1
|
Belay S, Belay G, Nigussie H, Ahbara AM, Tijjani A, Dessie T, Tarekegn GM, Jian-Lin H, Mor S, Woldekiros HS, Dobney K, Lebrasseur O, Hanotte O, Mwacharo JM. Anthropogenic events and responses to environmental stress are shaping the genomes of Ethiopian indigenous goats. Sci Rep 2024; 14:14908. [PMID: 38942813 PMCID: PMC11213886 DOI: 10.1038/s41598-024-65303-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/19/2024] [Indexed: 06/30/2024] Open
Abstract
Anthropological and biophysical processes have shaped livestock genomes over Millenia and can explain their current geographic distribution and genetic divergence. We analyzed 57 Ethiopian indigenous domestic goat genomes alongside 67 equivalents of east, west, and north-west African, European, South Asian, Middle East, and wild Bezoar goats. Cluster, ADMIXTURE (K = 4) and phylogenetic analysis revealed four genetic groups comprising African, European, South Asian, and wild Bezoar goats. The Middle Eastern goats had an admixed genome of these four genetic groups. At K = 5, the West African Dwarf and Moroccan goats were separated from East African goats demonstrating a likely historical legacy of goat arrival and dispersal into Africa via the coastal Mediterranean Sea and the Horn of Africa. FST, XP-EHH, and Hp analysis revealed signatures of selection in Ethiopian goats overlaying genes for thermo-sensitivity, oxidative stress response, high-altitude hypoxic adaptation, reproductive fitness, pathogen defence, immunity, pigmentation, DNA repair, modulation of renal function and integrated fluid and electrolyte homeostasis. Notable examples include TRPV1 (a nociception gene); PTPMT1 (a critical hypoxia survival gene); RETREG (a regulator of reticulophagy during starvation), and WNK4 (a molecular switch for osmoregulation). These results suggest that human-mediated translocations and adaptation to contrasting environments are shaping indigenous African goat genomes.
Collapse
Affiliation(s)
- Shumuye Belay
- Tigray Agricultural Research Institute, Mekelle, Ethiopia.
- Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia.
- International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia.
| | - Gurja Belay
- Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Helen Nigussie
- Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Abulgasim M Ahbara
- Animal and Veterinary Sciences, Scotland's Rural College (SRUC), Roslin Institute Building, Midlothian, UK
- Department of Zoology, Misurata University, Misurata, Libya
| | - Abdulfatai Tijjani
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA
- International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
| | - Tadelle Dessie
- International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
| | - Getinet M Tarekegn
- Animal and Veterinary Sciences, Scotland's Rural College (SRUC), Roslin Institute Building, Midlothian, UK
- Institute of Biotechnology (IoB), Addis Ababa University, Addis Ababa, Ethiopia
| | - Han Jian-Lin
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Beijing, China
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Siobhan Mor
- International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Helina S Woldekiros
- Department of Anthropology, Washington University in St. Louis, St. Louis, USA
| | - Keith Dobney
- Department of Archaeology, Classics and Egyptology, University of Liverpool, Liverpool, UK
- University of Sydney, Sydney, Australia
| | - Ophelie Lebrasseur
- Palaeogenomics and Bioarchaeology Research Network, School of Archaeology, University of Oxford, Oxford, UK
| | - Olivier Hanotte
- International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Joram M Mwacharo
- Animal and Veterinary Sciences, Scotland's Rural College (SRUC), Roslin Institute Building, Midlothian, UK.
- Small Ruminant Genomics, International Centre for Agricultural Research in the Dry Areas (ICARDA), Addis Ababa, Ethiopia.
| |
Collapse
|
2
|
Rajawat D, Ghildiyal K, Sonejita Nayak S, Sharma A, Parida S, Kumar S, Ghosh AK, Singh U, Sivalingam J, Bhushan B, Dutt T, Panigrahi M. Genome-wide mining of diversity and evolutionary signatures revealed selective hotspots in Indian Sahiwal cattle. Gene 2024; 901:148178. [PMID: 38242377 DOI: 10.1016/j.gene.2024.148178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
The Sahiwal cattle breed is the best indigenous dairy cattle breed, and it plays a pivotal role in the Indian dairy industry. This is due to its exceptional milk-producing potential, adaptability to local tropical conditions, and its resilience to ticks and diseases. The study aimed to identify selective sweeps and estimate intrapopulation genetic diversity parameters in Sahiwal cattle using ddRAD sequencing-based genotyping data from 82 individuals. After applying filtering criteria, 78,193 high-quality SNPs remained for further analysis. The population exhibited an average minor allele frequency of 0.221 ± 0.119. Genetic diversity metrics, including observed (0.597 ± 0.196) and expected heterozygosity (0.433 ± 0.096), nucleotide diversity (0.327 ± 0.114), the proportion of polymorphic SNPs (0.726), and allelic richness (1.323 ± 0.134), indicated ample genomic diversity within the breed. Furthermore, an effective population size of 74 was observed in the most recent generation. The overall mean linkage disequilibrium (r2) for pairwise SNPs was 0.269 ± 0.057. Moreover, a greater proportion of short Runs of Homozygosity (ROH) segments were observed suggesting that there may be low levels of recent inbreeding in this population. The genomic inbreeding coefficients, computed using different inbreeding estimates (FHOM, FUNI, FROH, and FGROM), ranged from -0.0289 to 0.0725. Subsequently, we found 146 regions undergoing selective sweeps using five distinct statistical tests: Tajima's D, CLR, |iHS|, |iHH12|, and ROH. These regions, located in non-overlapping 500 kb windows, were mapped and revealed various protein-coding genes associated with enhanced immune systems and disease resistance (IFNL3, IRF8, BLK), as well as production traits (NRXN1, PLCE1, GHR). Notably, we identified interleukin 2 (IL2) on Chr17: 35217075-35223276 as a gene linked to tick resistance and uncovered a cluster of genes (HSPA8, UBASH3B, ADAMTS18, CRTAM) associated with heat stress. These findings indicate the evolutionary impact of natural and artificial selection on the environmental adaptation of the Sahiwal cattle population.
Collapse
Affiliation(s)
- Divya Rajawat
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Kanika Ghildiyal
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Sonali Sonejita Nayak
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Anurodh Sharma
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Subhashree Parida
- Pharmacology & Toxicology Division, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Shive Kumar
- Department of Animal Genetics and Breeding, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - A K Ghosh
- Department of Animal Genetics and Breeding, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Umesh Singh
- ICAR Central Institute for Research on Cattle, Meerut, UP, India
| | | | - Bharat Bhushan
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Triveni Dutt
- Livestock Production and Management Section, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Manjit Panigrahi
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India.
| |
Collapse
|
3
|
Nisa FU, Kaul H, Asif M, Amin I, Mrode R, Mansoor S, Mukhtar Z. Genetic insights into crossbred dairy cattle of Pakistan: exploring allele frequency, linkage disequilibrium, and effective population size at a genome-wide scale. Mamm Genome 2023; 34:602-614. [PMID: 37804434 DOI: 10.1007/s00335-023-10019-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/13/2023] [Indexed: 10/09/2023]
Abstract
Linkage disequilibrium (LD) affects genomic studies accuracy. High-density genotyping platforms identify SNPs across animal genomes, increasing LD evaluation resolution for accurate analysis. This study aimed to evaluate the decay and magnitude of LD in a cohort of 81 crossbred dairy cattle using the GGP_HDv3_C Bead Chip. After quality control, 116,710 Single Nucleotide Polymorphisms (SNPs) across 2520.241 Mb of autosomes were retained. LD extent was assessed between autosomal SNPs within a 10 Mb range using the r2 statistics. LD value declined as inter-marker distance increased. The average r2 value was 0.24 for SNP pairs < 10 kb apart, decreasing to 0.13 for 50-100 kb distances. Minor allele frequency (MAF) and sample size significantly impact LD. Lower MAF thresholds result in smaller r2 values, while higher thresholds show increased r2 values. Additionally, smaller sample sizes exhibit higher average r2 values, especially for larger physical distance intervals (> 50 kb) between SNP pairs. Effective population size and inbreeding coefficient were 150 and 0.028 for the present generation, indicating a decrease in genetic diversity over time. These findings imply that the utilization of high-density SNP panels and customized/breed-specific SNP panels represent a highly favorable approach for conducting genome-wide association studies (GWAS) and implementing genomic selection (GS) in the Bos indicus cattle breeds, whose genomes are still largely unexplored. Furthermore, it is imperative to devise a meticulous breeding strategy tailored to each herd, aiming to enhance desired traits while simultaneously preserving genetic diversity.
Collapse
Affiliation(s)
- Fakhar Un Nisa
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan
- Department of Animal Breeding and Genetics, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Haiba Kaul
- Department of Animal Breeding and Genetics, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Asif
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan
| | - Imran Amin
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan
| | - Raphael Mrode
- Animal Biosciences, International Livestock Research Institute, Nairobi, Kenya
- Animal and Veterinary Sciences, Scotland's Rural College, Edinburgh, UK
| | - Shahid Mansoor
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan
- International Centre for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Zahid Mukhtar
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Faisalabad, Pakistan.
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan.
| |
Collapse
|
4
|
Ghildiyal K, Nayak SS, Rajawat D, Sharma A, Chhotaray S, Bhushan B, Dutt T, Panigrahi M. Genomic insights into the conservation of wild and domestic animal diversity: A review. Gene 2023; 886:147719. [PMID: 37597708 DOI: 10.1016/j.gene.2023.147719] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/20/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
Due to environmental change and anthropogenic activities, global biodiversity has suffered an unprecedented loss, and the world is now heading toward the sixth mass extinction event. This urges the need to step up our efforts to promote the sustainable use of animal genetic resources and plan effective strategies for their conservation. Although habitat preservation and restoration are the primary means of conserving biodiversity, genomic technologies offer a variety of novel tools for identifying biodiversity hotspots and thus, support conservation efforts. Conservation genomics is a broad area of science that encompasses the application of genomic data from thousands or tens of thousands of genome-wide markers to address important conservation biology concerns. Genomic approaches have revolutionized the way we understand and manage animal populations, providing tools to identify and preserve unique genetic variants and alleles responsible for adaptive genetic variation, reducing the deleterious consequences of inbreeding, and increasing the adaptive potential of threatened species. The advancement of genomic technologies, particularly comparative genomic approaches, and the increased accessibility of genomic resources in the form of genome-enabled taxa for non-model organisms, provides a distinct advantage in defining conservation units over traditional genetics approaches. The objective of this review is to provide an exhaustive overview of the concept of conservation genomics, discuss the rationale behind the transition from conservation genetics to genomic approaches, and emphasize the potential applications of genomic techniques for conservation purposes. We also highlight interesting case studies in both livestock and wildlife species where genomic techniques have been used to accomplish conservation goals. Finally, we address some challenges and future perspectives in this field.
Collapse
Affiliation(s)
- Kanika Ghildiyal
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Sonali Sonejita Nayak
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Divya Rajawat
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Anurodh Sharma
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Supriya Chhotaray
- Animal Genetics and Breeding Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Bharat Bhushan
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Triveni Dutt
- Livestock Production and Management Section, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Manjit Panigrahi
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India.
| |
Collapse
|
5
|
Adhikari M, Kantar MB, Longman RJ, Lee CN, Oshiro M, Caires K, He Y. Genome-wide association study for carcass weight in pasture-finished beef cattle in Hawai'i. Front Genet 2023; 14:1168150. [PMID: 37229195 PMCID: PMC10203587 DOI: 10.3389/fgene.2023.1168150] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/11/2023] [Indexed: 05/27/2023] Open
Abstract
Introduction: Genome-wide association studies (GWAS) have identified genetic markers for cattle production and reproduction traits. Several publications have reported Single Nucleotide Polymorphisms (SNPs) for carcass-related traits in cattle, but these studies were rarely conducted in pasture-finished beef cattle. Hawai'i, however, has a diverse climate, and 100% of its beef cattle are pasture-fed. Methods: Blood samples were collected from 400 cattle raised in Hawai'i islands at the commercial harvest facility. Genomic DNA was isolated, and 352 high-quality samples were genotyped using the Neogen GGP Bovine 100 K BeadChip. SNPs that did not meet the quality control standards were removed using PLINK 1.9, and 85 k high-quality SNPs from 351 cattle were used for association mapping with carcass weight using GAPIT (Version 3.0) in R 4.2. Four models were used for the GWAS analysis: General Linear Model (GLM), the Mixed Linear Model (MLM), the Fixed and Random Model Circulating Probability Unification (FarmCPU), the Bayesian-Information and Linkage-Disequilibrium Iteratively Nested Keyway (BLINK). Results and Discussion: Our results indicated that the two multi-locus models, FarmCPU and BLINK, outperformed single-locus models, GLM and MLM, in beef herds in this study. Specifically, five significant SNPs were identified using FarmCPU, while BLINK and GLM each identified the other three. Also, three of these eleven SNPs ("BTA-40510-no-rs", "BovineHD1400006853", and "BovineHD2100020346") were shared by multiple models. The significant SNPs were mapped to genes such as EIF5, RGS20, TCEA1, LYPLA1, and MRPL15, which were previously reported to be associated with carcass-related traits, growth, and feed intake in several tropical cattle breeds. This confirms that the genes identified in this study could be candidate genes for carcass weight in pasture-fed beef cattle and can be selected for further breeding programs to improve the carcass yield and productivity of pasture-finished beef cattle in Hawai'i and beyond.
Collapse
Affiliation(s)
- Mandeep Adhikari
- Department of Molecular Biosciences and Bioengineering, University of Hawai’i at Mānoa, Honolulu, HI, United States
| | - Michael B. Kantar
- Department of Tropical Plant and Soil Sciences, University of Hawai’i at Mānoa, Honolulu, HI, United States
| | - Ryan J. Longman
- East West Center, Honolulu, HI, United States
- Department of Geography and Environment, University of Hawai’i at Mānoa, Honolulu, HI, United States
| | - C. N. Lee
- Department of Human Nutrition, Food, and Animal Sciences, University of Hawai’i at Mānoa, Honolulu, HI, United States
| | - Melelani Oshiro
- Department of Human Nutrition, Food, and Animal Sciences, University of Hawai’i at Mānoa, Honolulu, HI, United States
| | - Kyle Caires
- Department of Human Nutrition, Food, and Animal Sciences, University of Hawai’i at Mānoa, Honolulu, HI, United States
| | - Yanghua He
- Department of Molecular Biosciences and Bioengineering, University of Hawai’i at Mānoa, Honolulu, HI, United States
- Department of Human Nutrition, Food, and Animal Sciences, University of Hawai’i at Mānoa, Honolulu, HI, United States
| |
Collapse
|
6
|
Dlamini NM, Dzomba EF, Magawana M, Ngcamu S, Muchadeyi FC. Linkage Disequilibrium, Haplotype Block Structures, Effective Population Size and Genome-Wide Signatures of Selection of Two Conservation Herds of the South African Nguni Cattle. Animals (Basel) 2022; 12:ani12162133. [PMID: 36009722 PMCID: PMC9405234 DOI: 10.3390/ani12162133] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/24/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
The Nguni cattle of South Africa are a Sanga breed, characterized by many eco-types and research populations that have been established in an effort to conserve the diversity within the breed. The aim of this study was to investigate the overall genetic diversity as well as similarities and differences within and between two conservation herds of the South African Nguni Cattle. Mean LD (r2) estimates were 0.413 ± 0.219 for Bartlow Combine and 0.402 ± 0.209 for Kokstad. Genome-wide average LD (r2) decreased with increasing genetic marker distance for both populations from an average of 0.76 ± 0.28 and 0.77 ± 0.27 at 0–1 kb bin to 0.31 ± 0.13 and 0.32 ± 0.13 at 900–1000 kb bin in Bartlow Combine and Kokstad populations, respectively. Variation in LD levels across autosomes was observed in both populations. The results showed higher levels of LD than previously reported in Nguni field populations and other South African breeds, especially at shorter marker distances of less than 20 kb. A total number of 77,305 and 66,237 haplotype blocks covering a total of 1570.09 Mb (61.99% genome coverage) and 1367.42 Mb (53.96% genome coverage) were detected in Bartlow Combine and Kokstad populations, respectively. A total of 18,449 haploblocks were shared between the two populations while 58,856 and 47,788 haploblocks were unique to Bartlow Combine and Kokstad populations, respectively. Effective population size (Ne) results demonstrated a rapid decrease in Ne across generations for both Bartlow Combine and Kokstad conservation herds. Two complementary methods, integrated haplotype score (iHS) and Extend Haplotype Homozygosity Test (XP-EHH), were implemented in this study to detect the selection signatures in the two herds. A total of 553 and 166 selected regions were identified in Bartlow Combine and Kokstad populations, respectively. DAVID and GO terms analysis of the regions under selection reported genes/QTLs associated with fertility, carcass weight, coat colour, immune response, and eye area pigmentation. Some genes, such as HCAR1, GNAI1, PIK3R3, WNT3, RAB5A, BOLA-N (Class IB MHC Antigen QA-2-Related), BOLA (Class IB MHC Antigen QA-2-Related), and Rab-8B, etc., were found in regions under selection in this study. Overall, the study implied reduced genetic diversity in the two herds calling for corrective measures to maintain the diversity of the South African Nguni cattle. This study presented a comprehensive analysis of the genomic architecture of South African Nguni cattle populations, providing essential genetic information of utility in the management of conservation flocks.
Collapse
Affiliation(s)
- Njabulo M. Dlamini
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg 3209, South Africa or
- Agricultural Research Council, Biotechnology Platform, Private Bag X5, Onderstepoort, Pretoria 0110, South Africa
| | - Edgar F. Dzomba
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg 3209, South Africa or
| | - Mpumelelo Magawana
- KZN Department of Agriculture & Rural Development, Private Bag X9059, Pietermaritzburg 3200, South Africa
| | - Sphamandla Ngcamu
- KZN Department of Agriculture & Rural Development, Private Bag X9059, Pietermaritzburg 3200, South Africa
| | - Farai C. Muchadeyi
- Agricultural Research Council, Biotechnology Platform, Private Bag X5, Onderstepoort, Pretoria 0110, South Africa
- Correspondence:
| |
Collapse
|
7
|
Rahimmadar S, Ghaffari M, Mokhber M, Williams JL. Linkage Disequilibrium and Effective Population Size of Buffalo Populations of Iran, Turkey, Pakistan, and Egypt Using a Medium Density SNP Array. Front Genet 2021; 12:608186. [PMID: 34950186 PMCID: PMC8689148 DOI: 10.3389/fgene.2021.608186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 11/03/2021] [Indexed: 11/21/2022] Open
Abstract
Linkage disequilibrium (LD) across the genome provides information to identify the genes and variations related to quantitative traits in genome-wide association studies (GWAS) and for the implementation of genomic selection (GS). LD can also be used to evaluate genetic diversity and population structure and reveal genomic regions affected by selection. LD structure and Ne were assessed in a set of 83 water buffaloes, comprising Azeri (AZI), Khuzestani (KHU), and Mazandarani (MAZ) breeds from Iran, Kundi (KUN) and Nili-Ravi (NIL) from Pakistan, Anatolian (ANA) buffalo from Turkey, and buffalo from Egypt (EGY). The values of corrected r2 (defined as the correlation between two loci) of adjacent SNPs for three pooled Iranian breeds (IRI), ANA, EGY, and two pooled Pakistani breeds (PAK) populations were 0.24, 0.28, 0.27, and 0.22, respectively. The corrected r2 between SNPs decreased with increasing physical distance from 100 Kb to 1 Mb. The LD values for IRI, ANA, EGY, and PAK populations were 0.16, 0.23, 0.24, and 0.21 for less than 100Kb, respectively, which reduced rapidly to 0.018, 0.042, 0.059, and 0.024, for a distance of 1 Mb. In all the populations, the decay rate was low for distances greater than 2Mb, up to the longest studied distance (15 Mb). The r2 values for adjacent SNPs in unrelated samples indicated that the Affymetrix Axiom 90 K SNP genomic array was suitable for GWAS and GS in these populations. The persistency of LD phase (PLDP) between populations was assessed, and results showed that PLPD values between the populations were more than 0.9 for distances of less than 100 Kb. The Ne in the recent generations has declined to the extent that breeding plans are urgently required to ensure that these buffalo populations are not at risk of being lost. We found that results are affected by sample size, which could be partially corrected for; however, additional data should be obtained to be confident of the results.
Collapse
Affiliation(s)
- Shirin Rahimmadar
- Department of Animal Science, Faculty of Agricultural Science, Urmia University, Urmia, Iran
| | - Mokhtar Ghaffari
- Department of Animal Science, Faculty of Agricultural Science, Urmia University, Urmia, Iran
| | - Mahdi Mokhber
- Department of Animal Science, Faculty of Agricultural Science, Urmia University, Urmia, Iran
| | - John L Williams
- Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, Australia.,Department of Animal Science, Food and Nutrition, Università Cattolica Del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
8
|
Estimation of linkage disequilibrium levels and allele frequency distribution in crossbred Vrindavani cattle using 50K SNP data. PLoS One 2021; 16:e0259572. [PMID: 34762692 PMCID: PMC8584695 DOI: 10.1371/journal.pone.0259572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 10/22/2021] [Indexed: 11/29/2022] Open
Abstract
The objective of this study was to calculate the extent and decay of linkage disequilibrium (LD) in 96 crossbred Vrindavani cattle genotyped with Bovine SNP50K Bead Chip. After filtering, 43,821 SNPs were retained for final analysis, across 2500.3 Mb of autosome. A significant percentage of SNPs was having minor allele frequency of less than 0.20. The extent of LD between autosomal SNPs up to 10 Mb apart across the genome was measured using r2 statistic. The mean r2 value was 0.43, if pairwise distance of marker was less than10 kb and it decreased further to 0.21 for 25–50 kb markers distance. Further, the effect of minor allele frequency and sample size on LD estimate was investigated. The LD value decreased with the increase in inter-marker distance, and increased with the increase of minor allelic frequency. The estimated inbreeding coefficient and effective population size were 0.04, and 46 for present generation, which indicated small and unstable population of Vrindavani cattle. These findings suggested that a denser or breed specific SNP panel would be required to cover all genome of Vrindavani cattle for genome wide association studies (GWAS).
Collapse
|
9
|
Dixit SP, Bhatia AK, Ganguly I, Singh S, Dash S, Sharma A, Anandkumar N, Dang AK, Jayakumar S. Genome analyses revealed genetic admixture and selection signatures in Bos indicus. Sci Rep 2021; 11:21924. [PMID: 34753978 PMCID: PMC8578574 DOI: 10.1038/s41598-021-01144-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 10/21/2021] [Indexed: 11/20/2022] Open
Abstract
The genomic diversity and relationship among seven diverse cattle breeds viz. Sahiwal, Tharparkar, Gir, Vechur, Ongole, Kangayam and Hariana were investigated in 132 random samples based on high density SNP array comprising > 777 K SNPs. A total of 1993 SNPs (0.25% of the total) having greater power (FST ≥ 0.20) to differentiate these cattle populations were identified, and utilized to partition genome of each animal into a predefined number of clusters. The structure of these cattle indicated shared ancestry of dairy breeds viz. Gir, Tharparkar and Sahiwal. Most of the animals (> 76%) of different populations under study except Vechur clustered into their own group of animals called breed. Vechur population retained highest rate of admixture, consistent with its crossing with other breeds. Ongole, Kangayam and Hariana shared comparatively less of their genome (≤ 15%) with other breeds. The study indicated that all seven breeds evolved from their independent ancestry but there was intermixing of these breeds in the recent past. The selection signatures identified between draft (Kangayam) and dairy breeds included several genes like FAM19A2, RAB31P, BEST3, DGKA, AHCY, PIGU and PFKP which are involved in immune response, metabolic pathway, transportation of glucose and sugars, signaling pathways, cellular processes, cell division and glycolysis regulation, respectively. Moreover, these genomic regions also harbour QTLs affecting milk performance traits. The signatures were also identified even between the dairy breeds. In comparison to large-sized cattle, there were significant differences in the number of QTLs affecting production (body weight, growth rate etc.) and morphological traits (height) in short-statured Vechur breed. The presence of HMGA2 gene in the selection signature on chromosome 5 may explain the variations in stature between these cattle.
Collapse
Affiliation(s)
- S P Dixit
- ICAR - National Bureau of Animal Genetic Resources, Karnal, Haryana, 132001, India.
| | - A K Bhatia
- ICAR - National Bureau of Animal Genetic Resources, Karnal, Haryana, 132001, India
| | - Indrajit Ganguly
- ICAR - National Bureau of Animal Genetic Resources, Karnal, Haryana, 132001, India
| | - Sanjeev Singh
- ICAR - National Bureau of Animal Genetic Resources, Karnal, Haryana, 132001, India
| | - Soumya Dash
- ICAR - National Bureau of Animal Genetic Resources, Karnal, Haryana, 132001, India
| | - Anurodh Sharma
- ICAR - National Bureau of Animal Genetic Resources, Karnal, Haryana, 132001, India
| | - N Anandkumar
- ICAR - National Bureau of Animal Genetic Resources, Karnal, Haryana, 132001, India
| | - A K Dang
- ICAR - National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - S Jayakumar
- ICAR - National Bureau of Animal Genetic Resources, Karnal, Haryana, 132001, India
| |
Collapse
|
10
|
Hajihosseinlo A, Nejati-Javaremi A, Miraei-Ashtiani SR. Genetic structure analysis in several populations of cattle using SNP genotypes. Anim Biotechnol 2021; 34:288-300. [PMID: 34591729 DOI: 10.1080/10495398.2021.1960360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Parameters such as effective population size (Ne), runs of homozygosity (ROH), and inbreeding based on ROH (FROH) can give new insight into the level of genetic diversity for the population under selection. This research aimed to measure the extent of linkage disequilibrium (LD), effective population size (Ne), Haplotype Block Structure, and runs of homozygosity (ROHs) in several populations of cattle using SNP genotypes. In this study, that the average r2 decreased with the increasing distance of SNP pairs. A general decrease in Ne can be seen for all four populations, indicating a loss of genetic diversity. The Iranian Holstein had the lowest level of genomic inbreeding at an ROH of 1, 5, 10 Mb, while the French Holstein had the highest. The maximum number of ROH is seen at a distance of less than 1 Mb, and the lowest number of ROH is seen at a distance of 10 Mb. The number of ROH decreases with increasing distance due to the increased recombination rate. This is a concern as an increase in inbreeding leads to a reduction in the effective population size, which was also evident in the study populations.
Collapse
Affiliation(s)
- Abbas Hajihosseinlo
- Department of Animal Science, University of Tehran Aras International Campus, Jolfa, Iran
| | | | | |
Collapse
|
11
|
Jasielczuk I, Gurgul A, Szmatoła T, Semik-Gurgul E, Pawlina-Tyszko K, Stefaniuk-Szmukier M, Polak G, Tomczyk-Wrona I, Bugno-Poniewierska M. Linkage disequilibrium, haplotype blocks and historical effective population size in Arabian horses and selected Polish native horse breeds. Livest Sci 2020. [DOI: 10.1016/j.livsci.2020.104095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
12
|
Saravanan KA, Panigrahi M, Kumar H, Parida S, Bhushan B, Gaur GK, Kumar P, Dutt T, Mishra BP, Singh RK. Genome-wide assessment of genetic diversity, linkage disequilibrium and haplotype block structure in Tharparkar cattle breed of India. Anim Biotechnol 2020; 33:297-311. [PMID: 32730141 DOI: 10.1080/10495398.2020.1796696] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Knowledge about genetic diversity is very essential for the management and sustainable utilization of livestock genetic resources. In this study, we presented a comprehensive genome-wide analysis of genetic diversity, ROH, inbreeding, linkage disequilibrium, effective population size and haplotype block structure in Tharparkar cattle of India. A total of 24 Tharparkar animals used in this study were genotyped with Illumina BovineSNP50 array. After quality control, 22,825 biallelic SNPs were retained, which were in HWE, MAF > 0.05 and genotyping rate >90%. The overall mean observed (HO) and expected heterozygosity (HE) were 0.339 ± 0.156 and 0.325 ± 0.129, respectively. The average minor allele frequency was 0.234 with a standard deviation of ± 0.131. We identified a total of 1832 ROH segments and the highest autosomal coverage of 13.87% was observed on chromosome 23. The genomic inbreeding coefficients estimates by FROH, FHOM, FGRM and FUNI were 0.0589, 0.0215, 0.0532 and 0.0160 respectively. The overall mean linkage disequilibrium (LD) for a total of 133,532 pairwise SNPs measured by D' and r2 was 0.6452 and 0.1339, respectively. In addition, we observed a gradual decline in effective population size over the past generations.
Collapse
Affiliation(s)
- K A Saravanan
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Manjit Panigrahi
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Harshit Kumar
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Subhashree Parida
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Bharat Bhushan
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - G K Gaur
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Pushpendra Kumar
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Triveni Dutt
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - B P Mishra
- Division of Animal Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - R K Singh
- Division of Animal Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| |
Collapse
|
13
|
Karimi K, Farid AH, Sargolzaei M, Myles S, Miar Y. Linkage Disequilibrium, Effective Population Size and Genomic Inbreeding Rates in American Mink Using Genotyping-by-Sequencing Data. Front Genet 2020; 11:223. [PMID: 32231688 PMCID: PMC7083153 DOI: 10.3389/fgene.2020.00223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 02/26/2020] [Indexed: 12/11/2022] Open
Abstract
Knowledge of linkage disequilibrium (LD) patterns is necessary to determine the minimum density of markers required for genomic studies and to infer historical changes as well as inbreeding events in the populations. In this study, we used genotyping-by-sequencing (GBS) approach to detect single nucleotide polymorphisms (SNPs) across American mink genome and further to estimate LD, effective population size (Ne), and inbreeding rates based on excess of homozygosity (FHOM) and runs of homozygosity (ROH). A GBS assay was constructed based on the sequencing of ApeKI-digested libraries from 285 American mink using Illumina HiSeq Sequencer. Data of 13,321 SNPs located on 46 scaffolds was used to perform LD analysis. The average LD (r2 ± SD) between adjacent SNPs was 0.30 ± 0.35 over all scaffolds with an average distance of 51 kb between markers. The average r2 < 0.2 was observed at inter-marker distances of >40 kb, suggesting that at least 60,000 informative SNPs would be required for genomic selection in American mink. The Ne was estimated to be 116 at five generations ago. In addition, the most rapid decline of population size was observed between 100 and 200 generations ago. Our results showed that short extensions of homozygous genotypes (500 kb to 1 Mb) were abundant across the genome and accounted for 33% of all ROH identified. The average inbreeding coefficient based on ROH longer than 1 Mb was 0.132 ± 0.042. The estimations of FHOM ranged from −0.44 to 0.34 among different samples with an average of 0.15 over all individuals. This study provided useful insights to determine the density of SNP panel providing enough statistical power and accuracy in genomic studies of American mink. Moreover, these results confirmed that GBS approach can be considered as a useful tool for genomic studies in American mink.
Collapse
Affiliation(s)
- Karim Karimi
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada
| | - A Hossain Farid
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada
| | - Mehdi Sargolzaei
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada.,Select Sires Inc., Plain City, OH, United States
| | - Sean Myles
- Department of Plant, Food, and Environmental Sciences, Dalhousie University, Truro, NS, Canada
| | - Younes Miar
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada
| |
Collapse
|
14
|
Whole genome detection of recent selection signatures in Sarabi cattle: a unique Iranian taurine breed. Genes Genomics 2019; 42:203-215. [DOI: 10.1007/s13258-019-00888-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 11/12/2019] [Indexed: 12/13/2022]
|
15
|
Chhotaray S, Panigrahi M, Pal D, Ahmad SF, Bhanuprakash V, Kumar H, Parida S, Bhushan B, Gaur GK, Mishra BP, Singh RK. Genome-wide estimation of inbreeding coefficient, effective population size and haplotype blocks in Vrindavani crossbred cattle strain of India. BIOL RHYTHM RES 2019. [DOI: 10.1080/09291016.2019.1600266] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Supriya Chhotaray
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, India
| | - Manjit Panigrahi
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, India
| | - Dhan Pal
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, India
| | - Sheikh Firdous Ahmad
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, India
| | - V. Bhanuprakash
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, India
| | - Harshit Kumar
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, India
| | - Subhashree Parida
- Division of Pharmacology & Toxicology, Indian Veterinary Research Institute, Bareilly, India
| | - Bharat Bhushan
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, India
| | - G. K. Gaur
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, India
| | - B. P. Mishra
- Division of Animal Biotechnology, Indian Veterinary Research Institute, Bareilly, India
| | - R. K. Singh
- Division of Animal Biotechnology, Indian Veterinary Research Institute, Bareilly, India
| |
Collapse
|
16
|
Ahmad SF, Panigrahi M, Ali A, Dar RR, Narayanan K, Bhushan B. Evaluation of two bovine SNP genotyping arrays for breed clustering and stratification analysis in well-known taurine and indicine breeds. Anim Biotechnol 2019; 31:268-275. [PMID: 30857468 DOI: 10.1080/10495398.2019.1578227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The present study aimed to evaluate the efficiency of two Bovine SNP genotyping arrays (i.e., 50 K and HD) for breed clustering and stratification related studies in taurine and indicine breeds. The whole-genome SNP data at two densities were assembled into three datasets (A, B and C). Dataset A (N = 213) included 50 K genotypic data for five taurine (Holstein-Friesian, Guernsey, Brown Swiss, Angus and Jersey) and two indicine (Gir and Nellore) breeds. Dataset B (N = 241) included the same breeds with HD density data. Dataset C (N = 299) included 50 K SNP genotypic data for six taurine (Holstein-Friesian, Jersey, Guernsey, Brown Swiss, Angus and Hereford) and six indicine (Hariana, Kankrej, Brahman, Nellore, Sahiwal and Gir) breeds. The analysis was done using ADMIXTURE program (bioinformatics-based) and cross-validation errors and Principal Component Analysis (statistical analysis). The proportion of polymorphic markers and minor allele frequencies were assessed for each breed. The proportion of markers polymorphic was consistently higher in taurine breeds when compared with breeds from indicine group. Minor allele frequency estimates and ADMIXTURE results showed differential patterns for both the lineages. However, no significant increase in the accuracy of genomic clustering was found on moving from 50 K to HD density data.
Collapse
Affiliation(s)
- Sheikh Firdous Ahmad
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Bareilly, UP, India
| | - Manjit Panigrahi
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Bareilly, UP, India
| | - Ajaz Ali
- Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute, Bareilly, UP, India
| | - Rouf Rashid Dar
- Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute, Bareilly, UP, India
| | - Krishnaswamy Narayanan
- Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute, Bareilly, UP, India
| | - Bharat Bhushan
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Bareilly, UP, India
| |
Collapse
|
17
|
Xu L, Zhu B, Wang Z, Xu L, Liu Y, Chen Y, Zhang L, Gao X, Gao H, Zhang S, Xu L, Li J. Evaluation of Linkage Disequilibrium, Effective Population Size and Haplotype Block Structure in Chinese Cattle. Animals (Basel) 2019; 9:ani9030083. [PMID: 30845681 PMCID: PMC6466336 DOI: 10.3390/ani9030083] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Evaluation of the population structure and linkage disequilibrium can offer important insights to fully understand the genetic diversity and population history of cattle, which can enable us to appropriately design and implement GWAS and GS in cattle. In this study, we characterized the extent of genome-wide LD and the haplotype block structure, and estimated the persistence of phase of Chinese indigenous cattle with Illumina BovineHD BeadChip. According to our study, 58K, 87K, 95K, 52K, and 52K markers would be necessary for SCHC, NCC, SWC, SIM, and WAG, respectively, in the implementation of GWAS and GS and combining a multipopulation with high persistence of phase is feasible for the implication of genomic selection for Chinese beef cattle. Abstract Understanding the linkage disequilibrium (LD) across the genome, haplotype structure, and persistence of phase between breeds can enable us to appropriately design and implement the genome-wide association (GWAS) and genomic selection (GS) in beef cattle. We estimated the extent of genome-wide LD, haplotype block structure, and the persistence of phase in 10 Chinese cattle population using high density BovinHD BeadChip. The overall LD measured by r2 between adjacent SNPs were 0.60, 0.67, 0.58, 0.73, and 0.71 for South Chinese cattle (SCHC), North Chinese cattle (NCC), Southwest Chinese cattle (SWC), Simmental (SIM), and Wagyu (WAG). The highest correlation (0.53) for persistence of phase across groups was observed for SCHC vs. SWC at distances of 0–50 kb, while the lowest correlation was 0.13 for SIM vs. SCHC at the same distances. In addition, the estimated current effective population sizes were 27, 14, 31, 34, and 43 for SCHC, NCC, SWC, SIM, and WAG, respectively. Our result showed that 58K, 87K, 95K, 52K, and 52K markers were required for implementation of GWAS and GS in SCHC, NCC, SWC, SIM, and WAG, respectively. Also, our findings suggested that the implication of genomic selection for multipopulation with high persistence of phase is feasible for Chinese cattle.
Collapse
Affiliation(s)
- Lei Xu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
- Institute of Animal Husbandry and Veterinary Research, Anhui Academy of Agricultural Sciences, Hefei, 230031, China.
| | - Bo Zhu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Zezhao Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Ling Xu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Ying Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Yan Chen
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Lupei Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Xue Gao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Huijiang Gao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Shengli Zhang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| | - Lingyang Xu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Junya Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
18
|
Dash S, Singh A, Bhatia AK, Jayakumar S, Sharma A, Singh S, Ganguly I, Dixit SP. Evaluation of Bovine High-Density SNP Genotyping Array in Indigenous Dairy Cattle Breeds. Anim Biotechnol 2017. [PMID: 28636460 DOI: 10.1080/10495398.2017.1329150] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In total 52 samples of Sahiwal ( 19 ), Tharparkar ( 17 ), and Gir ( 16 ) were genotyped by using BovineHD SNP chip to analyze minor allele frequency (MAF), genetic diversity, and linkage disequilibrium among these cattle. The common SNPs of BovineHD and 54K SNP Chips were also extracted and evaluated for their performance. Only 40%-50% SNPs of these arrays was found informative for genetic analysis in these cattle breeds. The overall mean of MAF for SNPs of BovineHD SNPChip was 0.248 ± 0.006, 0.241 ± 0.007, and 0.242 ± 0.009 in Sahiwal, Tharparkar and Gir, respectively, while that for 54K SNPs was on lower side. The average Reynold's genetic distance between breeds ranged from 0.042 to 0.055 based on BovineHD Beadchip, and from 0.052 to 0.084 based on 54K SNP Chip. The estimates of genetic diversity based on HD and 54K chips were almost same and, hence, low density chip seems to be good enough to decipher genetic diversity of these cattle breeds. The linkage disequilibrium started decaying (r2 < 0.2) at 140 kb inter-marker distance and, hence, a 20K low density customized SNP array from HD chip could be designed for genomic selection in these cattle else the 54K Bead Chip as such will be useful.
Collapse
Affiliation(s)
- S Dash
- a ICAR- National Dairy Research Institute , Karnal , Haryana , India
| | - A Singh
- a ICAR- National Dairy Research Institute , Karnal , Haryana , India
| | - A K Bhatia
- b ICAR- National Bureau of Animal Genetic Resources , Karnal , Haryana , India
| | - S Jayakumar
- b ICAR- National Bureau of Animal Genetic Resources , Karnal , Haryana , India
| | - A Sharma
- b ICAR- National Bureau of Animal Genetic Resources , Karnal , Haryana , India
| | - S Singh
- b ICAR- National Bureau of Animal Genetic Resources , Karnal , Haryana , India
| | - I Ganguly
- b ICAR- National Bureau of Animal Genetic Resources , Karnal , Haryana , India
| | - S P Dixit
- b ICAR- National Bureau of Animal Genetic Resources , Karnal , Haryana , India
| |
Collapse
|
19
|
Linkage disequilibrium and haplotype block structure in Limousin, Simmental and native Polish Red cattle. Livest Sci 2016. [DOI: 10.1016/j.livsci.2016.07.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|