1
|
Estevao IL, Kazman JB, Bramer LM, Nicora C, Ren MQ, Sambuughin N, Munoz N, Kim YM, Bloodsworth K, Richert M, Teeguarden J, Burnum-Johnson K, Deuster PA, Nakayasu ES, Many G. The human plasma lipidome response to exertional heat tolerance testing. Lipids Health Dis 2024; 23:380. [PMID: 39548465 PMCID: PMC11566608 DOI: 10.1186/s12944-024-02322-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/01/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND The year of 2023 displayed the highest average global temperatures since it has been recorded-the duration and severity of extreme heat are projected to increase. Rising global temperatures represent a major public health threat, especially to occupations exposed to hot environments, such as construction and agricultural workers, and first responders. Despite efforts of the scientific community, there is still a need to characterize the pathophysiological processes leading to heat related illness and develop biomarkers that can predict its onset. METHODS Liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based lipidomics analysis was performed on plasma from male and female subjects who underwent exertional heat tolerance testing (HTT), consisting of a 2-h treadmill walk at 5 km/h with 2.0% incline at a controlled temperature of 40ºC. From HTT, heat tolerance was calculated using the physiological strain index (PSI). RESULTS Nearly half of all 995 detected lipids from 27 classes were responsive to HTT. Lipid classes related to substrate utilization were predominantly affected by HTT, with a downregulation of triacylglycerols and upregulation of free fatty acids and acyl-carnitines (CARs). Even chain CAR 4:0, 14:0 and 16:1, suggested by-products of incomplete beta oxidation, and diacylglycerols displayed the highest correlation to PSI. PSI did not correlate with plasma lactate levels, suggesting that correlations between even chain CARs and PSI are related to metabolic efficiency versus physical exertion. CONCLUSIONS Overall, HTT displays a strong impact on the human plasma lipidome and lipid metabolic inefficiencies may underlie reduced heat tolerance.
Collapse
Affiliation(s)
| | - Josh B Kazman
- Consortium for Health and Military Performance, Department of Military and Emergency Medicine, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Lisa M Bramer
- Biological Sciences Division, Richland, WA, 99352, USA
| | - Carrie Nicora
- Biological Sciences Division, Richland, WA, 99352, USA
| | - Ming Qiang Ren
- Consortium for Health and Military Performance, Department of Military and Emergency Medicine, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Nyamkhishig Sambuughin
- Consortium for Health and Military Performance, Department of Military and Emergency Medicine, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Nathalie Munoz
- Environmental and Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Young-Mo Kim
- Biological Sciences Division, Richland, WA, 99352, USA
| | | | - Maile Richert
- Consortium for Health and Military Performance, Department of Military and Emergency Medicine, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD, USA
| | - Justin Teeguarden
- Environmental and Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Kristin Burnum-Johnson
- Environmental and Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Patricia A Deuster
- Consortium for Health and Military Performance, Department of Military and Emergency Medicine, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD, USA
| | | | - Gina Many
- Biological Sciences Division, Richland, WA, 99352, USA.
| |
Collapse
|
2
|
Gallo M, Ferrari E, Giovati L, Pertinhez TA, Artesani L, Conti S, Ciociola T. The Variability of the Salivary Antimicrobial Peptide Profile: Impact of Lifestyle. Int J Mol Sci 2024; 25:11501. [PMID: 39519054 PMCID: PMC11547034 DOI: 10.3390/ijms252111501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Saliva is crucial in maintaining oral health; its composition reflects the body's physiological and diseased state. Among salivary components, antimicrobial peptides (AMPs) stand out for their broad antimicrobial activities and role in modulating the oral microbiota and innate immune response. Local and systemic diseases can affect the levels of AMPs in saliva, making them attractive biomarkers. However, the large variability in their concentrations hampers their use in diagnostics. Knowledge of the various factors influencing the profile of salivary AMPs is essential for their use as biomarkers. Here, we examine how lifestyle factors such as physical activity, dietary supplementation, tobacco smoking, and psychological stress impact salivary AMP levels. By understanding these sources of variability, we can take a step forward in using AMPs for diagnostics and prognostics and develop new tailored and preventative approaches.
Collapse
Affiliation(s)
- Mariana Gallo
- Laboratory of Biochemistry and Metabolomics, Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (M.G.); (E.F.)
| | - Elena Ferrari
- Laboratory of Biochemistry and Metabolomics, Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (M.G.); (E.F.)
| | - Laura Giovati
- Laboratory of Microbiology and Virology, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (L.G.); (L.A.); (S.C.); (T.C.)
- Microbiome Research Hub, University of Parma, 43124 Parma, Italy
| | - Thelma A. Pertinhez
- Laboratory of Biochemistry and Metabolomics, Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (M.G.); (E.F.)
| | - Lorenza Artesani
- Laboratory of Microbiology and Virology, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (L.G.); (L.A.); (S.C.); (T.C.)
| | - Stefania Conti
- Laboratory of Microbiology and Virology, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (L.G.); (L.A.); (S.C.); (T.C.)
- Microbiome Research Hub, University of Parma, 43124 Parma, Italy
| | - Tecla Ciociola
- Laboratory of Microbiology and Virology, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (L.G.); (L.A.); (S.C.); (T.C.)
- Microbiome Research Hub, University of Parma, 43124 Parma, Italy
| |
Collapse
|
3
|
Ludovico ID, Powell SM, Many G, Bramer L, Sarkar S, Stratton K, Liu T, Shi T, Qian WJ, Burnum-Johnson KE, Melchior JT, Nakayasu ES. A fast and sensitive size-exclusion chromatography method for plasma extracellular vesicle proteomic analysis. Proteomics 2024; 24:e2400025. [PMID: 38895962 PMCID: PMC11610398 DOI: 10.1002/pmic.202400025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024]
Abstract
Extracellular vesicles (EVs) carry diverse biomolecules derived from their parental cells, making their components excellent biomarker candidates. However, purifying EVs is a major hurdle in biomarker discovery since current methods require large amounts of samples, are time-consuming and typically have poor reproducibility. Here we describe a simple, fast, and sensitive EV fractionation method using size exclusion chromatography (SEC) on a fast protein liquid chromatography (FPLC) system. Our method uses a Superose 6 Increase 5/150, which has a bed volume of 2.9 mL. The FPLC system and small column size enable reproducible separation of only 50 µL of human plasma in 15 min. To demonstrate the utility of our method, we used longitudinal samples from a group of individuals who underwent intense exercise. A total of 838 proteins were identified, of which, 261 were previously characterized as EV proteins, including classical markers, such as cluster of differentiation (CD)9 and CD81. Quantitative analysis showed low technical variability with correlation coefficients greater than 0.9 between replicates. The analysis captured differences in relevant EV proteins involved in response to physical activity. Our method enables fast and sensitive fractionation of plasma EVs with low variability, which will facilitate biomarker studies in large clinical cohorts.
Collapse
Affiliation(s)
- Ivo Díaz Ludovico
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Samantha M. Powell
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Gina Many
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Lisa Bramer
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Soumyadeep Sarkar
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Kelly Stratton
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Tao Liu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Tujin Shi
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Kristin E. Burnum-Johnson
- Environmental and Molecular Science Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - John T. Melchior
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Ernesto S. Nakayasu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| |
Collapse
|
4
|
Xu MQ, Pan F, Peng LH, Yang YS. Advances in the isolation, cultivation, and identification of gut microbes. Mil Med Res 2024; 11:34. [PMID: 38831462 PMCID: PMC11145792 DOI: 10.1186/s40779-024-00534-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 04/17/2024] [Indexed: 06/05/2024] Open
Abstract
The gut microbiome is closely associated with human health and the development of diseases. Isolating, characterizing, and identifying gut microbes are crucial for research on the gut microbiome and essential for advancing our understanding and utilization of it. Although culture-independent approaches have been developed, a pure culture is required for in-depth analysis of disease mechanisms and the development of biotherapy strategies. Currently, microbiome research faces the challenge of expanding the existing database of culturable gut microbiota and rapidly isolating target microorganisms. This review examines the advancements in gut microbe isolation and cultivation techniques, such as culturomics, droplet microfluidics, phenotypic and genomics selection, and membrane diffusion. Furthermore, we evaluate the progress made in technology for identifying gut microbes considering both non-targeted and targeted strategies. The focus of future research in gut microbial culturomics is expected to be on high-throughput, automation, and integration. Advancements in this field may facilitate strain-level investigation into the mechanisms underlying diseases related to gut microbiota.
Collapse
Affiliation(s)
- Meng-Qi Xu
- Department of Gastroenterology and Hepatology, the First Medical Center of Chinese, PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Fei Pan
- Department of Gastroenterology and Hepatology, the First Medical Center of Chinese, PLA General Hospital, Beijing, 100853, China
| | - Li-Hua Peng
- Department of Gastroenterology and Hepatology, the First Medical Center of Chinese, PLA General Hospital, Beijing, 100853, China
| | - Yun-Sheng Yang
- Department of Gastroenterology and Hepatology, the First Medical Center of Chinese, PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
5
|
Sarkar S, Deiter C, Kyle JE, Guney MA, Sarbaugh D, Yin R, Li X, Cui Y, Ramos-Rodriguez M, Nicora CD, Syed F, Juan-Mateu J, Muralidharan C, Pasquali L, Evans-Molina C, Eizirik DL, Webb-Robertson BJM, Burnum-Johnson K, Orr G, Laskin J, Metz TO, Mirmira RG, Sussel L, Ansong C, Nakayasu ES. Regulation of β-cell death by ADP-ribosylhydrolase ARH3 via lipid signaling in insulitis. Cell Commun Signal 2024; 22:141. [PMID: 38383396 PMCID: PMC10880366 DOI: 10.1186/s12964-023-01437-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/12/2023] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND Lipids are regulators of insulitis and β-cell death in type 1 diabetes development, but the underlying mechanisms are poorly understood. Here, we investigated how the islet lipid composition and downstream signaling regulate β-cell death. METHODS We performed lipidomics using three models of insulitis: human islets and EndoC-βH1 β cells treated with the pro-inflammatory cytokines interlukine-1β and interferon-γ, and islets from pre-diabetic non-obese mice. We also performed mass spectrometry and fluorescence imaging to determine the localization of lipids and enzyme in islets. RNAi, apoptotic assay, and qPCR were performed to determine the role of a specific factor in lipid-mediated cytokine signaling. RESULTS Across all three models, lipidomic analyses showed a consistent increase of lysophosphatidylcholine species and phosphatidylcholines with polyunsaturated fatty acids and a reduction of triacylglycerol species. Imaging assays showed that phosphatidylcholines with polyunsaturated fatty acids and their hydrolyzing enzyme phospholipase PLA2G6 are enriched in islets. In downstream signaling, omega-3 fatty acids reduce cytokine-induced β-cell death by improving the expression of ADP-ribosylhydrolase ARH3. The mechanism involves omega-3 fatty acid-mediated reduction of the histone methylation polycomb complex PRC2 component Suz12, upregulating the expression of Arh3, which in turn decreases cell apoptosis. CONCLUSIONS Our data provide insights into the change of lipidomics landscape in β cells during insulitis and identify a protective mechanism by omega-3 fatty acids. Video Abstract.
Collapse
Affiliation(s)
- Soumyadeep Sarkar
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Cailin Deiter
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Center, Aurora, CO, 80045, USA
| | - Jennifer E Kyle
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Michelle A Guney
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Center, Aurora, CO, 80045, USA
| | - Dylan Sarbaugh
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Center, Aurora, CO, 80045, USA
| | - Ruichuan Yin
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907-2084, USA
| | - Xiangtang Li
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907-2084, USA
| | - Yi Cui
- Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
- NanoString Technologies, Seattle, WA, 98109, USA
| | - Mireia Ramos-Rodriguez
- Endocrine Regulatory Genomics, Department of Experimental & Health Sciences, University Pompeu Fabra, 08003, Barcelona, Spain
| | - Carrie D Nicora
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Farooq Syed
- Center for Diabetes and Metabolic Diseases and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jonas Juan-Mateu
- ULB Center for Diabetes Research, Université Libre de Bruxelles (ULB), 1070, Brussels, Belgium
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003, Barcelona, Spain
| | - Charanya Muralidharan
- Kovler Diabetes Center and Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA
| | - Lorenzo Pasquali
- Endocrine Regulatory Genomics, Department of Experimental & Health Sciences, University Pompeu Fabra, 08003, Barcelona, Spain
| | - Carmella Evans-Molina
- Center for Diabetes and Metabolic Diseases and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Université Libre de Bruxelles (ULB), 1070, Brussels, Belgium
| | - Bobbie-Jo M Webb-Robertson
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Center, Aurora, CO, 80045, USA
| | - Kristin Burnum-Johnson
- Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Galya Orr
- Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Julia Laskin
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907-2084, USA
| | - Thomas O Metz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Raghavendra G Mirmira
- Kovler Diabetes Center and Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA
| | - Lori Sussel
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Center, Aurora, CO, 80045, USA
| | - Charles Ansong
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Ernesto S Nakayasu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA.
| |
Collapse
|
6
|
Šimunić-Briški N, Dukarić V, Očić M, Madžar T, Vinicki M, Frkatović-Hodžić A, Knjaz D, Lauc G. Regular moderate physical exercise decreases Glycan Age index of biological age and reduces inflammatory potential of Immunoglobulin G. Glycoconj J 2024; 41:67-76. [PMID: 38147152 PMCID: PMC10957704 DOI: 10.1007/s10719-023-10144-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 12/27/2023]
Abstract
Physical inactivity and obesity are growing concerns, negatively impacting the general population. Moderate physical activity is known to have a beneficial anti-inflammatory effect. N-glycosylation of immunoglobulin G (IgG) reflects changes in the inflammatory potential of IgG. In this study, GlycanAge index of biological age (GlycanAge), one of the first commercially used biomarkers of aging, was employed to assess effects of exercise intensity in three different groups of athletes: professional competing athletes, regularly moderate active individuals and newly involved recreational individuals, compared to the group of inactive individuals. GlycanAge was significantly lower in the active group compared to the inactive group (β = -7.437, p.adj = 7.85E-03), and nominally significant and increased in professional athletes compared to the active group (β = 7.546, p = 3.20E-02). Competing female athletes had significantly higher GlycanAge comparing to active females exercising moderately (β = 20.206, p.adj = 2.71E-02), while the latter had significantly lower GlycanAge when compared with the inactive counterparts (β = -9.762, p.adj = 4.68E-02). Regular, life-long moderate exercise has an anti-inflammatory effect in both female and male population, demonstrated by lower GlycanAge index, and it has great potential to mitigate growing issues related to obesity and a sedentary lifestyle, which are relentlessly increasing world-wide.
Collapse
Affiliation(s)
| | - Vedran Dukarić
- Faculty of Kinesiology, University of Zagreb, 10000, Zagreb, Croatia
| | - Mateja Očić
- Faculty of Kinesiology, University of Zagreb, 10000, Zagreb, Croatia
| | - Tomislav Madžar
- Vaš Pregled Sports and Occupation Medicine Polyclinic, 10000, Zagreb, Croatia
- University of Applied Health Sciences, 10000, Zagreb, Croatia
| | | | | | - Damir Knjaz
- Faculty of Kinesiology, University of Zagreb, 10000, Zagreb, Croatia
| | - Gordan Lauc
- Genos Ltd, 10000, Zagreb, Croatia.
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000, Zagreb, Croatia.
| |
Collapse
|
7
|
Ludovico ID, Powell SM, Many G, Bramer L, Sarkar S, Stratton K, Liu T, Shi T, Qian WJ, Burnum-Johnson KE, Melchior JT, Nakayasu ES. A fast and sensitive size-exclusion chromatography method for plasma extracellular vesicle proteomic analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.17.576135. [PMID: 38293231 PMCID: PMC10827143 DOI: 10.1101/2024.01.17.576135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Extracellular vesicles (EVs) carry diverse biomolecules derived from their parental cells, making their components excellent biomarker candidates. However, purifying EVs is a major hurdle in biomarker discovery since current methods require large amounts of samples, are time-consuming and typically have poor reproducibility. Here we describe a simple, fast, and sensitive EV fractionation method using size exclusion chromatography (SEC) on a fast protein liquid chromatography (FPLC) system. Our method uses a Superose 6 Increase 5/150, which has a bed volume of 2.9 mL. The FPLC system and small column size enable reproducible separation of only 50 µL of human plasma in 15 minutes. To demonstrate the utility of our method, we used longitudinal samples from a group of individuals that underwent intense exercise. A total of 838 proteins were identified, of which, 261 were previously characterized as EV proteins, including classical markers, such as cluster of differentiation (CD)9 and CD81. Quantitative analysis showed low technical variability with correlation coefficients greater than 0.9 between replicates. The analysis captured differences in relevant EV-proteins involved in response to physical activity. Our method enables fast and sensitive fractionation of plasma EVs with low variability, which will facilitate biomarker studies in large clinical cohorts.
Collapse
|