1
|
Koch H, Sessitsch A. The microbial-driven nitrogen cycle and its relevance for plant nutrition. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5547-5556. [PMID: 38900822 DOI: 10.1093/jxb/erae274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 06/18/2024] [Indexed: 06/22/2024]
Abstract
Nitrogen (N) is a vital nutrient and an essential component of biological macromolecules such as nucleic acids and proteins. Microorganisms are major drivers of N-cycling processes in all ecosystems, including the soil and plant environment. The availability of N is a major growth-limiting factor for plants and it is significantly affected by the plant microbiome. Plants and microorganisms form complex interaction networks resulting in molecular signaling, nutrient exchange, and other distinct metabolic responses. In these networks, microbial partners influence growth and N use efficiency of plants either positively or negatively. Harnessing the beneficial effects of specific players within crop microbiomes is a promising strategy to counteract the emerging threats to human and planetary health due to the overuse of industrial N fertilizers. However, in addition to N-providing activities (e.g. the well-known symbiosis of legumes and Rhizobium spp.), other plant-microorganism interactions must be considered to obtain a complete picture of how microbial-driven N transformations might affect plant nutrition. For this, we review recent insights into the tight interplay between plants and N-cycling microorganisms, focusing on microbial N-transformation processes representing N sources and sinks that ultimately shape plant N acquisition.
Collapse
Affiliation(s)
- Hanna Koch
- Center for Health & Bioresources, Bioresources Unit, AIT Austrian Institute of Technology GmbH, A-3430 Tulln, Austria
| | - Angela Sessitsch
- Center for Health & Bioresources, Bioresources Unit, AIT Austrian Institute of Technology GmbH, A-3430 Tulln, Austria
| |
Collapse
|
2
|
Lin HA, Coker HR, Howe JA, Tfaily MM, Nagy EM, Antony-Babu S, Hague S, Smith AP. Progressive drought alters the root exudate metabolome and differentially activates metabolic pathways in cotton ( Gossypium hirsutum). FRONTIERS IN PLANT SCIENCE 2023; 14:1244591. [PMID: 37711297 PMCID: PMC10499043 DOI: 10.3389/fpls.2023.1244591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023]
Abstract
Root exudates comprise various primary and secondary metabolites that are responsive to plant stressors, including drought. As increasing drought episodes are predicted with climate change, identifying shifts in the metabolome profile of drought-induced root exudation is necessary to understand the molecular interactions that govern the relationships between plants, microbiomes, and the environment, which will ultimately aid in developing strategies for sustainable agriculture management. This study utilized an aeroponic system to simulate progressive drought and recovery while non-destructively collecting cotton (Gossypium hirsutum) root exudates. The molecular composition of the collected root exudates was characterized by untargeted metabolomics using Fourier-Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR MS) and mapped to the Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Over 700 unique drought-induced metabolites were identified throughout the water-deficit phase. Potential KEGG pathways and KEGG modules associated with the biosynthesis of flavonoid compounds, plant hormones (abscisic acid and jasmonic acid), and other secondary metabolites were highly induced under severe drought, but not at the wilting point. Additionally, the associated precursors of these metabolites, such as amino acids (phenylalanine and tyrosine), phenylpropanoids, and carotenoids, were also mapped. The potential biochemical transformations were further calculated using the data generated by FT-ICR MS. Under severe drought stress, the highest number of potential biochemical transformations, including methylation, ethyl addition, and oxidation/hydroxylation, were identified, many of which are known reactions in some of the mapped pathways. With the application of FT-ICR MS, we revealed the dynamics of drought-induced secondary metabolites in root exudates in response to drought, providing valuable information for drought-tolerance strategies in cotton.
Collapse
Affiliation(s)
- Heng-An Lin
- Department of Soil and Crop Sciences, Texas A&M University and Texas A&M AgriLife Research, College Station, TX, United States
| | - Harrison R. Coker
- Department of Soil and Crop Sciences, Texas A&M University and Texas A&M AgriLife Research, College Station, TX, United States
| | - Julie A. Howe
- Department of Soil and Crop Sciences, Texas A&M University and Texas A&M AgriLife Research, College Station, TX, United States
| | - Malak M. Tfaily
- Department of Environmental Science, University of Arizona, Tucson, AZ, United States
| | - Elek M. Nagy
- Department of Plant Pathology and Microbiology, Texas A&M University and Texas A&M AgriLife Research, College Station, TX, United States
| | - Sanjay Antony-Babu
- Department of Plant Pathology and Microbiology, Texas A&M University and Texas A&M AgriLife Research, College Station, TX, United States
| | - Steve Hague
- Department of Soil and Crop Sciences, Texas A&M University and Texas A&M AgriLife Research, College Station, TX, United States
| | - A. Peyton Smith
- Department of Soil and Crop Sciences, Texas A&M University and Texas A&M AgriLife Research, College Station, TX, United States
| |
Collapse
|
3
|
Dow L, Gallart M, Ramarajan M, Law SR, Thatcher LF. Streptomyces and their specialised metabolites for phytopathogen control - comparative in vitro and in planta metabolic approaches. FRONTIERS IN PLANT SCIENCE 2023; 14:1151912. [PMID: 37389291 PMCID: PMC10301723 DOI: 10.3389/fpls.2023.1151912] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/30/2023] [Indexed: 07/01/2023]
Abstract
In the search for new crop protection microbial biocontrol agents, isolates from the genus Streptomyces are commonly found with promising attributes. Streptomyces are natural soil dwellers and have evolved as plant symbionts producing specialised metabolites with antibiotic and antifungal activities. Streptomyces biocontrol strains can effectively suppress plant pathogens via direct antimicrobial activity, but also induce plant resistance through indirect biosynthetic pathways. The investigation of factors stimulating the production and release of Streptomyces bioactive compounds is commonly conducted in vitro, between Streptomyces sp. and a plant pathogen. However, recent research is starting to shed light on the behaviour of these biocontrol agents in planta, where the biotic and abiotic conditions share little similarity to those of controlled laboratory conditions. With a focus on specialised metabolites, this review details (i) the various methods by which Streptomyces biocontrol agents employ specialised metabolites as an additional line of defence against plant pathogens, (ii) the signals shared in the tripartite system of plant, pathogen and biocontrol agent, and (iii) an outlook on new approaches to expedite the identification and ecological understanding of these metabolites under a crop protection lens.
Collapse
Affiliation(s)
- Lachlan Dow
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food, Acton, ACT, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Microbiomes for One Systems Health Future Science Platform, Acton, ACT, Australia
| | - Marta Gallart
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food, Acton, ACT, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Advanced Engineering Biology Future Science Platform, Acton, ACT, Australia
| | - Margaret Ramarajan
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food, Acton, ACT, Australia
| | - Simon R. Law
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food, Acton, ACT, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Microbiomes for One Systems Health Future Science Platform, Acton, ACT, Australia
| | - Louise F. Thatcher
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food, Acton, ACT, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Microbiomes for One Systems Health Future Science Platform, Acton, ACT, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Advanced Engineering Biology Future Science Platform, Acton, ACT, Australia
| |
Collapse
|
4
|
Zheng Y, Wang J, Zhang X, Lei L, Yu R, Yao M, Han D, Zeng Q, Li X. Core root-associated prokaryotic community and its relationship to host traits across wheat varieties. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2740-2753. [PMID: 36807675 DOI: 10.1093/jxb/erad066] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/17/2023] [Indexed: 06/06/2023]
Abstract
The root-associated microbiomes play important roles in plant growth. However, it is largely unknown how wheat variety evolutionary relatedness shapes each subcommunity in the root microbiome and, in turn, how these microbes affect wheat yield and quality. Here we studied the prokaryotic communities associated with the rhizosphere and root endosphere in 95 wheat varieties at regreening and heading stages. The results indicated that the less diverse but abundant core prokaryotic taxa occurred among all varieties. Among these core taxa, we identified 49 and 108 heritable amplicon sequence variants, whose variations in relative abundances across the root endosphere and rhizosphere samples were significantly affected by wheat variety. The significant correlations between phylogenetic distance of wheat varieties and prokaryotic community dissimilarity were only observed in non-core and abundant subcommunities in the endosphere samples. Again, wheat yield was only significantly associated with root endosphere microbiota at the heading stage. Additionally, wheat yield could be predicted using the total abundance of 94 prokaryotic taxa as an indicator. Our results demonstrated that the prokaryotic communities in the root endosphere had higher correlations with wheat yield and quality than those in the rhizosphere; thus, managing root endosphere microbiota, especially core taxa, through agronomic practices and crop breeding, is important for promoting wheat yield and quality.
Collapse
Affiliation(s)
- Yuyin Zheng
- Engineering Research Center of Soil Remediation of Fujian Province University; College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jialong Wang
- Engineering Research Center of Soil Remediation of Fujian Province University; College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xue Zhang
- Engineering Research Center of Soil Remediation of Fujian Province University; College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Li Lei
- Engineering Research Center of Soil Remediation of Fujian Province University; College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rui Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Minjie Yao
- Engineering Research Center of Soil Remediation of Fujian Province University; College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dejun Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qingdong Zeng
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiangzhen Li
- Key Laboratory of Environmental and Applied Microbiology, CAS, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| |
Collapse
|
5
|
Michl K, Berg G, Cernava T. The microbiome of cereal plants: The current state of knowledge and the potential for future applications. ENVIRONMENTAL MICROBIOME 2023; 18:28. [PMID: 37004087 PMCID: PMC10064690 DOI: 10.1186/s40793-023-00484-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
The plant microbiota fulfils various crucial functions related to host health, fitness, and productivity. Over the past years, the number of plant microbiome studies continued to steadily increase. Technological advancements not only allow us to produce constantly increasing datasets, but also to extract more information from them in order to advance our understanding of plant-microbe interactions. The growing knowledge base has an enormous potential to improve microbiome-based, sustainable agricultural practices, which are currently poorly understood and have yet to be further developed. Cereal plants are staple foods for a large proportion of the world's population and are therefore often implemented in microbiome studies. In the present review, we conducted extensive literature research to reflect the current state of knowledge in terms of the microbiome of the four most commonly cultivated cereal plants. We found that currently the majority of available studies are targeting the wheat microbiome, which is closely followed by studies on maize and rice. There is a substantial gap, in terms of published studies, addressing the barley microbiome. Overall, the focus of most microbiome studies on cereal plants is on the below-ground microbial communities, and there is more research on bacteria than on fungi and archaea. A meta-analysis conducted in the frame of this review highlights microbiome similarities across different cereal plants. Our review also provides an outlook on how the plant microbiota could be harnessed to improve sustainability of cereal crop production.
Collapse
Affiliation(s)
- Kristina Michl
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, Graz, 8010 Austria
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, Graz, 8010 Austria
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth Allee 100, 14469 Potsdam, Germany
- Institute for Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Golm, OT Germany
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, Graz, 8010 Austria
- School of Biological Sciences, Faculty of Environmental and Life Sciences, Southampton, SO17 1BJ UK
| |
Collapse
|
6
|
Tabaglio V, Fiorini A, Sterling TM, Schulz M. Abutilon theophrasti's Resilience against Allelochemical-Based Weed Management in Sustainable Agriculture - Due to Collection of Highly Advantageous Microorganisms? PLANTS (BASEL, SWITZERLAND) 2023; 12:700. [PMID: 36840048 PMCID: PMC9961861 DOI: 10.3390/plants12040700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Abutilon theophrasti Medik. (velvetleaf) is a problematic annual weed in field crops which has invaded many temperate parts of the world. Since the loss of crop yields can be extensive, approaches to manage the weed include not only conventional methods, but also biological methods, for instance by microorganisms releasing phytotoxins and plant-derived allelochemicals. Additionally, benzoxazinoid-rich rye mulches effective in managing common weeds like Amaranthus retroflexus L. have been tested for this purpose. However, recent methods for biological control are still unreliable in terms of intensity and duration. Rye mulches were also ineffective in managing velvetleaf. In this review, we present the attempts to reduce velvetleaf infestation by biological methods and discuss possible reasons for the failure. The resilience of velvetleaf may be due to the extraordinary capacity of the plant to collect, for its own survival, the most suitable microorganisms from a given farming site, genetic and epigenetic adaptations, and a high stress memory. Such properties may have developed together with other advantageous abilities during selection by humans when the plant was used as a crop. Rewilding could be responsible for improving the microbiomes of A. theophrasti.
Collapse
Affiliation(s)
- Vincenzo Tabaglio
- Department of Sustainable Crop Production DI.PRO.VE.S., Section Agronomy and Plant Biotechnologies, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Andrea Fiorini
- Department of Sustainable Crop Production DI.PRO.VE.S., Section Agronomy and Plant Biotechnologies, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Tracy M. Sterling
- Department of Land Resources & Environmental Sciences, Montana State University, Bozeman, MT 59717, USA
| | - Margot Schulz
- IMBIO Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Karlrobert-Kreiten Str. 13, 53115 Bonn, Germany
| |
Collapse
|
7
|
Oudova-Rivera B, Crombie AT, Murrell JC, Lehtovirta-Morley LE. Alcohols as inhibitors of ammonia oxidizing archaea and bacteria. FEMS Microbiol Lett 2023; 370:fnad093. [PMID: 37698885 PMCID: PMC11025371 DOI: 10.1093/femsle/fnad093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/23/2023] [Accepted: 09/11/2023] [Indexed: 09/13/2023] Open
Abstract
Ammonia oxidizers are key players in the global nitrogen cycle and are responsible for the oxidation of ammonia to nitrite, which is further oxidized to nitrate by other microorganisms. Their activity can lead to adverse effects on some human-impacted environments, including water pollution through leaching of nitrate and emissions of the greenhouse gas nitrous oxide (N2O). Ammonia monooxygenase (AMO) is the key enzyme in microbial ammonia oxidation and shared by all groups of aerobic ammonia oxidizers. The AMO has not been purified in an active form, and much of what is known about its potential structure and function comes from studies on its interactions with inhibitors. The archaeal AMO is less well studied as ammonia oxidizing archaea were discovered much more recently than their bacterial counterparts. The inhibition of ammonia oxidation by aliphatic alcohols (C1-C8) using the model terrestrial ammonia oxidizing archaeon 'Candidatus Nitrosocosmicus franklandus' C13 and the ammonia oxidizing bacterium Nitrosomonas europaea was examined in order to expand knowledge about the range of inhibitors of ammonia oxidizers. Methanol was the most potent specific inhibitor of the AMO in both ammonia oxidizers, with half-maximal inhibitory concentrations (IC50) of 0.19 and 0.31 mM, respectively. The inhibition was AMO-specific in 'Ca. N. franklandus' C13 in the presence of C1-C2 alcohols, and in N. europaea in the presence of C1-C3 alcohols. Higher chain-length alcohols caused non-specific inhibition and also inhibited hydroxylamine oxidation. Ethanol was tolerated by 'Ca. N. franklandus' C13 at a higher threshold concentration than other chain-length alcohols, with 80 mM ethanol being required for complete inhibition of ammonia oxidation.
Collapse
Affiliation(s)
- Barbora Oudova-Rivera
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Andrew T Crombie
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
- School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - J Colin Murrell
- School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | | |
Collapse
|
8
|
Marghoob MU, Rodriguez-Sanchez A, Imran A, Mubeen F, Hoagland L. Diversity and functional traits of indigenous soil microbial flora associated with salinity and heavy metal concentrations in agricultural fields within the Indus Basin region, Pakistan. Front Microbiol 2022; 13:1020175. [PMID: 36419426 PMCID: PMC9676371 DOI: 10.3389/fmicb.2022.1020175] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/10/2022] [Indexed: 08/27/2023] Open
Abstract
Soil salinization and heavy metal (HM) contamination are major challenges facing agricultural systems worldwide. Determining how soil microbial communities respond to these stress factors and identifying individual phylotypes with potential to tolerate these conditions while promoting plant growth could help prevent negative impacts on crop productivity. This study used amplicon sequencing and several bioinformatic programs to characterize differences in the composition and potential functional capabilities of soil bacterial, fungal, and archaeal communities in five agricultural fields that varied in salinity and HM concentrations within the Indus basin region of Pakistan. The composition of bacteria with the potential to fix atmospheric nitrogen (N) and produce the enzyme 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase were also determined. Microbial communities were dominated by: Euryarchaeota (archaea), Actinobacteria, Proteobacteria, Planctomycetota, Firimicutes, Patescibacteria and Acidobacteria (bacteria), and Ascomycota (fungi), and all soils contained phylotypes capable of N-fixation and ACC-deaminase production. Salinity influenced bacterial, but not archaeal or fungal communities. Both salinity and HM altered the relative abundance of many phylotypes that could potentially promote or harm plant growth. These stress factors also appeared to influence the potential functional capabilities of the microbial communities, especially in their capacity to cycle phosphorous, produce siderophores, and act as symbiotrophs or pathotrophs. Results of this study confirm that farms in this region are at risk due to salinization and excessive levels of some toxic heavy metals, which could negatively impact crop and human health. Changes in soil microbial communities and their potential functional capabilities are also likely to affect several critical agroecosystem services related to nutrient cycling, pathogen suppression, and plant stress tolerance. Many potentially beneficial phylotypes were identified that appear to be salt and HM tolerant and could possibly be exploited to promote these services within this agroecosystem. Future efforts to isolate these phylotypes and determine whether they can indeed promote plant growth and/or carry out other important soil processes are recommended. At the same time, identifying ways to promote the abundance of these unique phylotypes either through modifying soil and crop management practices, or developing and applying them as inoculants, would be helpful for improving crop productivity in this region.
Collapse
Affiliation(s)
- Muhammad Usama Marghoob
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Constituent College of Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, United States
| | | | - Asma Imran
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Constituent College of Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan
| | - Fathia Mubeen
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Constituent College of Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan
| | - Lori Hoagland
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
9
|
Feeney MA, Newitt JT, Addington E, Algora-Gallardo L, Allan C, Balis L, Birke AS, Castaño-Espriu L, Charkoudian LK, Devine R, Gayrard D, Hamilton J, Hennrich O, Hoskisson PA, Keith-Baker M, Klein JG, Kruasuwan W, Mark DR, Mast Y, McHugh RE, McLean TC, Mohit E, Munnoch JT, Murray J, Noble K, Otani H, Parra J, Pereira CF, Perry L, Pintor-Escobar L, Pritchard L, Prudence SMM, Russell AH, Schniete JK, Seipke RF, Sélem-Mojica N, Undabarrena A, Vind K, van Wezel GP, Wilkinson B, Worsley SF, Duncan KR, Fernández-Martínez LT, Hutchings MI. ActinoBase: tools and protocols for researchers working on Streptomyces and other filamentous actinobacteria. Microb Genom 2022; 8. [PMID: 35775972 PMCID: PMC9455695 DOI: 10.1099/mgen.0.000824] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Actinobacteria is an ancient phylum of Gram-positive bacteria with a characteristic high GC content to their DNA. The ActinoBase Wiki is focused on the filamentous actinobacteria, such as Streptomyces species, and the techniques and growth conditions used to study them. These organisms are studied because of their complex developmental life cycles and diverse specialised metabolism which produces many of the antibiotics currently used in the clinic. ActinoBase is a community effort that provides valuable and freely accessible resources, including protocols and practical information about filamentous actinobacteria. It is aimed at enabling knowledge exchange between members of the international research community working with these fascinating bacteria. ActinoBase is an anchor platform that underpins worldwide efforts to understand the ecology, biology and metabolic potential of these organisms. There are two key differences that set ActinoBase apart from other Wiki-based platforms: [1] ActinoBase is specifically aimed at researchers working on filamentous actinobacteria and is tailored to help users overcome challenges working with these bacteria and [2] it provides a freely accessible resource with global networking opportunities for researchers with a broad range of experience in this field.
Collapse
Affiliation(s)
- Morgan Anne Feeney
- University of Strathclyde, Strathclyde Institute of Pharmacy and Biomedical Sciences, Glasgow, G4 0RE, UK
| | - Jake Terry Newitt
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, UK
| | - Emily Addington
- University of Strathclyde, Strathclyde Institute of Pharmacy and Biomedical Sciences, Glasgow, G4 0RE, UK
| | - Lis Algora-Gallardo
- University of Strathclyde, Strathclyde Institute of Pharmacy and Biomedical Sciences, Glasgow, G4 0RE, UK
| | - Craig Allan
- Swansea University Institute of Life Science, College of Medicine, Swansea, Wales, UK
| | - Lucas Balis
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, UK
| | - Anna S Birke
- University of Strathclyde, Strathclyde Institute of Pharmacy and Biomedical Sciences, Glasgow, G4 0RE, UK
| | - Laia Castaño-Espriu
- University of Strathclyde, Strathclyde Institute of Pharmacy and Biomedical Sciences, Glasgow, G4 0RE, UK
| | | | - Rebecca Devine
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, UK
| | - Damien Gayrard
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, UK
| | - Jacob Hamilton
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, UK
| | - Oliver Hennrich
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures GmbH Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Paul A Hoskisson
- University of Strathclyde, Strathclyde Institute of Pharmacy and Biomedical Sciences, Glasgow, G4 0RE, UK
| | - Molly Keith-Baker
- University of Strathclyde, Strathclyde Institute of Pharmacy and Biomedical Sciences, Glasgow, G4 0RE, UK
| | | | - Worarat Kruasuwan
- Division of Bioinformatics and Data Management for Research, Research Group and Research Network Division, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - David R Mark
- University of Strathclyde, Strathclyde Institute of Pharmacy and Biomedical Sciences, Glasgow, G4 0RE, UK
| | - Yvonne Mast
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures GmbH Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Rebecca E McHugh
- University of Strathclyde, Strathclyde Institute of Pharmacy and Biomedical Sciences, Glasgow, G4 0RE, UK
| | - Thomas C McLean
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, UK
| | - Elmira Mohit
- University of Strathclyde, Strathclyde Institute of Pharmacy and Biomedical Sciences, Glasgow, G4 0RE, UK
| | - John T Munnoch
- University of Strathclyde, Strathclyde Institute of Pharmacy and Biomedical Sciences, Glasgow, G4 0RE, UK
| | - Jordan Murray
- Department of Physics, SUPA, University of Strathclyde, Glasgow, G4 0NG, UK
| | - Katie Noble
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, UK
| | - Hiroshi Otani
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.,Lawrence Berkeley National Laboratory, Environmental Genomics and Systems Biology Division, Berkeley, CA 94720, USA
| | - Jonathan Parra
- University of Strathclyde, Strathclyde Institute of Pharmacy and Biomedical Sciences, Glasgow, G4 0RE, UK
| | - Camila F Pereira
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany
| | - Louisa Perry
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, UK
| | | | - Leighton Pritchard
- University of Strathclyde, Strathclyde Institute of Pharmacy and Biomedical Sciences, Glasgow, G4 0RE, UK
| | - Samuel M M Prudence
- School of Biological and Behavioral Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | | | - Jana K Schniete
- Biology Department, Edge Hill University, St Helens Road, Ormskirk, L39 4QP, UK
| | - Ryan F Seipke
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.,Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Nelly Sélem-Mojica
- Universidad Nacional Autónoma de México, Centro de Ciencias Matemáticas, en Morelia, Michoacán, Mexico
| | - Agustina Undabarrena
- Departamento de Química & Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Valparaíso, 2340000, Chile
| | - Kristiina Vind
- Host-Microbe Interactomics Group, Wageningen University, 6708 WD Wageningen, The Netherlands
| | - Gilles P van Wezel
- Microbial Biotechnology, Institute of Biology, Leiden University, Rapenburg, The Netherlands
| | - Barrie Wilkinson
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, UK
| | - Sarah F Worsley
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Katherine R Duncan
- University of Strathclyde, Strathclyde Institute of Pharmacy and Biomedical Sciences, Glasgow, G4 0RE, UK
| | | | - Matthew I Hutchings
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, UK
| |
Collapse
|
10
|
Gholizadeh S, Mohammadi SA, Salekdeh GH. Changes in root microbiome during wheat evolution. BMC Microbiol 2022; 22:64. [PMID: 35219318 PMCID: PMC8881823 DOI: 10.1186/s12866-022-02467-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 02/08/2022] [Indexed: 12/20/2022] Open
Abstract
Abstract
Background
Although coevolutionary signatures of host-microbe interactions are considered to engineer the healthy microbiome of humans, little is known about the changes in root-microbiome during plant evolution. To understand how the composition of the wheat and its ancestral species microbiome have changed over the evolutionary processes, we performed a 16S rRNA metagenomic analysis on rhizobacterial communities associated with a phylogenetic framework of four Triticum species T. urartu, T. turgidum, T. durum, and T. aestivum along with their ancestral species Aegilops speltoides, and Ae. tauschii during vegetative and reproductive stages.
Results
In this study, we illustrated that the genome contents of wild species Aegilops speltoides and Ae. tauschii can be significant factors determining the composition of root-associated bacterial communities in domesticated bread wheat. Although it was found that domestication and modern breeding practices might have had a significant impact on microbiome-plant interactions especially at the reproductive stage, we observed an extensive and selective control by wheat genotypes on associated rhizobacterial communities at the same time. Our data also showed a strong genotypic variation within species of T. aestivum and Ae. tauschii, suggesting potential breeding targets for plants surveyed.
Conclusions
This study performed with different genotypes of Triticum and Aegilops species is the first study showing that the genome contents of Ae. speltoides and Ae. tauschii along with domestication-related changes can be significant factors determining the composition of root-associated bacterial communities in bread wheat. It is also indirect evidence that shows a very extensive range of host traits and genes are probably involved in host-microbe interactions. Therefore, understanding the wheat root-associated microbiome needs to take into consideration of its polygenetic mosaic nature.
Collapse
|
11
|
Gruet C, Muller D, Moënne-Loccoz Y. Significance of the Diversification of Wheat Species for the Assembly and Functioning of the Root-Associated Microbiome. Front Microbiol 2022; 12:782135. [PMID: 35058901 PMCID: PMC8764353 DOI: 10.3389/fmicb.2021.782135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/30/2021] [Indexed: 12/15/2022] Open
Abstract
Wheat, one of the major crops in the world, has had a complex history that includes genomic hybridizations between Triticum and Aegilops species and several domestication events, which resulted in various wild and domesticated species (especially Triticum aestivum and Triticum durum), many of them still existing today. The large body of information available on wheat-microbe interactions, however, was mostly obtained without considering the importance of wheat evolutionary history and its consequences for wheat microbial ecology. This review addresses our current understanding of the microbiome of wheat root and rhizosphere in light of the information available on pre- and post-domestication wheat history, including differences between wild and domesticated wheats, ancient and modern types of cultivars as well as individual cultivars within a given wheat species. This analysis highlighted two major trends. First, most data deal with the taxonomic diversity rather than the microbial functioning of root-associated wheat microbiota, with so far a bias toward bacteria and mycorrhizal fungi that will progressively attenuate thanks to the inclusion of markers encompassing other micro-eukaryotes and archaea. Second, the comparison of wheat genotypes has mostly focused on the comparison of T. aestivum cultivars, sometimes with little consideration for their particular genetic and physiological traits. It is expected that the development of current sequencing technologies will enable to revisit the diversity of the wheat microbiome. This will provide a renewed opportunity to better understand the significance of wheat evolutionary history, and also to obtain the baseline information needed to develop microbiome-based breeding strategies for sustainable wheat farming.
Collapse
Affiliation(s)
| | | | - Yvan Moënne-Loccoz
- Univ Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique (CNRS), Institut National de la Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), VetAgro Sup, UMR 5557 Ecologie Microbienne, Villeurbanne, France
| |
Collapse
|
12
|
Lewin S, Francioli D, Ulrich A, Kolb S. Crop host signatures reflected by co-association patterns of keystone Bacteria in the rhizosphere microbiota. ENVIRONMENTAL MICROBIOME 2021; 16:18. [PMID: 34641981 PMCID: PMC8513244 DOI: 10.1186/s40793-021-00387-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/28/2021] [Indexed: 05/28/2023]
Abstract
BACKGROUND The native crop bacterial microbiota of the rhizosphere is envisioned to be engineered for sustainable agriculture. This requires the identification of keystone rhizosphere Bacteria and an understanding on how these govern crop-specific microbiome assembly from soils. We identified the metabolically active bacterial microbiota (SSU RNA) inhabiting two compartments of the rhizosphere of wheat (Triticum aestivum L.), barley (Hordeum vulgare L.), rye (Secale cereale), and oilseed rape (Brassica napus L.) at different growth stages. RESULTS Based on metabarcoding analysis the bacterial microbiota was shaped by the two rhizosphere compartments, i.e. close and distant. Thereby implying a different spatial extent of bacterial microbiota acquirement by the cereals species versus oilseed rape. We derived core microbiota of each crop species. Massilia (barley and wheat) and unclassified Chloroflexi of group 'KD4-96' (oilseed rape) were identified as keystone Bacteria by combining LEfSe biomarker and network analyses. Subsequently, differential associations between networks of each crop species' core microbiota revealed host plant-specific interconnections for specific genera, such as the unclassified Tepidisphaeraceae 'WD2101 soil group'. CONCLUSIONS Our results provide keystone rhizosphere Bacteria derived from for crop hosts and revealed that cohort subnetworks and differential associations elucidated host species effect that was not evident from differential abundance of single bacterial genera enriched or unique to a specific plant host. Thus, we underline the importance of co-occurrence patterns within the rhizosphere microbiota that emerge in crop-specific microbiomes, which will be essential to modify native crop microbiomes for future agriculture and to develop effective bio-fertilizers.
Collapse
Affiliation(s)
- Simon Lewin
- Microbial Biogeochemistry, Research Area Landscape Functioning, Leibniz Centre for Agricultural Landscape Research e.V. (ZALF), Müncheberg, Germany
| | - Davide Francioli
- Microbial Biogeochemistry, Research Area Landscape Functioning, Leibniz Centre for Agricultural Landscape Research e.V. (ZALF), Müncheberg, Germany
| | - Andreas Ulrich
- Microbial Biogeochemistry, Research Area Landscape Functioning, Leibniz Centre for Agricultural Landscape Research e.V. (ZALF), Müncheberg, Germany
| | - Steffen Kolb
- Microbial Biogeochemistry, Research Area Landscape Functioning, Leibniz Centre for Agricultural Landscape Research e.V. (ZALF), Müncheberg, Germany.
- Thaer Institute, Faculty of Life Sciences, Humboldt University of Berlin, Berlin, Germany.
| |
Collapse
|