1
|
Chen M, Acharya SM, Yee MO, Cabugao KGM, Chakraborty R. Developing stable, simplified, functional consortia from Brachypodium rhizosphere for microbial application in sustainable agriculture. Front Microbiol 2024; 15:1401794. [PMID: 38846575 PMCID: PMC11153752 DOI: 10.3389/fmicb.2024.1401794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/07/2024] [Indexed: 06/09/2024] Open
Abstract
The rhizosphere microbiome plays a crucial role in supporting plant productivity and ecosystem functioning by regulating nutrient cycling, soil integrity, and carbon storage. However, deciphering the intricate interplay between microbial relationships within the rhizosphere is challenging due to the overwhelming taxonomic and functional diversity. Here we present our systematic design framework built on microbial colocalization and microbial interaction, toward successful assembly of multiple rhizosphere-derived Reduced Complexity Consortia (RCC). We enriched co-localized microbes from Brachypodium roots grown in field soil with carbon substrates mimicking Brachypodium root exudates, generating 768 enrichments. By transferring the enrichments every 3 or 7 days for 10 generations, we developed both fast and slow-growing reduced complexity microbial communities. Most carbon substrates led to highly stable RCC just after a few transfers. 16S rRNA gene amplicon analysis revealed distinct community compositions based on inoculum and carbon source, with complex carbon enriching slow growing yet functionally important soil taxa like Acidobacteria and Verrucomicrobia. Network analysis showed that microbial consortia, whether differentiated by growth rate (fast vs. slow) or by succession (across generations), had significantly different network centralities. Besides, the keystone taxa identified within these networks belong to genera with plant growth-promoting traits, underscoring their critical function in shaping rhizospheric microbiome networks. Furthermore, tested consortia demonstrated high stability and reproducibility, assuring successful revival from glycerol stocks for long-term viability and use. Our study represents a significant step toward developing a framework for assembling rhizosphere consortia based on microbial colocalization and interaction, with future implications for sustainable agriculture and environmental management.
Collapse
Affiliation(s)
| | | | | | | | - Romy Chakraborty
- Department of Ecology, Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|
2
|
Howard SA, Carr CM, Sbahtu HI, Onwukwe U, López MJ, Dobson ADW, McCarthy RR. Enrichment of native plastic-associated biofilm communities to enhance polyester degrading activity. Environ Microbiol 2023; 25:2698-2718. [PMID: 37515381 PMCID: PMC10947123 DOI: 10.1111/1462-2920.16466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 06/30/2023] [Indexed: 07/30/2023]
Abstract
Plastic pollution is an increasing worldwide problem urgently requiring a solution. While recycling rates are increasing globally, only 9% of all plastic waste has been recycled, and with the cost and limited downstream uses of recycled plastic, an alternative is needed. Here, we found that expanded polystyrene (EPS) promoted high levels of bacterial biofilm formation and sought out environmental EPS waste to characterize these native communities. We demonstrated that the EPS attached communities had limited plastic degrading activity. We then performed a long-term enrichment experiment where we placed a robust selection pressure on these communities by limiting carbon availability such that the waste plastic was the only carbon source. Seven of the resulting enriched bacterial communities had increased plastic degrading activity compared to the starting bacterial communities. Pseudomonas stutzeri was predominantly identified in six of the seven enriched communities as the strongest polyester degrader. Sequencing of one isolate of P. stutzeri revealed two putative polyesterases and one putative MHETase. This indicates that waste plastic-associated biofilms are a source for bacteria that have plastic-degrading potential, and that this potential can be unlocked through selective pressure and further in vitro enrichment experiments, resulting in biodegradative communities that are better than nature.
Collapse
Affiliation(s)
- Sophie A. Howard
- Centre for Inflammation Research and Translational Medicine, Division of Biosciences, Department of Life Sciences, College of Health and Life SciencesBrunel University LondonUxbridgeUK
| | - Clodagh M. Carr
- School of MicrobiologyUniversity College CorkCorkIreland
- SSPC‐SFI Research Centre for PharmaceuticalsUniversity College CorkCorkIreland
| | - Habteab Isaack Sbahtu
- Centre for Inflammation Research and Translational Medicine, Division of Biosciences, Department of Life Sciences, College of Health and Life SciencesBrunel University LondonUxbridgeUK
| | - Uchechukwu Onwukwe
- Experimental Techniques Centre, College of Engineering, Design and Physical SciencesBrunel University LondonUxbridgeUK
| | - Maria J. López
- Department of Biology and Geology, CITE II‐BUniversity of Almería, Agrifood Campus of International Excellence ceiA3, CIAIMBITALAlmeriaSpain
| | - Alan D. W. Dobson
- School of MicrobiologyUniversity College CorkCorkIreland
- SSPC‐SFI Research Centre for PharmaceuticalsUniversity College CorkCorkIreland
| | - Ronan R. McCarthy
- Centre for Inflammation Research and Translational Medicine, Division of Biosciences, Department of Life Sciences, College of Health and Life SciencesBrunel University LondonUxbridgeUK
| |
Collapse
|
3
|
Pseudomonas response regulators produced in an E. coli heterologous expression host exhibit host-derived post-translational phosphorylation. Sci Rep 2022; 12:10336. [PMID: 35725867 PMCID: PMC9209504 DOI: 10.1038/s41598-022-13525-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 05/25/2022] [Indexed: 11/08/2022] Open
Abstract
In this report, we systematically characterize 32 response regulators (RRs) from a metal tolerant groundwater isolate, Pseudomonas stutzeri RCH2 to assess the impact of host-derived post-translational phosphorylation. As observed by distinct shifted bands in a phos-tag gel, 12 of the 24 detected RRs show homogenous mixtures of phosphorylated proteins or heterogenous mixtures of unphosphorylated and phosphorylated proteins. By evaluating the phosphorylation state of CzcR and CopR II under varying assay parameters, we found that changes to pH and exogenous addition of phospho-donors (e.g. acetyl phosphate) have little to no effect on phosphorylation state. By applying protein production conditions that decrease the pool of intracellular acetyl-phosphate in E. coli, we found a reduction in the phosphorylated population of CopR II when magnesium was added to the medium, but observed no change in phosphorylated population when CopR II is expressed in E. coli BL21 (DE3) ∆pta, a mutant with a metabolic disruption to the acetyl-phosphate pathway. Therefore, the specific mechanism of post-translational phosphorylation of RRs in E. coli remains obscure. These findings show the importance of characterizing the phosphorylation state of proteins when heterologously expressed, since their biochemical and physiological properties can be dependent on post-translational modification.
Collapse
|
4
|
Gushgari-Doyle S, Lui LM, Nielsen TN, Wu X, Malana RG, Hendrickson AJ, Carion H, Poole FL, Adams MWW, Arkin AP, Chakraborty R. Genotype to ecotype in niche environments: adaptation of Arthrobacter to carbon availability and environmental conditions. ISME COMMUNICATIONS 2022; 2:32. [PMID: 37938300 PMCID: PMC9723602 DOI: 10.1038/s43705-022-00113-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/23/2022] [Accepted: 03/07/2022] [Indexed: 07/04/2023]
Abstract
Niche environmental conditions influence both the structure and function of microbial communities and the cellular function of individual strains. The terrestrial subsurface is a dynamic and diverse environment that exhibits specific biogeochemical conditions associated with depth, resulting in distinct environmental niches. Here, we present the characterization of seven distinct strains belonging to the genus Arthrobacter isolated from varying depths of a single sediment core and associated groundwater from an adjacent well. We characterized genotype and phenotype of each isolate to connect specific cellular functions and metabolisms to ecotype. Arthrobacter isolates from each ecotype demonstrated functional and genomic capacities specific to their biogeochemical conditions of origin, including laboratory-demonstrated characterization of salinity tolerance and optimal pH, and genes for utilization of carbohydrates and other carbon substrates. Analysis of the Arthrobacter pangenome revealed that it is notably open with a volatile accessory genome compared to previous pangenome studies on other genera, suggesting a high potential for adaptability to environmental niches.
Collapse
Affiliation(s)
| | - Lauren M Lui
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | - Xiaoqin Wu
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ria G Malana
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | - Heloise Carion
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Farris L Poole
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Michael W W Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Adam P Arkin
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- University of California, Berkeley, CA, USA
| | | |
Collapse
|
5
|
Li X, Yang Z, Wang Z, Li W, Zhang G, Yan H. Comparative Genomics of Pseudomonas stutzeri Complex: Taxonomic Assignments and Genetic Diversity. Front Microbiol 2022; 12:755874. [PMID: 35095786 PMCID: PMC8792951 DOI: 10.3389/fmicb.2021.755874] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas stutzeri is a species complex with extremely broad phenotypic and genotypic diversity. However, very little is known about its diversity, taxonomy and phylogeny at the genomic scale. To address these issues, we systematically and comprehensively defined the taxonomy and nomenclature for this species complex and explored its genetic diversity using hundreds of sequenced genomes. By combining average nucleotide identity (ANI) evaluation and phylogenetic inference approaches, we identified 123 P. stutzeri complex genomes covering at least six well-defined species among all sequenced Pseudomonas genomes; of these, 25 genomes represented novel members of this species complex. ANI values of ≥∼95% and digital DNA-DNA hybridization (dDDH) values of ≥∼60% in combination with phylogenomic analysis consistently and robustly supported the division of these strains into 27 genomovars (most likely species to some extent), comprising 16 known and 11 unknown genomovars. We revealed that 12 strains had mistaken taxonomic assignments, while 16 strains without species names can be assigned to the species level within the species complex. We observed an open pan-genome of the P. stutzeri complex comprising 13,261 gene families, among which approximately 45% gene families do not match any sequence present in the COG database, and a large proportion of accessory genes. The genome contents experienced extensive genetic gain and loss events, which may be one of the major mechanisms driving diversification within this species complex. Surprisingly, we found that the ectoine biosynthesis gene cluster (ect) was present in all genomes of P. stutzeri species complex strains but distributed at very low frequency (43 out of 9548) in other Pseudomonas genomes, suggesting a possible origin of the ancestors of P. stutzeri species complex in high-osmolarity environments. Collectively, our study highlights the potential of using whole-genome sequences to re-evaluate the current definition of the P. stutzeri complex, shedding new light on its genomic diversity and evolutionary history.
Collapse
Affiliation(s)
- Xiangyang Li
- School of Sciences, Kaili University, Kaili, China
- Bacterial Genome Data Mining and Bioinformatic Analysis Center, Kaili University, Kaili, China
- *Correspondence: Xiangyang Li,
| | - Zilin Yang
- School of Sciences, Kaili University, Kaili, China
| | - Zhao Wang
- School of Life and Health Science, Kaili University, Kaili, China
| | - Weipeng Li
- School of Big Data Engineering, Kaili University, Kaili, China
| | - Guohui Zhang
- School of Life and Health Science, Kaili University, Kaili, China
| | - Hongguang Yan
- School of Life and Health Science, Kaili University, Kaili, China
| |
Collapse
|
6
|
Kosina SM, Rademacher P, Wetmore KM, de Raad M, Zemla M, Zane GM, Zulovich JJ, Chakraborty R, Bowen BP, Wall JD, Auer M, Arkin AP, Deutschbauer AM, Northen TR. Biofilm Interaction Mapping and Analysis (BIMA) of Interspecific Interactions in Pseudomonas Co-culture Biofilms. Front Microbiol 2021; 12:757856. [PMID: 34956122 PMCID: PMC8696352 DOI: 10.3389/fmicb.2021.757856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/04/2021] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas species are ubiquitous in nature and include numerous medically, agriculturally and technologically beneficial strains of which the interspecific interactions are of great interest for biotechnologies. Specifically, co-cultures containing Pseudomonas stutzeri have been used for bioremediation, biocontrol, aquaculture management and wastewater denitrification. Furthermore, the use of P. stutzeri biofilms, in combination with consortia-based approaches, may offer advantages for these processes. Understanding the interspecific interaction within biofilm co-cultures or consortia provides a means for improvement of current technologies. However, the investigation of biofilm-based consortia has been limited. We present an adaptable and scalable method for the analysis of macroscopic interactions (colony morphology, inhibition, and invasion) between colony-forming bacterial strains using an automated printing method followed by analysis of the genes and metabolites involved in the interactions. Using Biofilm Interaction Mapping and Analysis (BIMA), these interactions were investigated between P. stutzeri strain RCH2, a denitrifier isolated from chromium (VI) contaminated soil, and 13 other species of pseudomonas isolated from non-contaminated soil. One interaction partner, Pseudomonas fluorescens N1B4 was selected for mutant fitness profiling of a DNA-barcoded mutant library; with this approach four genes of importance were identified and the effects on interactions were evaluated with deletion mutants and mass spectrometry based metabolomics.
Collapse
Affiliation(s)
- Suzanne M. Kosina
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Peter Rademacher
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Kelly M. Wetmore
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Markus de Raad
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Marcin Zemla
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Grant M. Zane
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
| | | | - Romy Chakraborty
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Benjamin P. Bowen
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Lawrence Berkeley National Laboratory, Joint Genome Institute, Berkeley, CA, United States
| | - Judy D. Wall
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
| | - Manfred Auer
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Adam P. Arkin
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Adam M. Deutschbauer
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Trent R. Northen
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Lawrence Berkeley National Laboratory, Joint Genome Institute, Berkeley, CA, United States
| |
Collapse
|
7
|
An Q, Deng S, Xu J, Nan H, Li Z, Song JL. Simultaneous reduction of nitrate and Cr(VI) by Pseudomonas aeruginosa strain G12 in wastewater. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 191:110001. [PMID: 31812281 DOI: 10.1016/j.ecoenv.2019.110001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/20/2019] [Accepted: 11/23/2019] [Indexed: 06/10/2023]
Abstract
The interference of toxic heavy metals in the process of microbial aerobic denitrification is a hot issue in industry wastewater treatment in recent years. In this study, a multifunctional aerobic denitrifying bacterium - Pseudomonas aeruginosa G12 isolated from sewage sludge was used to explore the simultaneous removal ability to NO3--N and Cr(VI) in wastewater by a series of batch experiments. The results showed that G12 could effectively remove NO3--N (500 mg L-1) and Cr(VI) (10 mg L-1) by 98% and 93%, respectively. Meanwhile, the study found that the strain G12 had the potential to adapt to the complex external environment, including different carbon resources, nitrogen sources, and the coexisting heavy metals (Mn2+ and Cu2+). The strain G12 also had the considerable tolerance to initial NO3--N (100-700 mg L-1) and Cr(VI) (1-20 mg L-1) concentrations. The instrument analysis methods-Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD), from the molecular level, further confirmed that the strain G12 could remove NO3--N by aerobic denitrification, and the reduced functional groups (amino group, amide group, hydroxyl group and carboxyl group) on the surface of bacteria could transform Cr(VI) to Cr(III) (mainly CrCl3). This study will offer a promising new microbial resource for nitrogen and Cr(VI) removal in industry wastewater treatment.
Collapse
Affiliation(s)
- Qiang An
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China; The Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Chongqing University, Chongqing, 400045, PR China.
| | - Shuman Deng
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China
| | - Jia Xu
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China
| | - Hongyan Nan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 2002405, PR China
| | - Zheng Li
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China
| | - Jia-Li Song
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China
| |
Collapse
|
8
|
Genomic Analysis of Pseudomonas sp. Strain SCT, an Iodate-Reducing Bacterium Isolated from Marine Sediment, Reveals a Possible Use for Bioremediation. G3-GENES GENOMES GENETICS 2019; 9:1321-1329. [PMID: 30910818 PMCID: PMC6505155 DOI: 10.1534/g3.118.200978] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Strain SCT is an iodate-reducing bacterium isolated from marine sediment in Kanagawa Prefecture, Japan. In this study, we determined the draft genome sequence of strain SCT and compared it to complete genome sequences of other closely related bacteria, including Pseudomonas stutzeri. A phylogeny inferred from concatenation of core genes revealed that strain SCT was closely related to marine isolates of P. stutzeri. Genes present in the SCT genome but absent from the other analyzed P. stutzeri genomes comprised clusters corresponding to putative prophage regions and possible operons. They included pil genes, which encode type IV pili for natural transformation; the mer operon, which encodes resistance systems for mercury; and the pst operon, which encodes a Pi-specific transport system for phosphate uptake. We found that strain SCT had more prophage-like genes than the other P. stutzeri strains and that the majority (70%) of them were SCT strain-specific. These genes, encoded on distinct prophage regions, may have been acquired after branching from a common ancestor following independent phage transfer events. Thus, the genome sequence of Pseudomonas sp. strain SCT can provide detailed insights into its metabolic potential and the evolution of genetic elements associated with its unique phenotype.
Collapse
|
9
|
Garber ME, Rajeev L, Kazakov AE, Trinh J, Masuno D, Thompson MG, Kaplan N, Luk J, Novichkov PS, Mukhopadhyay A. Multiple signaling systems target a core set of transition metal homeostasis genes using similar binding motifs. Mol Microbiol 2018; 107:704-717. [PMID: 29341298 DOI: 10.1111/mmi.13909] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 01/06/2018] [Accepted: 01/06/2018] [Indexed: 01/07/2023]
Abstract
Bacterial response to metals can require complex regulation. We report an overlapping regulation for copper and zinc resistance genes in the denitrifying bacterium, Pseudomonas stutzeri RCH2, by three two-component regulatory proteins CopR1, CopR2 and CzcR. We conducted genome-wide evaluations to identify gene targets of two paralogous regulators, CopR1 and CopR2, annotated for copper signaling, and compared the results with the gene targets for CzcR, implicated in zinc signaling. We discovered that the CopRs and CzcR have largely common targets, and crossregulate a core set of P. stutzeri copper and zinc responsive genes. We established that this crossregulation is enabled by a conserved binding motif in the upstream regulatory regions of the target genes. The crossregulation is physiologically relevant as these regulators synergistically and antagonistically target multicopper oxidases, metal efflux and sequestration systems. CopR1 and CopR2 upregulate two cop operons encoding copper tolerance genes, while all three regulators downregulate a putative copper chaperone, Psest_1595. CzcR also upregulated the oprD gene and the CzcIABC Zn2+ efflux system, while CopR1 and CopR2 downregulated these genes. Our study suggests that crossregulation of copper and zinc homeostasis can be advantageous, and in P. stutzeri this is enabled by shared binding motifs for multiple response regulators.
Collapse
Affiliation(s)
- Megan E Garber
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Department of Comparative Biochemistry, University of California, Berkeley, CA, 94720, USA
| | - Lara Rajeev
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Alexey E Kazakov
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jessica Trinh
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Duy Masuno
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Mitchell G Thompson
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Nurgul Kaplan
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Joyce Luk
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Pavel S Novichkov
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Department of Energy, Knowledge Base, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Aindrila Mukhopadhyay
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| |
Collapse
|