1
|
Jin S, Zheng Y, Li D, Liu X, Zhu T, Wang S, Liu Z, Liu Y. Effect of genistein supplementation on microenvironment regulation of breast tumors in obese mice. Breast Cancer Res 2024; 26:147. [PMID: 39456028 PMCID: PMC11515845 DOI: 10.1186/s13058-024-01904-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Obesity is an important risk factor for breast cancer in women before and after menopause. Adipocytes, key mediators in the tumor microenvironment, play a pivotal role in the relationship between obesity with cancer. However, the potential of dietary components in modulating this relationship remains underexplored. Genistein, a soy-derived isoflavone, has shown promise in reducing breast cancer risk, attenuating obesity-associated inflammation, and improving insulin resistance. However, there are no reports examining whether genistein has the ability to reduce the effects of obesity on breast tumor development. In this study, we constructed a mammary tumor model in ovariectomized obese mice and examined the effects of genistein on body condition and tumor growth. Moreover, the effects of genistein on the tumor microenvironment were examined via experimental observation of peritumoral adipocytes and macrophages. In addition, we further investigated the effect of genistein on adipocyte and breast cancer cell crosstalk via coculture experiments. Our findings indicate that dietary genistein significantly alleviates obesity, systemic inflammation, and metabolic disorders induced by a high-fat diet in ovariectomized mice. Notably, it also inhibits tumor growth in vivo. The impact of genistein extends to the tumor microenvironment, where it reduces the production of cancer-associated adipocytes (CAAs) and the recruitment of M2d-subtype macrophages. In vitro, genistein mitigates the transition of adipocytes into CAAs and inhibits the expression of inflammatory factors by activating PPAR-γ pathway and degrading nuclear NF-κB. Furthermore, it impedes the acquisition of invasive properties and epithelial‒mesenchymal transition in breast cancer cells under CAA-induced inflammation, disrupting the Wnt3a/β-catenin pathway. Intriguingly, the PPAR-γ inhibitor T0070907 counteracted the effects of genistein in the coculture system, underscoring the specificity of its action. Our study revealed that genistein can mitigate the adverse effects of obesity on breast cancer by modulating the tumor microenvironment. These findings provide new insights into how genistein intake and a soy-based diet can reduce breast cancer risk.
Collapse
Affiliation(s)
- Shengzi Jin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yingce Zheng
- College of Life Sciences, Northeast Agricultural University, No. 600 Changjiang Road, Harbin, 150030, PR China
| | - Ding Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xingyao Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Tingting Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shuang Wang
- College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, 311300, PR China
| | - Zhonghua Liu
- College of Life Sciences, Northeast Agricultural University, No. 600 Changjiang Road, Harbin, 150030, PR China.
| | - Yun Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, No. 600 Changjiang Road, Harbin, 150030, PR China.
| |
Collapse
|
2
|
Ma H, Gao L, Chang R, Zhai L, Zhao Y. Crosstalk between macrophages and immunometabolism and their potential roles in tissue repair and regeneration. Heliyon 2024; 10:e38018. [PMID: 39381218 PMCID: PMC11458987 DOI: 10.1016/j.heliyon.2024.e38018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/16/2024] [Accepted: 09/16/2024] [Indexed: 10/10/2024] Open
Abstract
Immune metabolism is a result of many specific metabolic reactions, such as glycolysis, the tricarboxylic acid (TCA) pathway, the pentose phosphate pathway (PPP), mitochondrial oxidative phosphorylation (OXPHOS), fatty acid oxidation (FAO), fatty acid biosynthesis (FAs) and amino acid pathways, which promote cell proliferation and maintenance with structural and pathological energy to regulate cellular signaling. The metabolism of macrophages produces many metabolic intermediates that play important regulatory roles in tissue repair and regeneration. The metabolic activity of proinflammatory macrophages (M1) mainly depends on glycolysis and the TCA cycle system, but anti-inflammatory macrophages (M2) have intact functions of the TCA cycle, which enhances FAO and is dependent on OXPHOS. However, the metabolic mechanisms of macrophages in tissue repair and regeneration have not been well investigated. Thus, we review how three main metabolic mechanisms of macrophages, glucose metabolism, lipid metabolism, and amino acid metabolism, regulate tissue repair and regeneration.
Collapse
Affiliation(s)
- Hongbo Ma
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610075, China
| | - Limei Gao
- Department of Cardiovascular Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China
| | - Rong Chang
- Department of Cardiovascular Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China
| | - Lihong Zhai
- Institute of Neuroscience and Brain Disease, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441000, Hubei, China
| | - Yanli Zhao
- Department of Cardiovascular Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China
| |
Collapse
|
3
|
Gao M, Tuo Z, Jiang Z, Chen Z, Wang J. Dysregulated ANLN reveals immune cell landscape and promotes carcinogenesis by regulating the PI3K/Akt/mTOR pathway in clear cell renal cell carcinoma. Heliyon 2024; 10:e23522. [PMID: 38173514 PMCID: PMC10761583 DOI: 10.1016/j.heliyon.2023.e23522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/17/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
Background Abnormal anillin (ANLN) expression has been observed in multiple tumours and is closely associated with patient prognosis and clinical features. In this study, we systematically elucidated the clinical significance and biological roles of ANLN in patients with clear cell renal cell carcinoma (ccRCC). Methods We obtained transcriptome and clinical data of patients with ccRCC from public databases. Multi-omics data and clinical samples were combined to analyse the correlation between ANLN expression and the clinical characteristics of patients with renal cancer. Additionally, the immune cell landscape of ANLN expression was evaluated using different immune algorithms in the tumour microenvironment. The tumour-promoting potential of ANLN was confirmed using in vitro assays, including CCK8 and Transwell assays. Results Bioinformatics analysis showed that ANLN is over-expressed in patients with ccRCC, as validated by clinical samples. Publicly available clinical data suggest that high ANLN expression may indicate poor outcomes in patients with ccRCC. Moreover, biological function analysis revealed a marked enrichment of the cell cycle and PI3K-Akt pathways. The distribution of immune cells, particularly M2 macrophages, differed in patients with ccRCC. Furthermore, ANLN silencing inhibited the proliferation, migration, and invasion of renal cancer cells in vitro. After ANLN expression was knocked down in 786-O cells, the protein levels of important PI3K signalling pathway components, including PI3K, Akt, and mTOR, drastically decreased. Conclusions These findings suggest that ANLN is dysregulated in renal cancer tissues and promotes tumour progression by activating the PI3K/Akt/mTOR signalling pathway.
Collapse
Affiliation(s)
- Mingzhu Gao
- Department of Oncology, Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Zhouting Tuo
- Department of Urology, Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Zhiwei Jiang
- Department of Urology, Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Zhendong Chen
- Department of Oncology, Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Jinyou Wang
- Department of Urology, Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| |
Collapse
|
4
|
Victorson D, Guitleman J, Maletich C, Horowitz B, Sauer C, Arechiga C, Parra D. Development and Implementation of a Culturally Informed Spanish Language Yoga Program for Latiné Women With Overweight or Obesity Diagnosed With Cancer: A Single Arm Pilot Study. GLOBAL ADVANCES IN INTEGRATIVE MEDICINE AND HEALTH 2024; 13:27536130241245432. [PMID: 38558828 PMCID: PMC10981276 DOI: 10.1177/27536130241245432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 04/04/2024]
Abstract
Background Given limited yoga research in health disparities populations, we developed and evaluated a 12-week Spanish language yoga program for Latiné women with overweight or obesity affected by cancer. The program aimed to empower participants through culturally tailored yoga practice and opportunities for social connection and support. Methods Partnering with a community-based organization, the program was co-created by bilingual (English and Spanish-speaking) yoga instructors, Latiné cancer survivor support professionals, and integrative medicine researchers. The single arm intervention consisted of 12 separate, 60-minute Hatha yoga classes, including physical postures, breathing exercises, culturally relevant poetry, and post-practice socialization opportunities. Measures were administered at baseline, 12-week, and 24-week. Results Thirty-five eligible participants enrolled in the program, demonstrating high feasibility and relevance as well as high levels of engagement in home practice. Some participants faced barriers to regular home practice, including family responsibilities and concerns about proper pose execution. Preliminary outcome analyses indicated improvements in sleep disturbance, pain interference, depression, and blood pressure post-intervention, with sustained improvements in depression, anxiety, and blood pressure at 24-week. No significant changes were observed in fatigue, physical function, positive affect, satisfaction with social roles and activities, and weight. Structured post-practice social snack time with yoga instructors (compared with unstructured time with peers) was associated with self-reported improvements in satisfaction with social roles and activities and weight loss. Conclusion This yoga program successfully engaged female Latiné cancer survivors with overweight and obesity and serves as a foundational step in empowering this population to improve their health and well-being through culturally tailored yoga practice. Future research should utilize controlled study designs and engage participants from different geographical regions to study the efficacy and sustainability of findings.
Collapse
Affiliation(s)
- David Victorson
- Department of Medical Social Sciences, Northwestern University Feinberg School of Medicine, Evanston, IL, USA
| | - Judy Guitleman
- Alas Wings Latina Breast Cancer Alliance, Chicago, IL, USA
| | - Carly Maletich
- Department of Medical Social Sciences, Northwestern University Feinberg School of Medicine, Evanston, IL, USA
| | - Bruriah Horowitz
- Department of Medical Social Sciences, Northwestern University Feinberg School of Medicine, Evanston, IL, USA
| | - Christina Sauer
- Department of Medical Social Sciences, Northwestern University Feinberg School of Medicine, Evanston, IL, USA
| | - Cailin Arechiga
- Department of Medical Social Sciences, Northwestern University Feinberg School of Medicine, Evanston, IL, USA
| | - Diana Parra
- Prevention Research Center, Brown School, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
5
|
Tuo Z, Feng D, Jiang Z, Bi L, Yang C, Wang Q. Unveiling clinical significance and tumor immune landscape of CXCL12 in bladder cancer: Insights from multiple omics analysis. Chin J Cancer Res 2023; 35:686-701. [PMID: 38204439 PMCID: PMC10774138 DOI: 10.21147/j.issn.1000-9604.2023.06.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/28/2023] [Indexed: 01/12/2024] Open
Abstract
Objective The interplay between chemokine C-X-C motif ligand 12 (CXCL12) and its specific receptors is known to trigger various signaling pathways, contributing to tumor proliferation and metastasis. Consequently, targeting this signaling axis has emerged as a potential strategy in cancer therapy. However, the precise role of CXCL12 in clinical therapy, especially in immunotherapy for bladder cancer (BCa), remains poorly elucidated. Methods We gathered multiple omics data from public databases to unveil the clinical relevance and tumor immune landscape associated with CXCL12 in BCa patients. Univariate and multivariate Cox regression analyses were employed to assess the independent prognostic significance of CXCL12 expression and formulate a nomogram. The expression of CXCL12 in BCa cell lines and clinical tissue samples was validated using enzyme-linked immunosorbent assays (ELISA) and immunohistochemistry (IHC). Results While transcriptional expression of CXCL12 exhibited a decrease in nearly all tumor tissues, CXCL12 methylation expression was notably increased in BCa tissues. Single-cell RNA analysis highlighted tissue stem cells and endothelial cells as the primary sources expressing CXCL12. Abnormal CXCL12 expression, based on transcriptional and methylation levels, correlated with various clinical characteristics in BCa patients. Functional analysis indicated enrichment of CXCL12 and its co-expression genes in immune regulation and cell adhesion. The immune landscape analysis unveiled a significant association between CXCL12 expression and M2 macrophages (CD163+ cells) in BCa tissues. Notably, CXCL12 expression emerged as a potential predictor of immunotherapy response and chemotherapy drug sensitivity in BCa patients. Conclusions Taken together, these findings suggest aberrant production of CXCL12 in BCa tissues, potentially influencing the treatment responses of affected individuals.
Collapse
Affiliation(s)
- Zhouting Tuo
- Department of Urology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Rehabilitation, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Zhiwei Jiang
- Department of Urology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Liangkuan Bi
- Department of Urology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Chao Yang
- Department of Urology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Qi Wang
- Department of Urology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| |
Collapse
|
6
|
Xiong D, Zhang L, Sun ZJ. Targeting the epigenome to reinvigorate T cells for cancer immunotherapy. Mil Med Res 2023; 10:59. [PMID: 38044445 PMCID: PMC10694991 DOI: 10.1186/s40779-023-00496-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/14/2023] [Indexed: 12/05/2023] Open
Abstract
Cancer immunotherapy using immune-checkpoint inhibitors (ICIs) has revolutionized the field of cancer treatment; however, ICI efficacy is constrained by progressive dysfunction of CD8+ tumor-infiltrating lymphocytes (TILs), which is termed T cell exhaustion. This process is driven by diverse extrinsic factors across heterogeneous tumor immune microenvironment (TIME). Simultaneously, tumorigenesis entails robust reshaping of the epigenetic landscape, potentially instigating T cell exhaustion. In this review, we summarize the epigenetic mechanisms governing tumor microenvironmental cues leading to T cell exhaustion, and discuss therapeutic potential of targeting epigenetic regulators for immunotherapies. Finally, we outline conceptual and technical advances in developing potential treatment paradigms involving immunostimulatory agents and epigenetic therapies.
Collapse
Affiliation(s)
- Dian Xiong
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430079, China
| | - Lu Zhang
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430079, China.
| | - Zhi-Jun Sun
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430079, China.
- Department of Oral Maxillofacial-Head Neck Oncology, School and and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| |
Collapse
|
7
|
Lisco G, De Tullio A, Disoteo O, Piazzolla G, Guastamacchia E, Sabbà C, De Geronimo V, Papini E, Triggiani V. Glucagon-like peptide 1 receptor agonists and thyroid cancer: is it the time to be concerned? Endocr Connect 2023; 12:e230257. [PMID: 37656509 PMCID: PMC10563602 DOI: 10.1530/ec-23-0257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/01/2023] [Indexed: 09/03/2023]
Abstract
Glucagon-like peptide 1 receptor agonists (GLP-1RAs) have changed considerably the management of type 2 diabetes (T2D). However, recently published data from retrospective cohort studies suggest that chronic exposure to GLP-1RAs in T2D may increase the risk of papillary and medullary thyroid cancer. In this perspective, the role of the incretin system in thyroid carcinogenesis has been reviewed and critically commented on, aiming to understand if the time has arrived to be concerned about the risk. Although evidence suggested, speculative hypotheses should be verified, and further studies are urgently needed to clarify the issue.
Collapse
Affiliation(s)
- Giuseppe Lisco
- Interdisciplinary Department of Medicine, Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, School of Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare, Bari, Italy
| | - Anna De Tullio
- Interdisciplinary Department of Medicine, Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, School of Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare, Bari, Italy
| | - Olga Disoteo
- Diabetology Unit, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Giuseppina Piazzolla
- Interdisciplinary Department of Medicine, Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, School of Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare, Bari, Italy
| | - Edoardo Guastamacchia
- Interdisciplinary Department of Medicine, Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, School of Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare, Bari, Italy
| | - Carlo Sabbà
- Interdisciplinary Department of Medicine, Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, School of Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare, Bari, Italy
| | | | - Enrico Papini
- Department of Endocrinology and Metabolism, Regina Apostolorum Hospital, Rome, Italy
| | - Vincenzo Triggiani
- Interdisciplinary Department of Medicine, Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, School of Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare, Bari, Italy
| |
Collapse
|
8
|
Schlickmann DDS, Molz P, Uebel GC, Santos C, Brand C, Colombelli RAW, da Silva TG, Steffens JP, Limberger Castilhos EDS, Benito PJ, Rieger A, Franke SIR. The moderating role of macronutrient intake in relation to body composition and genotoxicity: A study with gym users. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2023; 890:503660. [PMID: 37567647 DOI: 10.1016/j.mrgentox.2023.503660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/14/2023] [Accepted: 07/15/2023] [Indexed: 08/13/2023]
Abstract
In a cross-sectional study of gymnasium users (both sexes, ages = 41.9 ± 14.8 years), we examined the moderating role of macronutrient intake in relation to body composition and genotoxicity. A questionnaire was administered to evaluate characteristics of the participants. To assess macronutrient consumption, we used 24-h food recalls on three non-consecutive days. Body composition (body fat percentage and muscle mass) was evaluated with a bioimpedance scale. Genotoxicity was assessed with the buccal micronucleus cytome assay. Multiple linear regression models were applied, adjusting for age; sex; tobacco and alcohol consumption; and (with regard to exercise habits) frequency, training time, intensity, and types. Micronucleus frequency was directly associated with body fat and inversely associated with muscle mass. Our study shows that carbohydrate and fat intakes affect body fat percentage and micronucleus frequency in gymnasium users.
Collapse
Affiliation(s)
- Diene da Silva Schlickmann
- Graduate Program in Health Promotion, University of Santa Cruz do Sul. Department of Health Science, Santa Cruz do Sul, Brazil; Laboratory of Experimental Nutrition. Department of Health Science, University of Santa Cruz do Sul, Santa Cruz do Sul, Brazil
| | - Patrícia Molz
- Graduate Program in Health Promotion, University of Santa Cruz do Sul. Department of Health Science, Santa Cruz do Sul, Brazil; Laboratory of Experimental Nutrition. Department of Health Science, University of Santa Cruz do Sul, Santa Cruz do Sul, Brazil; Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre, Brazil
| | - Gabriela Cristina Uebel
- Course of Biomedicine, University of Santa Cruz do Sul, Department of Health Science, Santa Cruz do Sul, Brazil
| | - Caroline Santos
- Graduate Program in Health Promotion, University of Santa Cruz do Sul. Department of Health Science, Santa Cruz do Sul, Brazil; Laboratory of Experimental Nutrition. Department of Health Science, University of Santa Cruz do Sul, Santa Cruz do Sul, Brazil
| | - Caroline Brand
- IRyS Group, Physical Education School, Pontificia Universidad Católica de Valparaiso, Valparaíso, Chile
| | - Renato Alberto Weber Colombelli
- Laboratory of Experimental Nutrition. Department of Health Science, University of Santa Cruz do Sul, Santa Cruz do Sul, Brazil
| | - Thalia Gama da Silva
- Laboratory of Experimental Nutrition. Department of Health Science, University of Santa Cruz do Sul, Santa Cruz do Sul, Brazil
| | - Juliana Priebe Steffens
- Laboratory of Experimental Nutrition. Department of Health Science, University of Santa Cruz do Sul, Santa Cruz do Sul, Brazil
| | | | - Pedro J Benito
- LFE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sports Sciences, Universidad Politécnica de Madrid, Madrid, Spain
| | - Alexandre Rieger
- Graduate Program in Health Promotion, University of Santa Cruz do Sul. Department of Health Science, Santa Cruz do Sul, Brazil; Graduate Program in Environmental Technology, University of Santa Cruz do Sul, Santa Cruz do Sul, Brazil
| | - Silvia Isabel Rech Franke
- Graduate Program in Health Promotion, University of Santa Cruz do Sul. Department of Health Science, Santa Cruz do Sul, Brazil; Laboratory of Experimental Nutrition. Department of Health Science, University of Santa Cruz do Sul, Santa Cruz do Sul, Brazil.
| |
Collapse
|
9
|
Liu SQ, Chen DY, Li B, Gao ZJ, Feng HF, Yu X, Liu Z, Wang Y, Li WG, Sun S, Sun SR, Wu Q. Single-cell analysis of white adipose tissue reveals the tumor-promoting adipocyte subtypes. J Transl Med 2023; 21:470. [PMID: 37454080 PMCID: PMC10349475 DOI: 10.1186/s12967-023-04256-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/09/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND The tumor-adipose microenvironment (TAME) is characterized by the enrichment of adipocytes, and is considered a special ecosystem that supports cancer progression. However, the heterogeneity and diversity of adipocytes in TAME remains poorly understood. METHODS We conducted a single-cell RNA sequencing analysis of adipocytes in mouse and human white adipose tissue (WAT). We analyzed several adipocyte subtypes to evaluate their relationship and potential as prognostic factors for overall survival (OS). The potential drugs are screened by using bioinformatics methods. The tumor-promoting effects of a typical adipocyte subtype in breast cancer are validated by performing in vitro functional assays and immunohistochemistry (IHC) in clinical samples. RESULTS We profiled a comprehensive single-cell atlas of adipocyte in mouse and human WAT and described their characteristics, origins, development, functions and interactions with immune cells. Several cancer-associated adipocyte subtypes, namely DPP4+ adipocytes in visceral adipose and ADIPOQ+ adipocytes in subcutaneous adipose, are identified. We found that high levels of these subtypes are associated with unfavorable outcomes in four typical adipose-associated cancers. Some potential drugs including Trametinib, Selumetinib and Ulixertinib are discovered. Emphatically, knockdown of adiponectin receptor 1 (AdipoR1) and AdipoR2 impaired the proliferation and invasion of breast cancer cells. Patients with AdipoR2-high breast cancer display significantly shorter relapse-free survival (RFS) than those with AdipoR2-low breast cancer. CONCLUSION Our results provide a novel understanding of TAME at the single-cell level. Based on our findings, several adipocyte subtypes have negative impact on prognosis. These cancer-associated adipocytes may serve as key prognostic predictor and potential targets for treatment in the future.
Collapse
Affiliation(s)
- Si-Qing Liu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Ding-Yuan Chen
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Bei Li
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Zhi-Jie Gao
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Hong-Fang Feng
- Department of Breast and Thyroid Surgery, Huangshi Central Hospital, Hubei Polytechnic University, Huangshi, Hubei, People's Republic of China
| | - Xin Yu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Zhou Liu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Yuan Wang
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Wen-Ge Li
- Department of Oncology, Shanghai Artemed Hospital, Shanghai, People's Republic of China
| | - Si Sun
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China.
| | - Sheng-Rong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China.
| | - Qi Wu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.
| |
Collapse
|
10
|
Wu Q, Liu Z, Gao Z, Luo Y, Li F, Yang C, Wang T, Meng X, Chen H, Li J, Kong Y, Dong C, Sun S, Chen C. KLF5 inhibition potentiates anti-PD1 efficacy by enhancing CD8 + T-cell-dependent antitumor immunity. Theranostics 2023; 13:1381-1400. [PMID: 36923542 PMCID: PMC10008740 DOI: 10.7150/thno.82182] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/07/2023] [Indexed: 03/14/2023] Open
Abstract
Background: Immune checkpoint blockers (ICBs) are revolutionized therapeutic strategies for cancer, but most patients with solid neoplasms remain resistant to ICBs, partly because of the difficulty in reversing the highly immunosuppressive tumor microenvironment (TME). Exploring the strategies for tumor immunotherapy is highly dependent on the discovery of molecular mechanisms of tumor immune escape and potential therapeutic target. Krüppel-like Factor 5 (KLF5) is a cell-intrinsic oncogene to promote tumorigenesis. However, the cell-extrinsic effects of KLF5 on suppressing the immune response to cancer remain unclear. Methods: We analyzed the immunosuppressive role of KLF5 in mice models transplanted with KLF5-deleted/overexpressing tumor cells. We performed RNA sequencing, immunohistochemistry, western blotting, real time-PCR, ELISA, luciferase assay, chromatin immunoprecipitation (ChIP), and flow cytometry to demonstrate the effects of KLF5 on CD8+ T cell infiltration and related molecular mechanism. Single-cell RNA sequencing and spatial transcriptomics analysis were applied to further decipher the association between KLF5 expression and infiltrating immune cells. The efficacy of KLF5/COX2 inhibitors combined with anti-programmed cell death protein 1 (anti-PD1) therapy were explored in pre-clinical models. Finally, a gene-expression signature depending on KLF5/COX2 axis and associated immune markers was created to predict patient survival. Results: KLF5 inactivation decelerated basal-like breast tumor growth in a CD8+ T-cell-dependent manner. Transcriptomic profiling revealed that KLF5 loss in tumors increases the number and activated function of T lymphocytes. Mechanistically, KLF5 binds to the promoter of the COX2 gene and promotes COX2 transcription; subsequently, KLF5 deficiency decreases prostaglandin E2 (PGE2) release from tumor cells by reducing COX2 expression. Inhibition of the KLF5/COX2 axis increases the number and functionality of intratumoral antitumor T cells to synergize the antitumorigenic effects of anti-PD1 therapy. Analysis of patient datasets at single-cell and spatial resolution shows that low expression of KLF5 is associated with an immune-supportive TME. Finally, we generate a KLF5/COX2-associated immune score (KC-IS) to predict patient survival. Conclusions: Our results identified a novel mechanism responsible for KLF5-mediated immunosuppression in TME, and targeting the KLF5/COX2/PGE2 axis is a critical immunotherapy sensitizer.
Collapse
Affiliation(s)
- Qi Wu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Tongji University Cancer Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhou Liu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhijie Gao
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yao Luo
- Medical Faculty of Kunming University of Science and Technology, Kunming, China
| | - Fubing Li
- Academy of Biomedical Engineering, Kunming Medical University, Kunming 650500, China
| | - ChuanYu Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Tiantian Wang
- School of Life Science, University of Science & Technology of China, Hefei, 230027, Anhui, China
| | - Xiangyu Meng
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Haijun Chen
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Juanjuan Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yanjie Kong
- Pathology department, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen 518035, China
| | - Chao Dong
- Department of Medical Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Si Sun
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Academy of Biomedical Engineering, Kunming Medical University, Kunming 650500, China.,The Third Affiliated Hospital, Kunming Medical University, Kunming 650118, China
| |
Collapse
|