangrene generated by vasopressin is a serious complication for which management and treatment choices are extremely difficult. This case report presents a case of vasopressin-induced gangrene that was successfully treated with platelet-rich plasma (PRP) infiltration. A 20-year-old female patient came with a history of vasopressin treatment, causing bilateral foot digit gangrene and increasing necrosis. The patient's health quickly declined, and conventional care techniques had no effect on enhancing tissue perfusion or stopping the gangrene from getting worse. In our study, we have chosen to use PRP infiltration as an experimental therapeutic technique in light of the restricted choices available. This case study demonstrates the possibility of PRP infiltration as a cutting-edge and effective treatment for vasopressin-induced bilateral foot digit gangrene. The potential of PRP to stimulate angiogenesis, tissue regeneration, and wound healing is essential for optimizing the patient's results. For vasopressin-induced gangrene, more studies are required to evaluate the efficacy of PRP infiltration as a common therapy approach. This case study highlights the important role that PRP infiltration plays in enhancing tissue perfusion, stopping the advancement of necrosis, and promoting recovery.
Collapse
Affiliation(s)
- Aditya Pundkar
- Orthopedics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Sandeep Shrivastav
- Orthopedics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Rohan Chandanwale
- Orthopedics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Ankit M Jaiswal
- Orthopedics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Saksham Goyal
- Orthopedics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
5
|
Lee PC, Li CZ, Lu CT, Zhao MH, Lai SM, Liao MH, Peng CL, Liu HT, Lai PS. Microcurrent Cloth-Assisted Transdermal Penetration and Follicular Ducts Escape of Curcumin-Loaded Micelles for Enhanced Wound Healing. Int J Nanomedicine 2023; 18:8077-8097. [PMID: 38164267 PMCID: PMC10758166 DOI: 10.2147/ijn.s440034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024] Open
Abstract
Purpose Larger nanoparticles of bioactive compounds deposit high concentrations in follicular ducts after skin penetration. In this study, we investigated the effects of microcurrent cloth on the skin penetration and translocation of large nanoparticle applied for wound repair applications. Methods A self-assembly of curcumin-loaded micelles (CMs) was prepared to improve the water solubility and transdermal efficiency of curcumin. Microcurrent cloth (M) was produced by Zn/Ag electrofabric printing to facilitate iontophoretic transdermal delivery. The transdermal performance of CMs combined with M was evaluated by a transdermal system and confocal microscopy. The CMs/iontophoretic combination effects on nitric oxide (NO) production and inflammatory cytokines were evaluated in Raw 264.7 cells. The wound-healing property of the combined treatment was assessed in a surgically created full-thickness circular wound mouse model. Results Energy-dispersive X-ray spectroscopy confirmed the presence of Zn/Ag on the microcurrent cloth. The average potential of M was measured to be +214.6 mV in PBS. Large particle CMs (CM-L) prepared using surfactant/cosurfactant present a particle size of 142.9 nm with a polydispersity index of 0.319. The solubility of curcumin in CM-L was 2143.67 μg/mL, indicating 250-fold higher than native curcumin (8.68 μg/mL). The combined treatment (CM-L+M) demonstrated a significant ability to inhibit NO production and increase IL-6 and IL-10 secretion. Surprisingly, microcurrent application significantly improved 20.01-fold transdermal performance of curcumin in CM-L with an obvious escape of CM-L from follicular ducts to surrounding observed by confocal microscopy. The CM-L+M group also exhibited a better wound-closure rate (77.94% on day 4) and the regenerated collagen intensity was approximately 2.66-fold higher than the control group, with a closure rate greater than 90% on day 8 in vivo. Conclusion Microcurrent cloth play as a promising iontophoretic transdermal drug delivery accelerator that enhances skin penetration and assists CMs to escape from follicular ducts for wound repair applications.
Collapse
Affiliation(s)
- Pei-Chi Lee
- xTrans Corporate Research and Innovation Center, Taipei City, Taiwan
| | - Cun-Zhao Li
- Department of Chemistry, National Chung Hsing University, Taichung, Taiwan
| | - Chun-Te Lu
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Taichung Veterans General Hospital, Taichung, Taiwan
- Institute of Medicine, School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Min-Han Zhao
- Department of Chemistry, National Chung Hsing University, Taichung, Taiwan
| | - Syu-Ming Lai
- Department of Chemistry, National Chung Hsing University, Taichung, Taiwan
| | - Man-Hua Liao
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Cheng-Liang Peng
- Isotope Application Division, National Atomic Research Institute, Taoyuan, Taiwan
| | - Hsin-Tung Liu
- xTrans Corporate Research and Innovation Center, Taipei City, Taiwan
| | - Ping-Shan Lai
- Department of Chemistry, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
6
|
Yang L, Li C, Wang X, Zhang X, Li Y, Liu S, Li J. Electroactive nanofibrous membrane with temperature monitoring for wound healing. RSC Adv 2023; 13:14224-14235. [PMID: 37179989 PMCID: PMC10170354 DOI: 10.1039/d3ra01665j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Developing functional dressings for promoting cellular activities and monitoring the healing progress is receiving increasingly widespread attention. In this study, Ag/Zn electrodes were deposited on the surface of a polylactic acid (PLA) nanofibrous membrane which can mimic the extracellular matrix. When wetted by wound exudate, the Ag/Zn electrodes could generate an electric stimulation (ES), promoting the migration of fibroblasts that heal wounds. Moreover, the Ag/Zn@PLA dressing showed excellent antibacterial activity against E. coli (95%) and S. aureus (97%). The study found that the electrostatic (ES) effect and the release of metal ions mainly contribute to the wound healing properties of Ag/Zn@PLA. In vivo mouse models demonstrated that Ag/Zn@PLA could promote wound healing by improving re-epithelialization, collagen deposition, and neovascularization. Additionally, the integrated sensor within the Ag/Zn@PLA dressing can monitor the wound site's temperature in real-time, providing timely information on wound inflammatory reactions. Overall, this work suggests that combining electroactive therapy and wound temperature monitoring may provide a new strategy for designing functional wound dressings.
Collapse
Affiliation(s)
- Liguo Yang
- College of Textiles and Clothing, Industrial Research Institute of Nonwovens and Technical Textiles, Qingdao University Qingdao 266071 China
| | - Chenglin Li
- Department of Biochemistry and Microbiology, Qingdao University Medical College, Qingdao University Qingdao 266003 China
| | - Xuefang Wang
- College of Textiles and Clothing, Industrial Research Institute of Nonwovens and Technical Textiles, Qingdao University Qingdao 266071 China
| | - Xiangyan Zhang
- Department of Pathology, Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao University Qingdao 266003 China
| | - Yongxin Li
- Department of Pathology, Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao University Qingdao 266003 China
| | - Shangpeng Liu
- College of Textiles and Clothing, Industrial Research Institute of Nonwovens and Technical Textiles, Qingdao University Qingdao 266071 China
| | - Jiwei Li
- College of Textiles and Clothing, Industrial Research Institute of Nonwovens and Technical Textiles, Qingdao University Qingdao 266071 China
- Shandong Center for Engineered Nonwovens Qingdao 266071 China
| |
Collapse
|
7
|
Xu HQ, Liu JC, Zhang ZY, Xu CX. A review on cell damage, viability, and functionality during 3D bioprinting. Mil Med Res 2022; 9:70. [PMID: 36522661 PMCID: PMC9756521 DOI: 10.1186/s40779-022-00429-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 11/11/2022] [Indexed: 12/23/2022] Open
Abstract
Three-dimensional (3D) bioprinting fabricates 3D functional tissues/organs by accurately depositing the bioink composed of the biological materials and living cells. Even though 3D bioprinting techniques have experienced significant advancement over the past decades, it remains challenging for 3D bioprinting to artificially fabricate functional tissues/organs with high post-printing cell viability and functionality since cells endure various types of stress during the bioprinting process. Generally, cell viability which is affected by several factors including the stress and the environmental factors, such as pH and temperature, is mainly determined by the magnitude and duration of the stress imposed on the cells with poorer cell viability under a higher stress and a longer duration condition. The maintenance of high cell viability especially for those vulnerable cells, such as stem cells which are more sensitive to multiple stresses, is a key initial step to ensure the functionality of the artificial tissues/organs. In addition, maintaining the pluripotency of the cells such as proliferation and differentiation abilities is also essential for the 3D-bioprinted tissues/organs to be similar to native tissues/organs. This review discusses various pathways triggering cell damage and the major factors affecting cell viability during different bioprinting processes, summarizes the studies on cell viabilities and functionalities in different bioprinting processes, and presents several potential approaches to protect cells from injuries to ensure high cell viability and functionality.
Collapse
Affiliation(s)
- He-Qi Xu
- Department of Industrial, Manufacturing, and Systems Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| | - Jia-Chen Liu
- Department of Industrial, Manufacturing, and Systems Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| | - Zheng-Yi Zhang
- School of Naval Architecture and Ocean Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Chang-Xue Xu
- Department of Industrial, Manufacturing, and Systems Engineering, Texas Tech University, Lubbock, TX, 79409, USA.
| |
Collapse
|
8
|
Chen Y, Chen C, Fang J, Su K, Yuan Q, Hou H, Xin H, Sun J, Huang C, Li S, Yuan Z, Luo S. Targeting the Akt/PI3K/mTOR signaling pathway for complete eradication of keloid disease by sunitinib. Apoptosis 2022; 27:812-824. [PMID: 35802302 DOI: 10.1007/s10495-022-01744-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2022] [Indexed: 11/24/2022]
Abstract
Keloid disease is a nodular lesion, tumor-like but not cancerous, and characterized of excessive proliferation of fibroblasts and deposition of extracellular matrix (ECM) components. This condition often causes itching, pain and cosmetic disfigurement, significantly reducing patient quality of life. To date, no universally effective therapies are available, possibly due to inadequate understanding of keloid pathogenesis. As an oral small-molecule inhibitor of certain tyrosine kinase receptors, sunitinib has shown significant therapeutic effects in renal cell carcinoma (RCC) and gastrointestinal stromal tumor (GIST). However, it has never been tested if keloid therapy can be effective for the management of keloids. This study thus aims to explore the potential of sunitinib for keloid treatment. Keloid-derived fibroblasts (KFs) were successfully isolated and demonstrated proliferative advantage to normal skin-derived fibroblasts (NFs). Additionally, sunitinib showed specific cytotoxicity and inhibition of invasion, and induced cell cycle arrest and significant apoptosis in KFs. These effects were accompanied by complete suppression of ECM component expression, including collagen types 1 and 3, upregulation of autophagy-associated LC3B and significant suppression of the Akt/PI3K/mTOR pathway. Moreover, a keloid explant culture model was successfully established and used to test the therapeutic efficacy of sunitinib on keloid formation in nude mice. Sunitinib was found to induce complete regression of keloid explant fragments in nude mice, showing significantly higher therapeutic efficacy than the most commonly used intralesional drug triamcinolone acetonide (TAC). These data suggest that sunitinib effectively inhibits keloid development through suppression of the Akt/PI3K/mTOR pathway and thus can be potentially developed as a monotherapy or combination therapy for the effective treatment of keloid disease.
Collapse
Affiliation(s)
- Yiqing Chen
- The Second School of Clinical Medicine, Southern Medical University, 510515, Guangzhou, China.,Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, 510317, Guangzhou, China
| | - Chunlin Chen
- Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, 510317, Guangzhou, China
| | - Junren Fang
- The Second School of Clinical Medicine, Southern Medical University, 510515, Guangzhou, China.,Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, 510317, Guangzhou, China
| | - Kui Su
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, 510006, Guangzhou, China
| | - Qian Yuan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, 510006, Guangzhou, China
| | - Huan Hou
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, 510006, Guangzhou, China
| | - Huijuan Xin
- Department of Ultrasound, Institute of Ultrasound in Musculoskeletal Sports Medicine, Guangdong Second Provincial General Hospital, 510317 Guangzhou, China
| | - Jianwu Sun
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, 510006, Guangzhou, China
| | - Chaohong Huang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, 510006, Guangzhou, China
| | - Shuyi Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, 510006, Guangzhou, China
| | - Zhengqiang Yuan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, 510006, Guangzhou, China.
| | - Shengkang Luo
- The Second School of Clinical Medicine, Southern Medical University, 510515, Guangzhou, China. .,Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, 510317, Guangzhou, China.
| |
Collapse
|
9
|
Henrik SZŐKE, István BÓKKON, David M, Jan V, Ágnes K, Zoltán K, Ferenc F, Tibor K, László SL, Ádám D, Odilia M, Andrea K. The innate immune system and fever under redox control: A Narrative Review. Curr Med Chem 2022; 29:4324-4362. [DOI: 10.2174/0929867329666220203122239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/21/2021] [Accepted: 12/07/2021] [Indexed: 11/22/2022]
Abstract
ABSTRACT:
In living cells, redox potential is vitally important for normal physiological processes that are closely regulated by antioxidants, free amino acids and proteins that either have reactive oxygen and nitrogen species capture capability or can be compartmentalized. Although hundreds of experiments support the regulatory role of free radicals and their derivatives, several authors continue to claim that these perform only harmful and non-regulatory functions. In this paper we show that countless intracellular and extracellular signal pathways are directly or indirectly linked to regulated redox processes. We also briefly discuss how artificial oxidative stress can have important therapeutic potential and the possible negative effects of popular antioxidant supplements.
Next, we present the argument supported by a large number of studies that several major components of innate immunity, as well as fever, is also essentially associated with regulated redox processes. Our goal is to point out that the production of excess or unregulated free radicals and reactive species can be secondary processes due to the perturbed cellular signal pathways. However, researchers on pharmacology should consider the important role of redox mechanisms in the innate immune system and fever.
Collapse
Affiliation(s)
- SZŐKE Henrik
- Doctoral School of Health Sciences, University of Pécs, Pécs, Hungary
| | - BÓKKON István
- Neuroscience and Consciousness Research Department, Vision Research Institute,
Lowell, MA, USA
| | - martin David
- Department of Human Medicine, University Witten/Herdecke, Witten, Germany
| | - Vagedes Jan
- University Children’s Hospital, Tuebingen University, Tuebingen, Germany
| | - kiss Ágnes
- Doctoral School of Health Sciences, University of Pécs, Pécs, Hungary
| | - kovács Zoltán
- Doctoral School of Health Sciences, University of Pécs, Pécs, Hungary
| | - fekete Ferenc
- Department of Nyerges Gábor Pediatric Infectology, Heim Pál National Pediatric Institute, Budapest, Hungary
| | - kocsis Tibor
- Department of Clinical Governance, Hungarian National Ambulance Service, Budapest, Hungary
| | | | | | | | - kisbenedek Andrea
- Doctoral School of Health Sciences, University of Pécs, Pécs, Hungary
| |
Collapse
|
10
|
Amano-Iga R, Hasegawa T, Takeda D, Murakami A, Yatagai N, Saito I, Arimoto S, Kakei Y, Sakakibara A, Akashi M. Local Application of Transcutaneous Carbon Dioxide Paste Decreases Inflammation and Accelerates Wound Healing. Cureus 2021; 13:e19518. [PMID: 34917429 PMCID: PMC8670822 DOI: 10.7759/cureus.19518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2021] [Indexed: 11/05/2022] Open
Abstract
INTRODUCTION Delayed wound healing after surgery lowers the long-term quality of a patient's life and leads to discomfort and pain. However, treatments for wound healing are often difficult and have not yet been fully established. In this study, we investigated the effect of a special paste that can be administered transdermally and holds a non-gaseous carbon dioxide (CO2) source in its carrier, which can be applied to the head and neck region for wound healing in a rat skin defect model. METHODS Forty-eight Sprague Dawley rats were randomized into control and CO2 groups. We punched a 6.2-mm wound on the back of each rat. The control rats were left untreated, whereas rats in the CO2 group were treated with the CO2 paste every day after surgery. We evaluated wound healing 3, 7, 14, and 21 days after wounding by analyzing the diameter of the wound, gene expression of inflammatory markers vascular endothelial growth factor (VEGF), transforming growth factor (TGF)-β, hypoxia-inducible factor (HIF)-1α, interleukin (IL)-1β, and IL-6 using quantitative real-time polymerase chain reaction, hematoxylin and eosin, and immunohistochemical staining patterns. RESULTS Rats in the CO2 group showed accelerated wound healing compared to those in the control group. Furthermore, VEGF and TGF-β were overexpressed, whereas HIF-1α, IL-1β, and IL-6 were downregulated in the rats treated with CO2. Immunohistochemical analysis also revealed similar patterns of expression. CONCLUSION Taken together, the CO2 paste promoted wound healing by regulating the hypoxic environment, reducing inflammation, and accelerating angiogenesis.
Collapse
Affiliation(s)
- Rika Amano-Iga
- Oral and Maxillofacial Surgery, Kobe University Hospital, Kobe, JPN
| | - Takumi Hasegawa
- Oral and Maxillofacial Surgery, Kobe University Hospital, Kobe, JPN
| | - Daisuke Takeda
- Oral and Maxillofacial Surgery, Kobe University Hospital, Kobe, JPN
| | - Aki Murakami
- Oral and Maxillofacial Surgery, Kobe University Hospital, Kobe, JPN
| | - Nanae Yatagai
- Oral and Maxillofacial Surgery, Kobe University Hospital, Kobe, JPN
| | - Izumi Saito
- Oral and Maxillofacial Surgery, Kobe University Hospital, Kobe, JPN
| | - Satomi Arimoto
- Oral and Maxillofacial Surgery, Kobe University Hospital, Kobe, JPN
| | - Yasumasa Kakei
- Oral and Maxillofacial Surgery, Kobe University Hospital, Kobe, JPN
| | - Akiko Sakakibara
- Oral and Maxillofacial Surgery, Kobe University Hospital, Kobe, JPN
| | - Masaya Akashi
- Oral and Maxillofacial Surgery, Kobe University Hospital, Kobe, JPN
| |
Collapse
|
11
|
Bhar B, Chouhan D, Pai N, Mandal BB. Harnessing Multifaceted Next-Generation Technologies for Improved Skin Wound Healing. ACS APPLIED BIO MATERIALS 2021; 4:7738-7763. [PMID: 35006758 DOI: 10.1021/acsabm.1c00880] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Dysregulation of sequential and synchronized events of skin regeneration often results in the impairment of chronic wounds. Conventional wound dressings fail to trigger the normal healing mechanism owing to the pathophysiological conditions. Tissue engineering approaches that deal with the fabrication of dressings using various biomaterials, growth factors, and stem cells have shown accelerated healing outcomes. However, most of these technologies are associated with difficulties in scalability and cost-effectiveness of the products. In this review, we survey the latest developments in wound healing strategies that have recently emerged through the multidisciplinary approaches of bioengineering, nanotechnology, 3D bioprinting, and similar cutting-edge technologies to overcome the limitations of conventional therapies. We also focus on the potential of wearable technology that supports complete monitoring of the changes occurring in the wound microenvironment. In addition, we review the role of advanced devices that can precisely enable the delivery of nanotherapeutics, oligonucleotides, and external stimuli in a controlled manner. These technological advancements offer the opportunity to actively influence the regeneration process to benefit the treatment regime further. Finally, the clinical relevance, trajectory, and prospects of this field have been discussed in brief that highlights their potential in providing a beneficial wound care solution at an affordable cost.
Collapse
Affiliation(s)
- Bibrita Bhar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Dimple Chouhan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Nakhul Pai
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Biman B Mandal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.,Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.,School of Health Science and Technology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
12
|
Zajdel TJ, Shim G, Cohen DJ. Come together: On-chip bioelectric wound closure. Biosens Bioelectron 2021; 192:113479. [PMID: 34265520 PMCID: PMC8453109 DOI: 10.1016/j.bios.2021.113479] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/16/2021] [Accepted: 06/30/2021] [Indexed: 01/08/2023]
Abstract
There is a growing interest in bioelectric wound treatment and electrotaxis, the process by which cells detect an electric field and orient their migration along its direction, has emerged as a potential cornerstone of the endogenous wound healing response. Despite recognition of the importance of electrotaxis in wound healing, no experimental demonstration to date has shown that the actual closing of a wound can be accelerated solely by the electrotaxis response itself, and in vivo systems are too complex to resolve cell migration from other healing stages such as proliferation and inflammation. This uncertainty has led to a lack of standardization between stimulation methods, model systems, and electrode technology required for device development. In this paper, we present a 'healing-on-chip' approach that is a standardized, low-cost, model for investigating electrically accelerated wound healing. Our device provides a biomimetic convergent field geometry that more closely resembles actual wound fields. We validate this device by using electrical stimulation to close a 1.5 mm gap between two large (30 mm2) layers of primary skin keratinocyte to completely heal the gap twice as quickly as in an unstimulated tissue. This demonstration proves that convergent electrotaxis is both possible and can accelerate healing and offers an accessible 'healing-on-a-chip' platform to explore future bioelectric interfaces.
Collapse
Affiliation(s)
- Tom J Zajdel
- Mechanical & Aerospace Engineering, Princeton University, 08544, Princeton, NJ, United States
| | - Gawoon Shim
- Mechanical & Aerospace Engineering, Princeton University, 08544, Princeton, NJ, United States
| | - Daniel J Cohen
- Mechanical & Aerospace Engineering, Princeton University, 08544, Princeton, NJ, United States.
| |
Collapse
|
13
|
Cheah YJ, Buyong MR, Mohd Yunus MH. Wound Healing with Electrical Stimulation Technologies: A Review. Polymers (Basel) 2021; 13:3790. [PMID: 34771347 PMCID: PMC8588136 DOI: 10.3390/polym13213790] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/16/2021] [Accepted: 10/29/2021] [Indexed: 01/22/2023] Open
Abstract
Electrical stimulation (ES) is an attractive field among clinicians in the topic of wound healing, which is common yet complicated and requires multidisciplinary approaches. The conventional dressing and skin graft showed no promise on complete wound closure. These urge the need for the exploration of electrical stimulation to supplement current wound care management. This review aims to provide an overview of electrical stimulation in wound healing. The mechanism of galvanotaxis related to wound repair will be reviewed at the cellular and molecular levels. Meanwhile, different modalities of externally applied electricity mimicking a physiologic electric field will be discussed and compared in vitro, in vivo, and clinically. With the emerging of tissue engineering and regenerative medicine, the integration of electroconductive biomaterials into modern miniaturised dressing is of interest and has become possible with the advancing understanding of smart biomaterials.
Collapse
Affiliation(s)
- Yt Jun Cheah
- Department of Physiology, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur 56600, Malaysia;
| | - Muhamad Ramdzan Buyong
- Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia;
| | - Mohd Heikal Mohd Yunus
- Department of Physiology, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur 56600, Malaysia;
| |
Collapse
|
14
|
Yang Z, Hu X, Zhou L, He Y, Zhang X, Yang J, Ju Z, Liou YC, Shen HM, Luo G, Hamblin MR, He W, Yin R. Photodynamic therapy accelerates skin wound healing through promoting re-epithelialization. BURNS & TRAUMA 2021; 9:tkab008. [PMID: 34514005 PMCID: PMC8420953 DOI: 10.1093/burnst/tkab008] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/01/2021] [Indexed: 11/16/2022]
Abstract
Background Epidermal stem cells (EpSCs) that reside in cutaneous hair follicles and the basal layer of the epidermis are indispensable for wound healing and skin homeostasis. Little is known about the effects of photochemical activation on EpSC differentiation, proliferation and migration during wound healing. The present study aimed to determine the effects of photodynamic therapy (PDT) on wound healing in vivo and in vitro. Methods We created mouse full-thickness skin resection models and applied 5-aminolevulinic acid (ALA) for PDT to the wound beds. Wound healing was analysed by gross evaluation and haematoxylin–eosin staining in vivo. In cultured EpSCs, protein expression was measured using flow cytometry and immunohistochemistry. Cell migration was examined using a scratch model; apoptosis and differentiation were measured using flow cytometry. Results PDT accelerated wound closure by enhancing EpSC differentiation, proliferation and migration, thereby promoting re-epithelialization and angiogenesis. PDT inhibited inflammatory infiltration and expression of proinflammatory cytokines, whereas the secretion of growth factors was greater than in other groups. The proportion of transient amplifying cells was significantly greater in vivo and in vitro in the PDT groups. EpSC migration was markedly enhanced after ALA-induced PDT. Conclusions Topical ALA-induced PDT stimulates wound healing by enhancing re-epithelialization, promoting angiogenesis as well as modulating skin homeostasis. This work provides a preliminary theoretical foundation for the clinical administration of topical ALA-induced PDT in skin wound healing.
Collapse
Affiliation(s)
- Zengjun Yang
- Department of Dermatology, Southwest Hospital, Third Military Medical University (Army Medical University), No. 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Xiaohong Hu
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), No. 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Lina Zhou
- Department of Endocrinology, Southwest Hospital, Third Military Medical University (Army Medical University), No. 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Yaxiong He
- Department of Dermatology, Southwest Hospital, Third Military Medical University (Army Medical University), No. 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Xiaorong Zhang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), No. 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Jiacai Yang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), No. 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, No. 601 Huangpu Street, Tianhe District, Guangzhou, Guangdong Province, 510632, China
| | - Yih-Cherng Liou
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore
| | - Han-Ming Shen
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 14 Science Drive 4, 117543, Singapore
| | - Gaoxing Luo
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), No. 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 40 Blossom Street, Boston, MA, 02114, USA
| | - Weifeng He
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), No. 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Rui Yin
- Department of Dermatology, Southwest Hospital, Third Military Medical University (Army Medical University), No. 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| |
Collapse
|
15
|
Lee JH, Ha JH. Bioelectric Effect of a Microcurrent Toothbrush on Plaque Removal. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18168255. [PMID: 34444003 PMCID: PMC8394510 DOI: 10.3390/ijerph18168255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 11/23/2022]
Abstract
This study evaluated the effectiveness of a microcurrent toothbrush (approved by the US Food and Drug Administration [FDA]), which employs a superimposed alternating and direct electric current, named as a Proxywave® technology, similar to the intensity of the biocurrent, in plaque removal and reducing gingivitis by biofilm removal through the bioelectric effect. This study enrolled 40 volunteers with gingivitis. Dental observations were made every two weeks, before and after the use of each toothbrush. We randomly assigned participants into two groups: one group used the Proxywave® toothbrush (PB) for two weeks followed by the control toothbrush (CB) for two weeks, while the other group used the CB for two weeks followed by the PB. The participants had a two-week washout period. If the toothbrush used earlier has had an effect on the bacterial flora in the oral cavity, this is to remove this effect and return it to its previous state. During each dental visit, we recorded plaque index (PI) and gingival index (GI) scores. The PI and GI scores were significantly lower in both the PB and the CB (p < 0.05). Considering the PI, there was no significant difference between the toothbrushes on all the surfaces. Considering the GI, the PB showed a significant decrease in the interproximal surface, compared to the CB (p < 0.05). The PB showed a significant decrease in the interproximal GI and had a beneficial effect in the interproximal area where the bristles could not reach. No adverse events were observed in the participants during the clinical trial. The microcurrent toothbrush is a device that can be safely used for plaque removal.
Collapse
Affiliation(s)
- Ji-Hyun Lee
- Department of Periodontology, Ulsan University Hospital, College of Medicine, University of Ulsan, Ulsan 44033, Korea
- Correspondence: ; Tel.: +82-52-250-7230
| | - Jin-Hee Ha
- Department of Dentistry, Ulsan University Hospital, College of Medicine, University of Ulsan, Ulsan 44033, Korea;
| |
Collapse
|
16
|
Li C, Chen C, Zhao J, Tan M, Zhai S, Wei Y, Wang L, Dai T. Electrospun Fibrous Membrane Containing a Cyclodextrin Covalent Organic Framework with Antibacterial Properties for Accelerating Wound Healing. ACS Biomater Sci Eng 2021; 7:3898-3907. [PMID: 34279078 DOI: 10.1021/acsbiomaterials.1c00648] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Skin wounds are usually accompanied by bacterial infections and inflammations, leading to delayed wound healing, which remain a great challenge in clinical treatment. Therefore, it is of great significance to develop wound dressings that inhibit bacterial infections to accelerate wound healing. Herein, we reported the fabrication of inclusion complex (a β-cyclodextrin covalent organic framework loaded with enrofloxacin and flunixin meglumine)-incorporated electrospun thermoplastic polyurethane fibers (named ENR-FM-COF-TPU) via electrospinning. The obtained ENR-FM-COF-TPU fibrous membrane exhibited excellent physicochemical and biological properties such as uniform and stable morphology, proper hydrophobicity, good water uptake capacity, and admirable biocompatibility, which showed perfect behavior as a wound dressing. In addition, the ENR-FM-COF-TPU membrane achieved a sustained drug release of enrofloxacin and flunixin meglumine and displayed powerful antibacterial activity against Staphylococcus aureus and Escherichia coli with 99% inhibitory efficiency for 50 h. More importantly, the wound healing therapy effect was investigated using a full-thickness skin defect model of mice. It suggested that the ENR-FM-COF-TPU membrane could significantly accelerate and enhance wound healing through downregulating inflammatory cytokines (IL-1β and TNF-α) and increasing the expression of growth factors (VEGF and EGF). Due to its excellent properties, the ENR-FM-COF-TPU membrane may have promising potential in wound healing applications.
Collapse
Affiliation(s)
- Congcong Li
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Chaoxi Chen
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China.,Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu 610041, China
| | - Juebo Zhao
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Min Tan
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Shuo Zhai
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Yucai Wei
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Lu Wang
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China.,Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu 610041, China
| | - Tao Dai
- College of Chemistry & Environment, Southwest Minzu University, Chengdu 610041, China
| |
Collapse
|
17
|
Stan D, Tanase C, Avram M, Apetrei R, Mincu NB, Mateescu AL, Stan D. Wound healing applications of creams and "smart" hydrogels. Exp Dermatol 2021; 30:1218-1232. [PMID: 34009648 PMCID: PMC8453519 DOI: 10.1111/exd.14396] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/28/2021] [Accepted: 05/15/2021] [Indexed: 12/11/2022]
Abstract
Although superficial wounds are often easy to treat for healthy individuals, there are some more severe types of wounds (burns, ulcers, diabetic wounds, etc.) that are a challenge for clinicians. A good therapeutic result is based on the delivery of a treatment at the right time, for the right patient. Our goal was to sum up useful knowledge regarding wound healing and wound treatments, based on creams and hydrogels with various active ingredients. We concluded that both preparations have application in preventing infections and promoting healing, but their efficacy is clearly conditioned by the type, depth, severity of the wound and patient profile. However, due to their superior versatility and capability of maintaining the integrity and functionality of the active ingredient, as well as it is controlled release at site, hydrogels are more suited for incorporating different active ingredients. New wound healing devices can combine smart hydrogel dressings with physical therapies to deliver a more efficient treatment to patients if the indications are appropriate.
Collapse
Affiliation(s)
- Diana Stan
- DDS Diagnostic, Bucharest, Romania.,Faculty of Medicine, Titu Maiorescu University, Bucharest, Romania
| | - Cristiana Tanase
- Faculty of Medicine, Titu Maiorescu University, Bucharest, Romania.,Biochemistry - Proteomics Department, Victor Babes National Institute of Pathology, Bucharest, Romania
| | | | | | | | | | | |
Collapse
|
18
|
Ferreira CL, Neves Jardini MA, Moretto Nunes CM, Bernardo DV, Viana Casarin RC, Dos Santos Gedraite E, Mathias MA, Liu F, Mendonça G, Silveira Mendonça DB, Santamaria MP. Electrical stimulation enhances early palatal wound healing in mice. Arch Oral Biol 2020; 122:105028. [PMID: 33360374 DOI: 10.1016/j.archoralbio.2020.105028] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 01/02/2023]
Abstract
BACKGROUND/OBJECTIVE Electrical stimulation (ES) has been used to treat chronic wound and other clinical applications, showing favorable results in wound closure. It was hypothesized that ES can present a positive effect on oral mucosa healing. The aim of this study was to investigate the effects of ES during the palatal mucosa early healing process in Swiss mice. METHODS Ninety animals were divided into two groups: Control (C; n = 45), which received Sham ES applications, and Test (ES; n = 45), which received ES (100 μA; 9 kHz; 660 mVpp) once a day for 3 days. A full thickness wound was performed with a 1.5 mm diameter biopsy punch in the hard palate. Histologically, the following parameters were evaluated: palatal wound closure and epithelial and connective wound edge distance (EED and CED). Furthermore, IL-1β, IL-6, IL-10 TNF-α, and VEGF cytokine levels were evaluated by multiplex assay. The percentage of collagen fibers was assessed using the polarization method and the Smad proteins using the immunofluorescence method. RESULTS Palatal wound closure presented a significant reduction on day 5 in the ES group (p = 0.01). Additionally, both EED and CED were shorter for all time points in the ES group (p < 0.05), and the inflammatory markers IL-6, IL-10, TNF-α, and VEGF were reduced (p < 0.05). There were no differences in collagen fibers and phospho-Smad2 between the groups. CONCLUSION ES had a positive effect on early palatal wound closure outcomes, as well as on inflammatory markers.
Collapse
Affiliation(s)
- Camila Lopes Ferreira
- Postgraduate Student, Oral Biopathology Program, Periodontics Area, São Paulo State University (UNESP), College of Dentistry, São José dos Campos, Brazil
| | - Maria Aparecida Neves Jardini
- São Paulo State University (UNESP), Division of Periodontics, Institute of Science and Technology, São José dos Campos, São Paulo, Brazil
| | - Camilla Magnoni Moretto Nunes
- Postgraduate Student, Oral Biopathology Program, Periodontics Area, São Paulo State University (UNESP), College of Dentistry, São José dos Campos, Brazil
| | - Daniella Vicensotto Bernardo
- Postgraduate Student, Oral Biopathology Program, Periodontics Area, São Paulo State University (UNESP), College of Dentistry, São José dos Campos, Brazil
| | - Renato Corrêa Viana Casarin
- University of Campinas (UNICAMP). Department of Prosthodontics and Periodontics, Division of Periodontics, Piracicaba Dental School, Piracicaba, São Paulo, Brazil
| | | | | | - Fei Liu
- University of Michigan, School of Dentistry, Department of Biologic and Materials Sciences & Prosthodontics, Ann Arbor, USA
| | - Gustavo Mendonça
- University of Michigan, School of Dentistry, Department of Biologic and Materials Sciences & Prosthodontics, Ann Arbor, USA
| | | | - Mauro Pedrine Santamaria
- São Paulo State University (UNESP), Division of Periodontics, Institute of Science and Technology, São José dos Campos, São Paulo, Brazil.
| |
Collapse
|
19
|
Xin Y, Min P, Xu H, Zhang Z, Zhang Y, Zhang Y. CD26 upregulates proliferation and invasion in keloid fibroblasts through an IGF-1-induced PI3K/AKT/mTOR pathway. BURNS & TRAUMA 2020; 8:tkaa025. [PMID: 33150188 PMCID: PMC7596300 DOI: 10.1093/burnst/tkaa025] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 04/07/2020] [Indexed: 01/21/2023]
Abstract
Background Keloid is a fibrotic dermal disease characterized by an abnormal increase in fibroblast proliferation and invasion. These pathological behaviours may be related to the heterogeneity of keloid fibroblasts (KFs); however, because of a lack of effective biomarkers for KFs it is difficult to study the underlying mechanism. Our previous studies revealed that the expansion of CD26+ KFs was responsible for increased keloid proliferation and invasion capabilities; the intrinsic relationship and mechanism between CD26 and keloid is therefore worthy of further investigation. The aim of this study was to explore molecular mechanisms in the process of CD26 upregulated KFs proliferation and invasion abilities, and provide more evidence for CD26 as an effective biomarker of keloid and a new clinical therapeutic target. Methods Flow cytometry was performed to isolate CD26+/CD26− fibroblasts from KFs and normal fibroblasts. To generate stably silenced KFs for CD26 and insulin-like growth factor-1 receptor (IGF-1R), lentiviral particles encoding shRNA targeting CD26 and IGF-1R were used for transfection. Cell proliferations were analysed by cell counting kit-8 assay and 5-ethynyl-2′-deoxyuridine (EdU) incorporation assay. Scratching assay and transwell assay were used to assess cell migration and invasion abilities. To further quantify the regulatory role of CD26 expression in the relevant signalling pathway, RT-qPCR, western blot, ELISA, PI3K activity assay and immunofluorescence were used. Results Aberrant expression of CD26 in KFs was proven to be associated with increased proliferation and invasion of KFs. Furthermore, the role of the IGF-1/IGF-1 receptor axis was also studied in CD26 and was found to upregulate KF proliferation and invasion. The PI3K/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway was shown to affect CD26-regulated KF proliferation and invasion by increasing phosphorylation levels of S6 kinase and 4E-binding protein. Conclusions CD26 can be the effective biomarker for KFs, and its expression is closely related to proliferation and invasion in keloids through the IGF-1-induced PI3K/AKT/mTOR pathway. This work provides a novel perspective on the pathological mechanisms affecting KFs and therapeutic strategies against keloids.
Collapse
Affiliation(s)
- Yu Xin
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, China
| | - Peiru Min
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, China
| | - Heng Xu
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, China
| | - Zheng Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, China
| | - Yan Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, China
| | - Yixin Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, China
| |
Collapse
|
20
|
Elshamy AI, Ammar NM, Hassan HA, El-Kashak WA, Al-Rejaie SS, Abd-ElGawad AM, Farrag ARH. Topical Wound Healing Activity of Myricetin Isolated from Tecomaria capensis v. aurea. Molecules 2020; 25:E4870. [PMID: 33105570 PMCID: PMC7659475 DOI: 10.3390/molecules25214870] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/14/2020] [Accepted: 10/19/2020] [Indexed: 11/16/2022] Open
Abstract
Wounds and burn injury are major causes of death and disability worldwide. Myricetin is a common bioactive flavonoid isolated naturally from the plant kingdom. Herein, a topical application of naturally isolated myricetin from the shoots of Tecomaria capensis v. aurea on excisional wound healing that was performed in albino rats. The wounded rats were treated every day with 10 and 20% myricetin for 14 days. During the experiment, the wound closure percentage was estimated at days 0, 7, and 14. Effects of myricetin on the inflammatory cytokines (tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and cluster of differentiation 68 (CD68) in the serum were evaluated using immunosorbent assay kits. The percentage of wound closure and contraction was delayed in wounded rats (67.35%) and was remarkably increased after treatment of wounded rats with myricetin; the treatment with 20% myricetin was the most potent (98.76%). Histological findings exhibited that 10% myricetin caused the formation of a large area of scarring at the wound enclosure and stratified squamous epithelium without the formation of papillae as in the control group. Treatment with 20% myricetin exhibited less area of scarring at the wound enclosure as well as re-epithelialization with a high density of fibroblasts and blood capillaries in the wound. Level elevations of serum pro-inflammatory cytokines, IL-1β, and TNF-α and macrophage CD68 were decreased in wounded rats treated with myricetin. Thus, it can be suggested that the enhancements in inflammatory cytokines as well as systemic reorganization after myricetin treatment may be recommended to play a crucial part in the promotion of wound healing. The findings suggest that treatment with a higher dose of myricetin was better in improving wound curing in rats. It could serve as a potent anti-inflammatory agent and can be used as an adjunctive or alternative agent in the future.
Collapse
Affiliation(s)
- Abdelsamed I. Elshamy
- Chemistry of Natural Compounds Department, National Research Centre, 33 El Bohouth St., Dokki, Cairo 12622, Egypt;
| | - Naglaa M. Ammar
- Therapeutic Chemistry Department, National Research Centre, 33 El Bohouth St., Dokki, Cairo 12622, Egypt; (N.M.A.); (H.A.H.)
| | - Heba A. Hassan
- Therapeutic Chemistry Department, National Research Centre, 33 El Bohouth St., Dokki, Cairo 12622, Egypt; (N.M.A.); (H.A.H.)
| | - Walaa A. El-Kashak
- Chemistry of Natural Compounds Department, National Research Centre, 33 El Bohouth St., Dokki, Cairo 12622, Egypt;
| | - Salim S. Al-Rejaie
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Ahmed M. Abd-ElGawad
- Plant Production Department, College of Food & Agriculture Sciences, King SaudUniversity, P.O. Box 2460, Riyadh 11451, Saudi Arabia
- Department of Botany, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Abdel-Razik H. Farrag
- Departments of Pathology, National Research Centre, 33 El Bohouth St. Dokki, Cairo 12622, Egypt;
| |
Collapse
|
21
|
Xu P, Wu Y, Zhou L, Yang Z, Zhang X, Hu X, Yang J, Wang M, Wang B, Luo G, He W, Cheng B. Platelet-rich plasma accelerates skin wound healing by promoting re-epithelialization. BURNS & TRAUMA 2020; 8:tkaa028. [PMID: 32821743 PMCID: PMC7427034 DOI: 10.1093/burnst/tkaa028] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/24/2020] [Indexed: 01/19/2023]
Abstract
BACKGROUND Autologous platelet-rich plasma (PRP) has been suggested to be effective for wound healing. However, evidence for its use in patients with acute and chronic wounds remains insufficient. The aims of this study were to comprehensively examine the effectiveness, synergy and possible mechanism of PRP-mediated improvement of acute skin wound repair. METHODS Full-thickness wounds were made on the back of C57/BL6 mice. PRP or saline solution as a control was administered to the wound area. Wound healing rate, local inflammation, angiogenesis, re-epithelialization and collagen deposition were measured at days 3, 5, 7 and 14 after skin injury. The biological character of epidermal stem cells (ESCs), which reflect the potential for re-epithelialization, was further evaluated in vitro and in vivo. RESULTS PRP strongly improved skin wound healing, which was associated with regulation of local inflammation, enhancement of angiogenesis and re-epithelialization. PRP treatment significantly reduced the production of inflammatory cytokines interleukin-17A and interleukin-1β. An increase in the local vessel intensity and enhancement of re-epithelialization were also observed in animals with PRP administration and were associated with enhanced secretion of growth factors such as vascular endothelial growth factor and insulin-like growth factor-1. Moreover, PRP treatment ameliorated the survival and activated the migration and proliferation of primary cultured ESCs, and these effects were accompanied by the differentiation of ESCs into adult cells following the changes of CD49f and keratin 10 and keratin 14. CONCLUSION PRP improved skin wound healing by modulating inflammation and increasing angiogenesis and re-epithelialization. However, the underlying regulatory mechanism needs to be investigated in the future. Our data provide a preliminary theoretical foundation for the clinical administration of PRP in wound healing and skin regeneration.
Collapse
Affiliation(s)
- Pengcheng Xu
- Department of Burn and Plastic Surgery, General Hospital of Southern Theater Command, PLA, Guangzhou, China
| | - Yaguang Wu
- Department of Dermatology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Lina Zhou
- Department of Endocrinology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zengjun Yang
- Department of Dermatology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaorong Zhang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Xiaohong Hu
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Jiacai Yang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Mingying Wang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Binjie Wang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Gaoxing Luo
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Weifeng He
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Biao Cheng
- Department of Burn and Plastic Surgery, General Hospital of Southern Theater Command, PLA, Guangzhou, China
| |
Collapse
|
22
|
O Bortolazzo F, D Lucke L, de Oliveira Fujii L, Marqueti RDC, Vieira Ramos G, Theodoro V, Bombeiro AL, Felonato M, A Dalia R, D Carneiro G, Pontes Vicente C, A M Esquisatto M, A S Mendonça F, T Dos Santos GM, R Pimentel E, de Aro AA. Microcurrent and adipose-derived stem cells modulate genes expression involved in the structural recovery of transected tendon of rats. FASEB J 2020; 34:10011-10026. [PMID: 32558993 DOI: 10.1096/fj.201902942rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 05/02/2020] [Accepted: 05/05/2020] [Indexed: 01/30/2023]
Abstract
Tendon injuries are common and have a high incidence of re-rupture that can cause loss of functionality. Therapies with adipose-derived stem cells (ASC) and the microcurrent (low-intensity electrical stimulation) application present promising effects on the tissue repair. We analyzed the expression of genes and the participation of some molecules potentially involved in the structural recovery of the Achilles tendon of rats, in response to the application of both therapies, isolated and combined. The tendons were distributed in five groups: normal (N), transected (T), transected and ASC (C) or microcurrent (M) or with ASC, and microcurrent (MC). Microcurrent therapy was beneficial for tendon repair, as it was observed a statistically significant increase in the organization of the collagen fibers, with involvement of the TNC, CTGF, FN, FMDO, and COL3A1 genes as well as PCNA, IL-10, and TNF-α. ASC therapy significantly increased the TNC and FMDO genes expression with no changes in the molecular organization of collagen. With the association of therapies, a significant greater collagen fibers organization was observed with involvement of the FMOD gene. The therapies did not affect the expression of COL1A1, SMAD2, SMAD3, MKX, and EGR1 genes, nor did they influence the amount of collagen I and III, caspase-3, tenomodulin (Tnmd), and hydroxyproline. In conclusion, the application of the microcurrent isolated or associated with ASC increased the organization of the collagen fibers, which can result in a greater biomechanical resistance in relation to the tendons treated only with ASC. Future studies will be needed to demonstrate the biological effects of these therapies on the functional recovery of injured tendons.
Collapse
Affiliation(s)
- Fernanda O Bortolazzo
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas-UNICAMP, São Paulo, Brazil
| | - Letícia D Lucke
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas-UNICAMP, São Paulo, Brazil
| | - Lucas de Oliveira Fujii
- Biomedical Sciences Graduate Program, University Center of Herminio Ometto Foundation/FHO, São Paulo, Brazil
| | - Rita de Cassia Marqueti
- Graduate Program of rehabilitation science and Graduate Program of Sciences and Technology of Health and Rehabilitation Sciences, University of Brasilia (UnB), Brasília, Brazil
| | | | - Viviane Theodoro
- Biomedical Sciences Graduate Program, University Center of Herminio Ometto Foundation/FHO, São Paulo, Brazil
| | - André L Bombeiro
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas-UNICAMP, São Paulo, Brazil
| | - Maíra Felonato
- Biomedical Sciences Graduate Program, University Center of Herminio Ometto Foundation/FHO, São Paulo, Brazil
| | - Rodrigo A Dalia
- Biomedical Sciences Graduate Program, University Center of Herminio Ometto Foundation/FHO, São Paulo, Brazil
| | - Giane D Carneiro
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas-UNICAMP, São Paulo, Brazil
| | - Cristina Pontes Vicente
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas-UNICAMP, São Paulo, Brazil
| | - Marcelo A M Esquisatto
- Biomedical Sciences Graduate Program, University Center of Herminio Ometto Foundation/FHO, São Paulo, Brazil
| | - Fernanda A S Mendonça
- Biomedical Sciences Graduate Program, University Center of Herminio Ometto Foundation/FHO, São Paulo, Brazil
| | - Gláucia Maria T Dos Santos
- Biomedical Sciences Graduate Program, University Center of Herminio Ometto Foundation/FHO, São Paulo, Brazil
| | - Edson R Pimentel
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas-UNICAMP, São Paulo, Brazil
| | - Andrea A de Aro
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas-UNICAMP, São Paulo, Brazil.,Biomedical Sciences Graduate Program, University Center of Herminio Ometto Foundation/FHO, São Paulo, Brazil
| |
Collapse
|
23
|
Fu X. Wound healing center establishment and new technology application in improving the wound healing quality in China. BURNS & TRAUMA 2020; 8:tkaa038. [PMID: 33134399 PMCID: PMC7586079 DOI: 10.1093/burnst/tkaa038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 08/28/2020] [Indexed: 04/14/2023]
Abstract
Wound healing, tissue repair and regenerative medicine are in great demand, and great achievements in these fields have been made. In recent years, many of these successes have benefitted patients, especially in the field of chronic skin wounds. However, perfect tissue repair and regeneration of damaged tissues and organs are still great challenges in the management of trauma and diseases. In this paper, the main achievements in wound healing, tissue repair and regeneration in China are reviewed and the establishment of wound healing centers and new technology application in improving wound healing quality in patients in China is highlighted.
Collapse
|