1
|
Campos D, Cottet L, Santos C, Castillo A. Antifungal activity of Serratia plymuthica against the phytopathogenic fungus Alternariatenuissima. Microb Pathog 2024; 193:106750. [PMID: 38906491 DOI: 10.1016/j.micpath.2024.106750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/21/2024] [Accepted: 06/13/2024] [Indexed: 06/23/2024]
Abstract
The antifungal activity of Serratia plymuthica CCGG2742, a bacterial strain isolated from grapes berries skin, against a phytopathogenic fungus isolated from blueberries was evaluated in vitro and in vivo. In order to characterize the wild fungal isolate, phylogenetic analysis using concatenated DNA sequences from the RPB2 and TEF1 genes and of the ITS region was performed, allowing the identification of the fungal isolate that was called Alternaria tenuissima CC17. Hyphae morphology, mycelium ultrastructure, conidia and reproductive structures were in agreement with the phylogenetic analysis. The antifungal activity of the S. plymuthica strain was dependent on the composition of the culture medium. The greatest inhibition of mycelial growth of A. tenuissima CC17 by S. plymuthica CCGG2742 was observed on YTS medium, which lacks of an easily assimilable carbon source. Fungal growth medium supplemented with 50 % of bacterial supernatant decreased the conidia germination of A. tenuissima CC17 up to 32 %. Preventive applications of S. plymuthica CCGG2742 to blueberries and tomato leaves at conidia:bacteria ratio of 1:100, protected in 77.8 ± 4.6 % and 98.2 ± 0.6 % to blueberries and tomato leaves from infection caused by A. tenuissima CC17, respectively. To the best of our knowledge, this is the first report on the antifungal activity of S. plymuthica against A. tenuissima, which could be used as a biological control agent of plant diseases caused by this fungal species. In addition, the results of this work could be a starting point to attribute the real importance of A. tenuissima as a pathogen of blueberries in Chile, which until now had been considered almost exclusively to A. alternata. Likewise, this research could be relevant to start developing highly effective strategies based on S. plymuthica CCGG2742 for the control of this important phytopathogenic fungus.
Collapse
Affiliation(s)
- Daniela Campos
- Universidad de Santiago de Chile (USACH), Facultad de Química y Biología, Departamento de Biología, Chile
| | - Luis Cottet
- Universidad de Santiago de Chile (USACH), Facultad de Química y Biología, Departamento de Biología, Chile
| | - Camila Santos
- Universidad de Santiago de Chile (USACH), Facultad de Química y Biología, Departamento de Biología, Chile
| | - Antonio Castillo
- Universidad de Santiago de Chile (USACH), Facultad de Química y Biología, Departamento de Biología, Chile.
| |
Collapse
|
2
|
Genome insights into the plant growth-promoting bacterium Saccharibacillus brassicae ATSA2 T. AMB Express 2023; 13:9. [PMID: 36680648 PMCID: PMC9867790 DOI: 10.1186/s13568-023-01514-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 01/09/2023] [Indexed: 01/22/2023] Open
Abstract
Endophytes can facilitate the improvement of plant growth and health in agriculturally important crops, yet their genomes and secondary metabolites remain largely unexplored. We previously isolated Saccharibacillus brassicae strain ATSA2T from surface-sterilized seeds of kimchi cabbage and represented a novel species of the genus Saccharibacillus. In this study, we evaluated the plant growth-promoting (PGP) effect of strain ATSA2T in kimchi cabbage, bok choy, and pepper plants grown in soils. We found a significant effect on the shoot and root biomass, and chlorophyll contents following strain ATSA2T treatment. Strain ATSA2T displayed PGP traits such as indole acetic acid (IAA, 62.9 μg/mL) and siderophore production, and phosphate solubilization activity. Furthermore, genome analysis of this strain suggested the presence of gene clusters involved in iron acquisition (fhuABD, afuABC, fbpABC, and fepCDG) and phosphate solubilization (pstABCHS, phoABHLU, and phnCDEP) and other phytohormone biosynthesis genes, including indole-3-acetic acid (trpABCDEFG), in the genome. Interestingly, the secondary metabolites cerecidin, carotenoid, siderophore (staphylobactin), and bacillaene underlying plant growth promotion were found in the whole genome via antiSMASH analysis. Overall, physiological testing and genome analysis data provide comprehensive insights into plant growth-promoting mechanisms, suggesting the relevance of strain ATSA2T in agricultural biotechnology.
Collapse
|
3
|
Sun M, Liu J, Li J, Huang Y. Endophytic Bacterium Serratia plymuthica From Chinese Leek Suppressed Apple Ring Rot on Postharvest Apple Fruit. Front Microbiol 2022; 12:802887. [PMID: 35310399 PMCID: PMC8929176 DOI: 10.3389/fmicb.2021.802887] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/21/2021] [Indexed: 11/24/2022] Open
Abstract
Apple ring rot caused by Botryosphaeria dothidea is an economically significant plant disease that spreads across the apple production areas in China. The pathogen infects apple fruits during the growing season and results in postharvest fruits rot during storage, which brings about a huge loss to plant growers. The study demonstrated that an endophytic bacterium Serratia plymuthica isolated from Chinese leek (Allium tuberosum) significantly suppressed the mycelial growth, severely damaging the typical morphology of B. dothidea, and exerted a high inhibition of 84.64% against apple ring rot on postharvest apple fruit. Furthermore, S. plymuthica significantly reduced the titratable acidity (TA) content, enhanced the soluble sugar (SS) content, vitamin C content, and SS/TA ratio, and maintained the firmness of the fruits. Furthermore, comparing the transcriptomes of the control and the S. plymuthica treated mycelia revealed that S. plymuthica significantly altered the expressions of genes related to membrane (GO:0016020), catalytic activity (GO:0003824), oxidation-reduction process (GO:0055114), and metabolism pathways, including tyrosine metabolism (ko00280), glycolysis/gluconeogenesis (ko00010), and glycerolipid metabolism (ko00561). The present study provided a possible way to control apple ring rot on postharvest fruit and a solid foundation for further exploring the underlying molecular mechanism.
Collapse
Affiliation(s)
- Meng Sun
- College of Horticulture, Qingdao Agricultural University, Qingdao, China.,Laboratory of Quality and Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao, China.,National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao), Qingdao, China.,Qingdao Key Laboratory of Modern Agriculture Quality and Safety Engineering, Qingdao, China
| | - Junping Liu
- College of Horticulture, Qingdao Agricultural University, Qingdao, China.,Laboratory of Quality and Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao, China.,National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao), Qingdao, China.,Qingdao Key Laboratory of Modern Agriculture Quality and Safety Engineering, Qingdao, China
| | - Jinghui Li
- College of Horticulture, Qingdao Agricultural University, Qingdao, China.,Laboratory of Quality and Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao, China.,National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao), Qingdao, China.,Qingdao Key Laboratory of Modern Agriculture Quality and Safety Engineering, Qingdao, China
| | - Yonghong Huang
- College of Horticulture, Qingdao Agricultural University, Qingdao, China.,Laboratory of Quality and Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao, China.,National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao), Qingdao, China.,Qingdao Key Laboratory of Modern Agriculture Quality and Safety Engineering, Qingdao, China
| |
Collapse
|
4
|
Fatima I, Hakim S, Imran A, Ahmad N, Imtiaz M, Ali H, Islam EU, Yousaf S, Mirza MS, Mubeen F. Exploring biocontrol and growth-promoting potential of multifaceted PGPR isolated from natural suppressive soil against the causal agent of chickpea wilt. Microbiol Res 2022; 260:127015. [DOI: 10.1016/j.micres.2022.127015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 03/16/2022] [Accepted: 03/19/2022] [Indexed: 10/18/2022]
|
5
|
Dąbrowska GB, Tylman-Mojżeszek W, Mierek-Adamska A, Richert A, Hrynkiewicz K. Potential of Serratia plymuthica IV-11-34 strain for biodegradation of polylactide and poly(ethylene terephthalate). Int J Biol Macromol 2021; 193:145-153. [PMID: 34678385 DOI: 10.1016/j.ijbiomac.2021.10.063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/04/2021] [Accepted: 10/09/2021] [Indexed: 01/15/2023]
Abstract
Serratia plymuthica strain IV-11-34 belongs to the plant growth promoting bacteria (PGPR). In the sequenced genome of S. plymuthica IV-11-34, we have identified the genes involved in biodegradation and metabolisms of xenobiotics. The potential of S. plymuthica IV-11-34 for the degradation of biodegradable aliphatic polyester polylactide (PLA) and resistant to biodegradation - poly(ethylene terephthalate) (PET) was assessed by biochemical oxygen consumption (BOD) and carbon dioxide methods. After seven days of growth, the bacteria strain showed more than 80% and 60% increase in respiratory activity in the presence of PLA and PET, respectively. We assume that during biodegradation, S. plymuthica IV-11-34 colonise the surface of PLA and PET, since the formation of a biofilm on the surface of polymers was shown by the LIVE/DEAD method. We have demonstrated for the relA gene, which is an alarmone synthetase, a 1.2-fold increase in expression in the presence of PLA, and a 4-fold decrease in expression in the presence of PET for the spoT gene, which is a hydrolase of alarmones. Research has shown that the bacterium has the ability to biodegrade PLA and PET, and the first stage of this process involves bacterial stringent response genes responsible for survival under extreme conditions.
Collapse
Affiliation(s)
- Grażyna B Dąbrowska
- Department of Genetics, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland.
| | - Wioleta Tylman-Mojżeszek
- Department of Genetics, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland
| | - Agnieszka Mierek-Adamska
- Department of Genetics, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland.
| | - Agnieszka Richert
- Department of Genetics, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland.
| | - Katarzyna Hrynkiewicz
- Department of Microbiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland.
| |
Collapse
|
6
|
Nordstedt NP, Jones ML. Genomic Analysis of Serratia plymuthica MBSA-MJ1: A Plant Growth Promoting Rhizobacteria That Improves Water Stress Tolerance in Greenhouse Ornamentals. Front Microbiol 2021; 12:653556. [PMID: 34046022 PMCID: PMC8144289 DOI: 10.3389/fmicb.2021.653556] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/14/2021] [Indexed: 12/26/2022] Open
Abstract
Water stress decreases the health and quality of horticulture crops by inhibiting photosynthesis, transpiration, and nutrient uptake. Application of plant growth promoting rhizobacteria (PGPR) can increase the growth, stress tolerance, and overall quality of field and greenhouse grown crops subjected to water stress. Here, we evaluated Serratia plymuthica MBSA-MJ1 for its ability to increase plant growth and quality of Petunia × hybrida (petunia), Impatiens walleriana (impatiens), and Viola × wittrockiana (pansy) plants recovering from severe water stress. Plants were treated weekly with inoculum of MBSA-MJ1, and plant growth and quality were evaluated 2 weeks after recovery from water stress. Application of S. plymuthica MBSA-MJ1 increased the visual quality and shoot biomass of petunia and impatiens and increased the flower number of petunia after recovery from water stress. In addition, in vitro characterizations showed that MBSA-MJ1 is a motile bacterium with moderate levels of antibiotic resistance that can withstand osmotic stress. Further, comprehensive genomic analyses identified genes putatively involved in bacterial osmotic and oxidative stress responses and the synthesis of osmoprotectants and vitamins that could potentially be involved in increasing plant water stress tolerance. This work provides a better understanding of potential mechanisms involved in beneficial plant-microbe interactions under abiotic stress using a novel S. plymuthica strain as a model.
Collapse
Affiliation(s)
- Nathan P Nordstedt
- Department of Horticulture and Crop Science, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, United States
| | - Michelle L Jones
- Department of Horticulture and Crop Science, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, United States
| |
Collapse
|
7
|
Kim HJ, Kim YC. Complete Genome Resource of Serratia plymuthica C-1 that Causes Root Rot Disease in Korean Ginseng. PLANT DISEASE 2021; 105:202-204. [PMID: 32697179 DOI: 10.1094/pdis-05-20-1154-a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Serratia plymuthica C-1, a biocontrol agent, was isolated from soil collected from a mountain forest in Korea. Previous studies have shown that certain strains of S. plymuthica cause root rot disease in ginseng. To the best of our knowledge, this is the first report of the sequence of the circular chromosome of S. plymuthica C-1, which plays a dual role by causing root rot in ginseng and exhibiting biocontrol activity. The findings of this study will assist in analyzing the genes associated with the pathogenicity and biocontrol properties of S. plymuthica.
Collapse
Affiliation(s)
- Hyo Jeong Kim
- Environment-Friendly Agricultural Research Institute, Jeollanamdo Agricultural Research and Extension Services, Naju 58213, Korea
| | - Young Cheol Kim
- Department of Applied Biology, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
8
|
Tomilova OG, Shaldyaeva EM, Kryukova NA, Pilipova YV, Schmidt NS, Danilov VP, Kryukov VY, Glupov VV. Entomopathogenic fungi decrease Rhizoctonia disease in potato in field conditions. PeerJ 2020; 8:e9895. [PMID: 32995085 PMCID: PMC7501787 DOI: 10.7717/peerj.9895] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/17/2020] [Indexed: 11/20/2022] Open
Abstract
Rhizoctonia potato disease is widespread in the world and causes substantial yield and quality losses in potato. This study aimed to evaluate the efficacy of entomopathogenic fungi Metarhizium robertsii and Beauveria bassiana in the inhibition of potato Rhizoctonia complex disease. The efficacy of the entomopathogenic fungi M. robertsii and B. bassiana in the defense of potato against Rhizoctonia disease (stem cancer, black scrulf and other forms of manifestation on tubers) was estimated under field conditions in Western Siberia. Preplanting treatment of the tubers with B. bassiana decreased Rhizoctonia disease in the stems and stolons. At the same time, treatment with M. robertsii did not cause a decrease in Rhizoctonia disease in these organs. However, both fungi decreased the sclerotium index on the tubers of new crops. We demonstrated two mechanisms of inhibition of Rhizoctonia solani by M. robertsii and B. bassiana, including (1) direct effect, expressed as inhibition of R. solani sclerotium formation in cocultivation assays, and (2) indirect effect, which is associated with increased peroxidase activity in potato roots under the influence of colonization by entomopathogenic fungi. We suggest that the treatment of seed tubers with B. basiana can effectively manage Rhizoctonia disease during the plant vegetative season and that both fungi significantly improve the quality of the new tuber crop.
Collapse
Affiliation(s)
- Oksana G Tomilova
- Institute of Systematics and Ecology of Animals SB RAS, Novosibirsk, Russia
| | - Elena M Shaldyaeva
- Institute of Systematics and Ecology of Animals SB RAS, Novosibirsk, Russia.,Department of Plant Protection, Novosibirsk State Agrarian University, Novosibirsk, Russia
| | - Natalia A Kryukova
- Institute of Systematics and Ecology of Animals SB RAS, Novosibirsk, Russia
| | - Yulia V Pilipova
- Department of Plant Protection, Novosibirsk State Agrarian University, Novosibirsk, Russia
| | - Natalia S Schmidt
- Institute of Systematics and Ecology of Animals SB RAS, Novosibirsk, Russia
| | - Viktor P Danilov
- Federal Scientific Centre of Agro-BioTechnologies (SFSCA) of the RAS, Novosibirsk, Russia
| | - Vadim Y Kryukov
- Institute of Systematics and Ecology of Animals SB RAS, Novosibirsk, Russia
| | - Viktor V Glupov
- Institute of Systematics and Ecology of Animals SB RAS, Novosibirsk, Russia
| |
Collapse
|
9
|
Krug L, Erlacher A, Markut K, Berg G, Cernava T. The microbiome of alpine snow algae shows a specific inter-kingdom connectivity and algae-bacteria interactions with supportive capacities. ISME JOURNAL 2020; 14:2197-2210. [PMID: 32424246 PMCID: PMC7608445 DOI: 10.1038/s41396-020-0677-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 04/25/2020] [Accepted: 05/01/2020] [Indexed: 12/15/2022]
Abstract
Mutualistic interactions within microbial assemblages provide a survival strategy under extreme conditions; however, little is known about the complexity of interaction networks in multipartite, free-living communities. In the present study, the interplay within algae-dominated microbial communities exposed to harsh environmental influences in the Austrian Alps was assessed in order to reveal the interconnectivity of eukaryotic and prokaryotic inhabitants. All analyzed snowfields harbored distinct microbial communities. Network analyses revealed that mutual exclusion prevailed among microalgae in the alpine environment, while bacteria were mainly positively embedded in the interaction networks. Especially members of Proteobacteria, with a high prevalence of Oxalobacteraceae, Pseudomonadaceae, and Sphingomonadaceae showed genus-specific co-occurrences with distinct microalgae. Co-cultivation experiments with algal and bacterial isolates confirmed beneficial interactions that were predicted based on the bioinformatic analyses; they resulted in up to 2.6-fold more biomass for the industrially relevant microalga Chlorella vulgaris, and up to 4.6-fold increase in biomass for the cryophilic Chloromonas typhlos. Our findings support the initial hypothesis that microbial communities exposed to adverse environmental conditions in alpine systems harbor inter-kingdom supportive capacities. The insights into mutualistic inter-kingdom interactions and the ecology of microalgae within complex microbial communities provide explanations for the prevalence and resilience of such assemblages in alpine environments.
Collapse
Affiliation(s)
- Lisa Krug
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010, Graz, Austria.,ACIB GmbH, Petersgasse 14, 8010, Graz, Austria
| | - Armin Erlacher
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010, Graz, Austria
| | - Katharina Markut
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010, Graz, Austria
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010, Graz, Austria
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010, Graz, Austria.
| |
Collapse
|
10
|
van den Bosch TJM, Welte CU. The Microbial Diversity of Cabbage Pest Delia radicum Across Multiple Life Stages. Front Microbiol 2020; 11:315. [PMID: 32174906 PMCID: PMC7056704 DOI: 10.3389/fmicb.2020.00315] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 02/13/2020] [Indexed: 12/22/2022] Open
Abstract
The cabbage root fly Delia radicum is a worldwide pest that causes yield losses of many common cabbage crops. The bacteria associated with D. radicum are suggested to influence the pest status of their host. In this study, we characterized insect-associated bacteria of D. radicum across multiple life stages and of their diet plant (turnip, Brassica rapa subsp. rapa) by sequencing the V3–V4 region of 16S rRNA genes using the Illumina MiSeq platform. In total, over 1.2M paired-end reads were obtained, identifying 1006 bacterial amplicon sequence variants (ASVs) in samples obtained from the eggs, larvae, pupae and adults of D. radicum, as well as turnips that were either fresh or infested with D. radicum larvae. The microbial community in D. radicum was dominated by Wolbachia, a common endosymbiont of arthropods which we found in all of the investigated insect samples, with the pupal stage having the highest relative abundance. Moderate amounts of Firmicutes were found only in adult D. radicum flies, but not in previous life stages. Actinobacteria were mostly found on the eggs and on the skin of fresh plants on which the eggs were deposited. These plants also harbored a large amount of Pseudomonas. The bacterial diversity of the healthy turnip was low, whereas the microbial community of decaying turnips that were heavily infested by D. radicum larvae and showing symptoms of advanced soft rot was characterized by a high bacterial diversity. Taken together, this work provides insights into the bacterial communities associated with the cabbage pest D. radicum and its associated disease symptoms.
Collapse
Affiliation(s)
- Tijs J M van den Bosch
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | - Cornelia U Welte
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| |
Collapse
|
11
|
Tian L, Shi S, Ma L, Tran LSP, Tian C. Community structures of the rhizomicrobiomes of cultivated and wild soybeans in their continuous cropping. Microbiol Res 2020; 232:126390. [PMID: 31855689 DOI: 10.1016/j.micres.2019.126390] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/15/2019] [Accepted: 12/03/2019] [Indexed: 11/15/2022]
Abstract
Continuous cropping of soybean often causes significant declines in yields of soybean because of the outbreaks of soil-borne fungal diseases. It has been reported that wild crops often harbour a unique microbiome to benefit the host plants. Thus, it is necessary to find the different community structures of the rhizomicrobiomes associated with cultivated and wild soybeans in their continuous cropping. In this study, we simulated monocropping of cultivated and wild soybeans under greenhouse conditions to investigate the rhizomicrobiomes of both soybeans. Results indicated that the bacterial community structure still maintained a changing trend after four continuous planting seasons, while fungal community structure showed a stable trend as indicated by the high similarity in the fungal community structure between the third and fourth planting rotations in both soybeans. In addition, by comparing the continuous cropping of the two soybeans, we found different fungal groups in their rhizospheres between the wild and cultivated soybeans following each passage. Spizellomycetaceae was more highly enriched in the rhizosphere following cultivation of the cultivated soybean, while Chaetomiaceae and Orbiliaceae were more highly enriched in the rhizosphere of wild soybean. Taken together, results of this study suggested that although there was the same trend of stabilized fungal development in the rhizospheres of both soybeans, wild soybean rhizosphere had different fungal groups compared with that of cultivated soybean following their continuous cropping. The findings of this study may provide useful information for the farmers with regard to planting soybean, especially when they consider growing soybean in monoculture.
Collapse
Affiliation(s)
- Lei Tian
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Shaohua Shi
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Lina Ma
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lam-Son Phan Tran
- Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang, Vietnam.
| | - Chunjie Tian
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China.
| |
Collapse
|
12
|
Caneschi WL, Sanchez AB, Felestrino ÉB, Lemes CGDC, Cordeiro IF, Fonseca NP, Villa MM, Vieira IT, Moraes LÂG, Assis RDAB, do Carmo FF, Kamino LHY, Silva RS, Ferro JA, Ferro MIT, Ferreira RM, Santos VL, Silva UDCM, Almeida NF, Varani ADM, Garcia CCM, Setubal JC, Moreira LM. Serratia liquefaciens FG3 isolated from a metallophyte plant sheds light on the evolution and mechanisms of adaptive traits in extreme environments. Sci Rep 2019; 9:18006. [PMID: 31784663 PMCID: PMC6884506 DOI: 10.1038/s41598-019-54601-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/31/2019] [Indexed: 12/02/2022] Open
Abstract
Serratia liquefaciens strain FG3 (SlFG3), isolated from the flower of Stachytarpheta glabra in the Brazilian ferruginous fields, has distinctive genomic, adaptive, and biotechnological potential. Herein, using a combination of genomics and molecular approaches, we unlocked the evolution of the adaptive traits acquired by S1FG3, which exhibits the second largest chromosome containing the largest conjugative plasmids described for Serratia. Comparative analysis revealed the presence of 18 genomic islands and 311 unique protein families involved in distinct adaptive features. S1FG3 has a diversified repertoire of genes associated with Nonribosomal peptides (NRPs/PKS), a complete and functional cluster related to cellulose synthesis, and an extensive and functional repertoire of oxidative metabolism genes. In addition, S1FG3 possesses a complete pathway related to protocatecuate and chloroaromatic degradation, and a complete repertoire of genes related to DNA repair and protection that includes mechanisms related to UV light tolerance, redox process resistance, and a laterally acquired capacity to protect DNA using phosphorothioation. These findings summarize that SlFG3 is well-adapted to different biotic and abiotic stress situations imposed by extreme conditions associated with ferruginous fields, unlocking the impact of the lateral gene transfer to adjust the genome for extreme environments, and providing insight into the evolution of prokaryotes.
Collapse
Affiliation(s)
- Washington Luiz Caneschi
- Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Universidade Federal de Ouro Preto (UFOP), Ouro Preto, MG, Brazil
| | - Angélica Bianchini Sanchez
- Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Universidade Federal de Ouro Preto (UFOP), Ouro Preto, MG, Brazil
| | - Érica Barbosa Felestrino
- Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Universidade Federal de Ouro Preto (UFOP), Ouro Preto, MG, Brazil
| | | | - Isabella Ferreira Cordeiro
- Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Universidade Federal de Ouro Preto (UFOP), Ouro Preto, MG, Brazil
| | - Natasha Peixoto Fonseca
- Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Universidade Federal de Ouro Preto (UFOP), Ouro Preto, MG, Brazil
| | - Morghana Marina Villa
- Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Universidade Federal de Ouro Preto (UFOP), Ouro Preto, MG, Brazil
| | - Izadora Tabuso Vieira
- Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Universidade Federal de Ouro Preto (UFOP), Ouro Preto, MG, Brazil
| | - Lauro Ângelo Gonçalves Moraes
- Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Universidade Federal de Ouro Preto (UFOP), Ouro Preto, MG, Brazil
| | | | | | | | - Robson Soares Silva
- Faculdade de Computação (FACOM), Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Jesus Aparecido Ferro
- Faculdade de Ciências Agrárias e Veterinárias de Jaboticabal, UNESP - Universidade Estadual Paulista, Departamento de Tecnologia, SP, Brazil
| | - Maria Inês Tiraboschi Ferro
- Faculdade de Ciências Agrárias e Veterinárias de Jaboticabal, UNESP - Universidade Estadual Paulista, Departamento de Tecnologia, SP, Brazil
| | - Rafael Marini Ferreira
- Faculdade de Ciências Agrárias e Veterinárias de Jaboticabal, UNESP - Universidade Estadual Paulista, Departamento de Tecnologia, SP, Brazil
| | - Vera Lúcia Santos
- Departamento de Microbiologia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | | | - Nalvo Franco Almeida
- Faculdade de Computação (FACOM), Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Alessandro de Mello Varani
- Faculdade de Ciências Agrárias e Veterinárias de Jaboticabal, UNESP - Universidade Estadual Paulista, Departamento de Tecnologia, SP, Brazil
| | - Camila Carrião Machado Garcia
- Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Universidade Federal de Ouro Preto (UFOP), Ouro Preto, MG, Brazil
- Departamento de Ciências Biológicas (DECBI), Instituto de Ciências Exatas e Biológicas (ICEB), Universidade Federal de Ouro Preto (UFOP), Ouro Preto, MG, Brazil
| | - João Carlos Setubal
- Departamento de Bioquímica (DB), Instituto de Química (IQ), Universidade de São Paulo (USP), São Paulo, SP, Brazil
- Biocomplexity Institute, Virginia Tech, Blacksburg, VA, USA
| | - Leandro Marcio Moreira
- Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Universidade Federal de Ouro Preto (UFOP), Ouro Preto, MG, Brazil.
- Departamento de Ciências Biológicas (DECBI), Instituto de Ciências Exatas e Biológicas (ICEB), Universidade Federal de Ouro Preto (UFOP), Ouro Preto, MG, Brazil.
| |
Collapse
|
13
|
Su C, Liu Y, Sun Y, Li Z. Complete genome sequence of Serratia sp. YD25 (KCTC 42987) presenting strong antagonistic activities to various pathogenic fungi and bacteria. J Biotechnol 2017; 245:9-13. [DOI: 10.1016/j.jbiotec.2017.01.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 01/25/2017] [Accepted: 01/25/2017] [Indexed: 11/28/2022]
|