1
|
Ohnishi KI, Watanabe S, Kadoya A, Suzuki S. Cellulolytic enzymes in Microbulbifer sp. Strain GL-2, a marine fish intestinal bacterium, with emphasis on endo-1,4-β-glucanases Cel5A and Cel8. J GEN APPL MICROBIOL 2024; 70:n/a. [PMID: 38538333 DOI: 10.2323/jgam.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Cellulose is an abundant biomass on the planet. Various cellulases from environmental microbes have been explored for industrial use of cellulose. Marine fish intestine is of interest as one source of new enzymes. Here, we report the discovery of genes encoding two β-glucosidases (Bgl3A and Bgl3B) and four endo-1,4-β-glucanases (Cel5A, Cel8, Cel5B, and Cel9) as part of the genome sequence of a cellulolytic marine bacterium, Microbulbifer sp. Strain GL-2. Five of these six enzymes (excepting Cel5B) are presumed to localize to the periplasm or outer membrane. Transcriptional analysis demonstrated that all six genes were highly expressed in stationary phase. The transcription was induced by cello-oligosaccharides rather than by glucose, suggesting that the cellulases are produced primarily for nutrient acquisition following initial growth, facilitating the secondary growth phase. We cloned the genes encoding two of the endo-1,4-β-glucanases, Cel5A and Cel8, and purified the corresponding recombinant enzymes following expression in Escherichia coli. The activity of Cel5A was observed across a wide range of temperatures (10-40 ˚C) and pHs (6-8). This pattern differed from those of Cel8 and the commercial cellulase Enthiron, both of which exhibit decreased activities below 30 ˚C and at alkaline pHs. These characteristics suggest that Cel5A might find use in industrial applications. Overall, our results reinforce the hypothesis that marine bacteria remain a possible source of novel cellulolytic activities.
Collapse
Affiliation(s)
| | - Seiya Watanabe
- Center for Marine Environmental Studies, Ehime University
- Graduate School of Agriculture, Ehime University
| | - Aya Kadoya
- Center for Marine Environmental Studies, Ehime University
| | - Satoru Suzuki
- Center for Marine Environmental Studies, Ehime University
| |
Collapse
|
2
|
Ishaq N, Zhang M, Gao L, Ilan M, Li Z. Microbulbifer spongiae sp. nov., isolated from marine sponge Diacarnus erythraeanus. Int J Syst Evol Microbiol 2024; 74. [PMID: 39325661 DOI: 10.1099/ijsem.0.006521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024] Open
Abstract
A novel bacterium, designated as MI-GT, was isolated from marine sponge Diacarnus erythraeanus. Cells of strain MI-GT are Gram-stain-negative, aerobic, and rod or coccoid-ovoid in shape. MI-GT is able to grow at 10-40 °C (optimum, 28 °C), with 1.0-8.0% (w/v) NaCl (optimum, 4.0%), and at pH 5.5-9.0 (optimum, pH 8.0). The 16S rRNA gene sequence of strain MI-GT shows 98.35, 97.32 and 97.25% similarity to those of Microbulbifer variabilis Ni-2088T, Microbulbifer maritimus TF-17T and Microbulbifer echini AM134T, respectively. Phylogenetic analysis also exhibits that strain MI-GT falls within a clade comprising members of the genus Microbulbifer (class Gammaproteobacteria). The genome size of strain MI-GT is 4478124 bp with a G+C content of 54.51 mol%. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between strain MI-GT and other type strains are 71.61-76.44% (ANIb), 83.27-84.36% (ANIm) and 13.4-18.7% (dDDH), respectively. These values are significantly lower than the recommended threshold values for bacterial species delineation. Percentage of conserved proteins and average amino acid identity values among the genomes of strain MI-GT and other closely related species are 52.04-59.13% and 67.47-77.21%, respectively. The major cellular fatty acids of MI-GT are composed of summed feature 8 (C18 : 1 ω7c or C18 : 1 ω6c), iso-C11 : 0 3-OH, iso-C15 : 0, C16 : 0, and summed feature 9 (C17 : 1 iso ω9c or C16 : 0 10-methyl). The polar lipids of MI-GT mainly consist of phosphatidylethanolamine, phosphatidylglycerol, aminolipid, and two glycolipids. The major respiratory quinone is Q-8. Based on differential phenotypic and phylogenetic data, strain MI-GT is considered to represent a novel species of genus Microbulbifer, for which the name Microbulbifer spongiae sp. nov. is proposed. The type strain is MI-GT (=MCCC 1K07826T=KCTC 8081T).
Collapse
Affiliation(s)
- Nabila Ishaq
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Mimi Zhang
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Luyao Gao
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Micha Ilan
- School of Zoology, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Zhiyong Li
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China
- Yazhou Bay Institute of Deepsea Science and Technology, Shanghai Jiao Tong University, Shanghai, PR China
| |
Collapse
|
3
|
Zhong W, Agarwal V. Polymer degrading marine Microbulbifer bacteria: an un(der)utilized source of chemical and biocatalytic novelty. Beilstein J Org Chem 2024; 20:1635-1651. [PMID: 39076296 PMCID: PMC11285056 DOI: 10.3762/bjoc.20.146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/02/2024] [Indexed: 07/31/2024] Open
Abstract
Microbulbifer is a genus of halophilic bacteria that are commonly detected in the commensal marine microbiomes. These bacteria have been recognized for their ability to degrade polysaccharides and other polymeric materials. Increasingly, Microbulbifer genomes indicate these bacteria to be an untapped reservoir for novel natural product discovery and biosynthetic novelty. In this review, we summarize the distribution of Microbulbifer bacteria, activities of the various polymer degrading enzymes that these bacteria produce, and an up-to-date summary of the natural products that have been isolated from Microbulbifer strains. We argue that these bacteria have been hiding in plain sight, and contemporary efforts into their genome and metabolome mining are going to lead to a proliferation of Microbulbifer-derived natural products in the future. We also describe, where possible, the ecological interactions of these bacteria in marine microbiomes.
Collapse
Affiliation(s)
- Weimao Zhong
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Vinayak Agarwal
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
4
|
Rahim NAA, Mohd Sidik Merican FM, Radzi R, Omar WMW, Nor SAM, Broady P, Convey P. Unveiling the Diversity of Periphytic Cyanobacteria (Cyanophyceae) from Tropical Mangroves in Penang, Malaysia. Trop Life Sci Res 2023; 34:57-94. [PMID: 37860087 PMCID: PMC10583846 DOI: 10.21315/tlsr2023.34.3.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 02/08/2023] [Indexed: 10/21/2023] Open
Abstract
Cyanobacteria are one of the most important groups of photoautotrophic organisms, contributing to carbon and nitrogen fixation in mangroves worldwide. They also play an important role in soil retention and stabilisation and contribute to high plant productivity through their secretion of plant growth-promoting substances. However, their diversity and distribution in Malaysian mangrove ecosystems have yet to be studied in detail, despite Malaysia hosting a significant element of remaining mangroves globally. In a floristic survey conducted in Penang, peninsular Malaysia, 33 morphospecies of periphytic cyanobacteria were identified and described for the first time from a mangrove ecosystem in Malaysia. Sixteen genera, comprising Aphanocapsa, Chroococcus, Chroococcidiopsis, Cyanobacterium, Desmonostoc, Geitlerinema, Leptolyngbya, Lyngbya, Microcystis, Myxosarcina, Oscillatoria, Phormidium, Pseudanabaena, Spirulina, Trichocoleus and Xenococcus, were obtained from field material growing on diverse natural and artificial substrata. Oscillatoriales was the dominant order with Phormidium the dominant genus at nine of the 15 sampling sites examined. Three of the morphospecies, Aphanocapsa cf. concharum, Xenococcus cf. pallidus and Oscillatoria pseudocurviceps, are rare and poorly known morphospecies worldwide. Chroococcus minutus, Phormidium uncinatum, P. amphigranulata, and some species of Oscillatoriales are considered as pollution indicator species. This study provides important baseline information for further investigation of the cyanobacterial microflora present in other mangrove areas around Malaysia. A complete checklist will enhance understanding of their ecological role and the potential for benefits arising from useful secondary metabolites or threats via toxin production to the ecosystem.
Collapse
Affiliation(s)
- Nur Afiqah Abdul Rahim
- School of Biological Sciences, Universiti Sains Malaysia, 11800 USM Pulau Pinang, Malaysia
| | | | - Ranina Radzi
- School of Biological Sciences, Universiti Sains Malaysia, 11800 USM Pulau Pinang, Malaysia
| | - Wan Maznah Wan Omar
- School of Biological Sciences, Universiti Sains Malaysia, 11800 USM Pulau Pinang, Malaysia
| | - Siti Azizah Mohd Nor
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21300 Kuala Terengganu, Terengganu, Malaysia
| | - Paul Broady
- School of Biological Sciences, University of Canterbury, 20 Kirkwood Avenue, Upper Riccarton, Christchurch 8041, New Zealand
| | - Peter Convey
- British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge CB3 0ET, United Kingdom
| |
Collapse
|
5
|
Li H, Luo N, Ji C, Li J, Zhang L, Xiao L, She X, Liu Z, Li Y, Liu C, Guo Q, Lai H. Liquid Organic Fertilizer Amendment Alters Rhizosphere Microbial Community Structure and Co-occurrence Patterns and Improves Sunflower Yield Under Salinity-Alkalinity Stress. MICROBIAL ECOLOGY 2022; 84:423-438. [PMID: 34535834 DOI: 10.1007/s00248-021-01870-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
Response of rhizosphere microbial community structure and co-occurrence patterns to liquid organic fertilizer in sunflower cropland was investigated. Moderate and severe saline-alkaline soils were treated with liquid organic fertilizer containing mainly small molecular organic compounds (450 g L-1) at a rate of 4500 L ha-1 year-1 over 2 years. Compared with the untreated soils, organic fertilizer treatment increased soil nutrient concentrations by 13.8-137.1% while reducing soil pH and salinity by 5.6% and 54.7%, respectively. Organic fertilizer treatment also improved sunflower yield, plant number, and plant height by 28.6-67.3%. Following organic fertilizer treatment, fungal α-diversity was increased, and the effects of salinity-alkalinity stress on rhizosphere microbial communities were alleviated. The relative abundances of some halotolerant microbes and phytopathogenic fungi were reduced in organic fertilizer-treated soils, in contrast to increases in the relative abundances of plant growth-promoting microbes and organic matter decomposers, such as Nocardioides, Rhizophagus, and Stachybotrys. Network analysis revealed that severe salinity-alkalinity stress stimulated cooperation among bacteria, while organic fertilizer treatment tended to stimulate the ecosystem functions of fungi with higher proportions of fungi-bacteria and fungi-fungi links. More keystone taxa (e.g., Amycolatopsis, Variovorax, and Gemmatimonas) were positively correlated with soil nutrient concentrations and crop yield-related traits in organic fertilizer-treated soils. Overall, liquid organic fertilizer amendment could attenuate the adverse effects of salinity-alkalinity stress on sunflower yield by improving soil quality and optimizing rhizosphere microbial community structure and co-occurrence patterns.
Collapse
Affiliation(s)
- Haiyang Li
- College of Natural Resources and Environment, Northwest A&F University, 3 Taicheng Road, Yangling, Xianyang, 712100, Shaanxi, People's Republic of China
| | - Nanyan Luo
- Tongchuan Institute of Agricultural Sciences, Tongchuan, 727000, China
| | - Chenglong Ji
- College of Natural Resources and Environment, Northwest A&F University, 3 Taicheng Road, Yangling, Xianyang, 712100, Shaanxi, People's Republic of China
| | - Jin Li
- College of Natural Resources and Environment, Northwest A&F University, 3 Taicheng Road, Yangling, Xianyang, 712100, Shaanxi, People's Republic of China
| | - Lan Zhang
- College of Natural Resources and Environment, Northwest A&F University, 3 Taicheng Road, Yangling, Xianyang, 712100, Shaanxi, People's Republic of China
| | - Li Xiao
- College of Natural Resources and Environment, Northwest A&F University, 3 Taicheng Road, Yangling, Xianyang, 712100, Shaanxi, People's Republic of China
| | - Xiaolin She
- Tongchuan Institute of Agricultural Sciences, Tongchuan, 727000, China
| | - Zhe Liu
- College of Natural Resources and Environment, Northwest A&F University, 3 Taicheng Road, Yangling, Xianyang, 712100, Shaanxi, People's Republic of China
| | - Yulong Li
- College of Natural Resources and Environment, Northwest A&F University, 3 Taicheng Road, Yangling, Xianyang, 712100, Shaanxi, People's Republic of China
| | - Cunshou Liu
- College of Natural Resources and Environment, Northwest A&F University, 3 Taicheng Road, Yangling, Xianyang, 712100, Shaanxi, People's Republic of China
| | - Qiao Guo
- College of Natural Resources and Environment, Northwest A&F University, 3 Taicheng Road, Yangling, Xianyang, 712100, Shaanxi, People's Republic of China.
| | - Hangxian Lai
- College of Natural Resources and Environment, Northwest A&F University, 3 Taicheng Road, Yangling, Xianyang, 712100, Shaanxi, People's Republic of China.
| |
Collapse
|
6
|
Diyana T, Furusawa G. An assimilatory sulfite reductase, CysI, negatively regulates the dormancy of Microbulbifer aggregans CCB-MM1 T. J Basic Microbiol 2021; 61:1124-1132. [PMID: 34796964 DOI: 10.1002/jobm.202100198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/17/2021] [Accepted: 08/05/2021] [Indexed: 11/09/2022]
Abstract
Sulfur is one of the common and essential elements of all life. Sulfate, which is a major source of sulfur, plays an important role in synthesizing sulfur-containing amino acids, such as cysteine and methionine, organic compounds essential to all living organisms. Some investigations reported that the assimilatory sulfate reduction pathway (ASRP) involved in cysteine synthesis is crucial to entering bacterial dormancy in pathogens. Our previous investigation reported that the halophilic marine bacterium, Microbulbifer aggregans CCB-MM1T , possesses an ASRP and the dissimilatory sulfate reduction pathway (DSRP). The bacterium might use DSRP to generate energy required for entering its dormant. However, the role of the ASRP in the dormancy of M. aggregans CCB-MM1T was so far unknown. In this study, we found that genes involved in ASRP were downregulated in the dormancy. The disruption of the gene encoding an assimilatory sulfite reductase, cysI, suppressed a completely dormant state under low nutrient conditions. In addition, the cysI mutant showed cell aggregation at the middle-exponential phase under high nutrient conditions, indicating that the mutation might be stimulated to enter the dormancy. The wild-type phenotype of the bacterium was recovered by the addition of cysteine. These results suggested that cysteine concentration may play an important role in inducing the dormancy of M. aggregans.
Collapse
Affiliation(s)
- Tarmizi Diyana
- Centre for Chemical Biology, Universiti Sains Malaysia, Penang, Malaysia
| | - Go Furusawa
- Centre for Chemical Biology, Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|
7
|
Lach J, Jęcz P, Strapagiel D, Matera-Witkiewicz A, Stączek P. The Methods of Digging for "Gold" within the Salt: Characterization of Halophilic Prokaryotes and Identification of Their Valuable Biological Products Using Sequencing and Genome Mining Tools. Genes (Basel) 2021; 12:1756. [PMID: 34828362 PMCID: PMC8619533 DOI: 10.3390/genes12111756] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/18/2021] [Accepted: 10/30/2021] [Indexed: 02/06/2023] Open
Abstract
Halophiles, the salt-loving organisms, have been investigated for at least a hundred years. They are found in all three domains of life, namely Archaea, Bacteria, and Eukarya, and occur in saline and hypersaline environments worldwide. They are already a valuable source of various biomolecules for biotechnological, pharmaceutical, cosmetological and industrial applications. In the present era of multidrug-resistant bacteria, cancer expansion, and extreme environmental pollution, the demand for new, effective compounds is higher and more urgent than ever before. Thus, the unique metabolism of halophilic microorganisms, their low nutritional requirements and their ability to adapt to harsh conditions (high salinity, high pressure and UV radiation, low oxygen concentration, hydrophobic conditions, extreme temperatures and pH, toxic compounds and heavy metals) make them promising candidates as a fruitful source of bioactive compounds. The main aim of this review is to highlight the nucleic acid sequencing experimental strategies used in halophile studies in concert with the presentation of recent examples of bioproducts and functions discovered in silico in the halophile's genomes. We point out methodological gaps and solutions based on in silico methods that are helpful in the identification of valuable bioproducts synthesized by halophiles. We also show the potential of an increasing number of publicly available genomic and metagenomic data for halophilic organisms that can be analysed to identify such new bioproducts and their producers.
Collapse
Affiliation(s)
- Jakub Lach
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz, 93-338 Lodz, Poland; (P.J.); (P.S.)
- Biobank Lab, Department of Molecular Biophysics, Faculty of Environmental Protection, University of Lodz, 93-338 Lodz, Poland;
| | - Paulina Jęcz
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz, 93-338 Lodz, Poland; (P.J.); (P.S.)
| | - Dominik Strapagiel
- Biobank Lab, Department of Molecular Biophysics, Faculty of Environmental Protection, University of Lodz, 93-338 Lodz, Poland;
| | - Agnieszka Matera-Witkiewicz
- Screening Laboratory of Biological Activity Tests and Collection of Biological Material, Faculty of Pharmacy, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| | - Paweł Stączek
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz, 93-338 Lodz, Poland; (P.J.); (P.S.)
| |
Collapse
|
8
|
Sugimoto Y, Ohnishi KI, Suzuki S. Complete Genome Sequence of Cellulase-Producing Microbulbifer sp. Strain GL-2, Isolated from Marine Fish Intestine. Microbiol Resour Announc 2020; 9:e00746-20. [PMID: 32763942 PMCID: PMC7409859 DOI: 10.1128/mra.00746-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 07/14/2020] [Indexed: 11/20/2022] Open
Abstract
Microbulbifer sp. strain GL-2 was isolated from the intestine of a teleost, Girella melanichthys. Here, we report the complete genome sequence of this strain, which produces cellulase(s). Twelve cellulase candidate genes were found on the chromosome.
Collapse
Affiliation(s)
- Yuta Sugimoto
- Center for Marine Environmental Studies, Ehime University, Matsuyama, Japan
| | - Ken-Ichiro Ohnishi
- Center for Marine Environmental Studies, Ehime University, Matsuyama, Japan
| | - Satoru Suzuki
- Center for Marine Environmental Studies, Ehime University, Matsuyama, Japan
| |
Collapse
|
9
|
Identification and characterization of ectoine-producing bacteria isolated from Can Gio mangrove soil in Vietnam. ANN MICROBIOL 2019. [DOI: 10.1007/s13213-019-01474-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
10
|
Chen YP, Wu HT, Wang GH, Wu DY, Hwang IE, Chien MC, Pang HY, Kuo JT, Liaw LL. Inspecting the genome sequence and agarases of Microbulbifer pacificus LD25 from a saltwater hot spring. J Biosci Bioeng 2019; 127:403-410. [DOI: 10.1016/j.jbiosc.2018.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 09/29/2018] [Accepted: 10/02/2018] [Indexed: 12/27/2022]
|
11
|
Study on expression and action mode of recombinant alginate lyases based on conserved domains reconstruction. Appl Microbiol Biotechnol 2018; 103:807-817. [DOI: 10.1007/s00253-018-9502-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 10/31/2018] [Accepted: 11/05/2018] [Indexed: 10/27/2022]
|
12
|
Su Q, Jin T, Yu Y, Yang M, Mou H, Li L. Extracellular expression of a novel β-agarase from Microbulbifer sp. Q7, isolated from the gut of sea cucumber. AMB Express 2017; 7:220. [PMID: 29260432 PMCID: PMC5736513 DOI: 10.1186/s13568-017-0525-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 12/12/2017] [Indexed: 11/26/2022] Open
Abstract
A novel endo-type β-agarase was cloned from an agar-degrading bacterium, Microbulbifer sp. Q7 (CGMCC No. 14061), that was isolated from sea cucumber gut. The agarase-encoding gene, ID2563, consisted of 1800 bp that encoded a 599-residue protein with a signal peptide of 19 amino acids. Sequence analysis suggested that the agarase belongs to the GH16 family. The agarase was expressed in Escherichia coli with a total activity of 4.99 U/mL in fermentation medium. The extracellular enzyme activity accounted for 65.73% of the total activity, which indicated that the agarase can be extracellularly secreted using the wild-type signal peptide from Microbulbifer sp. Q7. The agarase exhibited maximal activity at approximately 40 °C and pH 6.0. It was stable between pH 6.0 and pH 9.0, which was a much wider range than most of the reported agarases. The agarase was sensitive to some metal ions (Cu2+, Zn2+ and Fe3+), but was resistant to urea and SDS. The agarase hydrolyzed β-1,4-glycosidic linkages of agarose, primarily yielding neoagarotetraose and neoagarohexaose as the final products. These indicate that this recombinant agarase can be an effective tool for the preparing functional neoagaro-oligosaccharides.
Collapse
|
13
|
Moh TH, Furusawa G, Amirul AAA. Microbulbifer aggregans sp. nov., isolated from estuarine sediment from a mangrove forest. Int J Syst Evol Microbiol 2017; 67:4089-4094. [DOI: 10.1099/ijsem.0.002258] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Tsu Horng Moh
- Centre for Chemical Biology, Universiti Sains Malaysia, Penang, Malaysia
| | - Go Furusawa
- Centre for Chemical Biology, Universiti Sains Malaysia, Penang, Malaysia
| | - Abdullah Al-Ashraf Amirul
- Centre for Chemical Biology, Universiti Sains Malaysia, Penang, Malaysia
- School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|