1
|
Hutchinson M, Duc HM, Flory GA, Ngan PH, Son HM, Hoa TTK, Lan NT, Rozeboom DW, Remmenga MD, Vuolo M, Miknis R, Miller LP, Burns A, Flory R. Static Aerated Composting of African Swine Fever Virus-Infected Swine Carcasses with Rice Hulls and Sawdust. Pathogens 2023; 12:pathogens12050721. [PMID: 37242391 DOI: 10.3390/pathogens12050721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/26/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Identifying and ensuring the inactivation of the African Swine Fever virus in deadstock is a gap in the swine industry's knowledge and response capabilities. The results of our study demonstrate that ASFv in deadstock was inactivated using static aerated composting as the carcass disposal method. Replicated compost piles with whole market hogs and two different carbon sources were constructed. In-situ bags containing ASFv-infected spleen tissue were placed alongside each of the carcasses and throughout the pile. The bags were extracted at days 0, 1, 3, 7, 14, 28, 56, and 144 for ASFv detection and isolation. Real-time PCR results showed that DNA of ASFv was detected in all samples tested on day 28. The virus concentration identified through virus isolation was found to be below the detection limit by day 3 in rice hulls and by day 7 in sawdust. Given the slope of the decay, near-zero concentration with 99.9% confidence occurred at 5.0 days in rice hulls and at 6.4 days in sawdust. Additionally, the result of virus isolation also showed that the virus in bone marrow samples collected at 28 days was inactivated.
Collapse
Affiliation(s)
- Mark Hutchinson
- Maine Food and Agriculture Center, University of Maine Cooperative Extension, Orono, ME 04473, USA
| | - Hoang Minh Duc
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Vietnam National University of Agriculture Trau Quy, Gia Lam, Hanoi 12400, Vietnam
| | - Gary A Flory
- G.A. Flory Consulting, Mt. Crawford, VA 22841, USA
| | - Pham Hong Ngan
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Vietnam National University of Agriculture Trau Quy, Gia Lam, Hanoi 12400, Vietnam
| | - Hoang Minh Son
- Department of Anatomy and Histology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Trau Quy, Gia Lam, Hanoi 12400, Vietnam
| | - Tran Thi Khanh Hoa
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Vietnam National University of Agriculture Trau Quy, Gia Lam, Hanoi 12400, Vietnam
| | - Nguyen Thi Lan
- Department of Pathology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Trau Quy, Gia Lam, Hanoi 12400, Vietnam
| | - Dale W Rozeboom
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
| | - Marta D Remmenga
- Center for Epidemiolgy and Animal Health, Veterinary Service, Animal and Plant Health Inspection Services, U.S. Department of Agriculture, Fort Collins, CO 80526, USA
| | - Matthew Vuolo
- Center for Epidemiolgy and Animal Health, Veterinary Service, Animal and Plant Health Inspection Services, U.S. Department of Agriculture, Fort Collins, CO 80526, USA
| | - Robert Miknis
- Center for Epidemiolgy and Animal Health, Veterinary Service, Animal and Plant Health Inspection Services, U.S. Department of Agriculture, Fort Collins, CO 80526, USA
| | - Lori P Miller
- Center for Epidemiolgy and Animal Health, Veterinary Service, Animal and Plant Health Inspection Services, U.S. Department of Agriculture, Fort Collins, CO 80526, USA
| | - Amira Burns
- Department of Statistics, Colorado State University, Fort Collins, CO 80523, USA
| | - Renée Flory
- English Department, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
2
|
Pinto Jimenez CE, Keestra S, Tandon P, Cumming O, Pickering AJ, Moodley A, Chandler CIR. Biosecurity and water, sanitation, and hygiene (WASH) interventions in animal agricultural settings for reducing infection burden, antibiotic use, and antibiotic resistance: a One Health systematic review. Lancet Planet Health 2023; 7:e418-e434. [PMID: 37164518 DOI: 10.1016/s2542-5196(23)00049-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 05/12/2023]
Abstract
Prevention and control of infections across the One Health spectrum is essential for improving antibiotic use and addressing the emergence and spread of antibiotic resistance. Evidence for how best to manage these risks in agricultural communities-45% of households globally-has not been systematically assembled. This systematic review identifies and summarises evidence from on-farm biosecurity and water, sanitation, and hygiene (WASH) interventions with the potential to directly or indirectly reduce infections and antibiotic resistance in animal agricultural settings. We searched 17 scientific databases (including Web of Science, PubMed, and regional databases) and grey literature from database inception to Dec 31, 2019 for articles that assessed biosecurity or WASH interventions measuring our outcomes of interest; namely, infection burden, microbial loads, antibiotic use, and antibiotic resistance in animals, humans, or the environment. Risk of bias was assessed with the Systematic Review Centre for Laboratory Animal Experimentation tool, Risk of Bias in Non-Randomized Studies of Interventions, and the Appraisal tool for Cross-Sectional Studies, although no studies were excluded as a result. Due to the heterogeneity of interventions found, we conducted a narrative synthesis. The protocol was pre-registered with PROSPERO (CRD42020162345). Of the 20 672 publications screened, 104 were included in this systematic review. 64 studies were conducted in high-income countries, 24 studies in upper-middle-income countries, 13 studies in lower-middle-income countries, two in low-income countries, and one included both upper-middle-income countries and lower-middle-income countries. 48 interventions focused on livestock (mainly pigs), 43 poultry (mainly chickens), one on livestock and poultry, and 12 on aquaculture farms. 68 of 104 interventions took place on intensive farms, 22 in experimental settings, and ten in smallholder or subsistence farms. Positive outcomes were reported for ten of 23 water studies, 17 of 35 hygiene studies, 15 of 24 sanitation studies, all three air-quality studies, and 11 of 17 other biosecurity-related interventions. In total, 18 of 26 studies reported reduced infection or diseases, 37 of 71 studies reported reduced microbial loads, four of five studies reported reduced antibiotic use, and seven of 20 studies reported reduced antibiotic resistance. Overall, risk of bias was high in 28 of 57 studies with positive interventions and 17 of 30 studies with negative or neutral interventions. Farm-management interventions successfully reduced antibiotic use by up to 57%. Manure-oriented interventions reduced antibiotic resistance genes or antibiotic-resistant bacteria in animal waste by up to 99%. This systematic review highlights the challenges of preventing and controlling infections and antimicrobial resistance, even in well resourced agricultural settings. Most of the evidence emerges from studies that focus on the farm itself, rather than targeting agricultural communities or the broader social, economic, and policy environment that could affect their outcomes. WASH and biosecurity interventions could complement each other when addressing antimicrobial resistance in the human, animal, and environmental interface.
Collapse
Affiliation(s)
- Chris E Pinto Jimenez
- Department of Global Health and Development, Faculty of Public Health and Policy, London School of Hygiene & Tropical Medicine, London, UK; Antimicrobial Resistance Centre, London School of Hygiene & Tropical Medicine, London, UK; Agriculture and Infectious Disease Group, London School of Hygiene & Tropical Medicine, London, UK.
| | - Sarai Keestra
- Department of Global Health and Development, Faculty of Public Health and Policy, London School of Hygiene & Tropical Medicine, London, UK; Agriculture and Infectious Disease Group, London School of Hygiene & Tropical Medicine, London, UK
| | - Pranav Tandon
- Global Health Office, McMaster University, Hamilton, ON, Canada
| | - Oliver Cumming
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Amy J Pickering
- Department of Civil and Environmental Engineering, University of California Berkeley, CA, USA
| | | | - Clare I R Chandler
- Department of Global Health and Development, Faculty of Public Health and Policy, London School of Hygiene & Tropical Medicine, London, UK; Antimicrobial Resistance Centre, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
3
|
Duc HM, Hutchinson M, Flory GA, Ngan PH, Son HM, Hung LV, Hoa TTK, Lan NT, Lam TQ, Rozeboom D, Remmenga MD, Vuolo M, Miknis R, Burns A, Flory R. Viability of African Swine Fever Virus with the Shallow Burial with Carbon Carcass Disposal Method. Pathogens 2023; 12:pathogens12040628. [PMID: 37111514 PMCID: PMC10140975 DOI: 10.3390/pathogens12040628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
African swine fever (ASF) is a highly contagious swine disease with high mortality. In many countries, culling pigs infected and exposed to the ASF virus is mandatory to control the disease, which poses a real challenge in the disposal of large numbers of carcasses during ASF outbreaks. Shallow burial with carbon (SBC) Thanks ew mortality disposal method developed from deep burial and composting. The present study investigates the effectiveness of SBC in disposing of ASF virus-infected pigs. The real-time PCR results showed that DNA of the ASF virus was still detected in bone marrow samples on day 56, while the virus isolation test revealed that the infectious ASF virus was destroyed in both spleen and bone marrow samples on day 5. Interestingly, decomposition was found to occur rapidly in these shallow burial pits. On day 144, only large bones were found in the burial pit. In general, the results of this study indicated that SBC is a potential method for the disposal of ASF-infected carcasses; however, further studies are needed to provide more scientific evidence for the efficacy of SBC in different environment conditions.
Collapse
Affiliation(s)
- Hoang Minh Duc
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Trau Quy, Gia Lam, Hanoi 12406, Vietnam
| | - Mark Hutchinson
- Maine Food and Agriculture Center, University of Maine Cooperative Extension, Orono, ME 04473, USA
| | - Gary A Flory
- G.A. Flory Consulting, Mt. Crawford, VA 22841, USA
| | - Pham Hong Ngan
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Trau Quy, Gia Lam, Hanoi 12406, Vietnam
| | - Hoang Minh Son
- Department of Anatomy and Histology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Trau Quy, Gia Lam, Hanoi 12406, Vietnam
| | - Le Van Hung
- Faculty of Veterinary Medicine, Vietnam National Univeristy of Agriculture, Trau Quy, Gia Lam, Hanoi 12406, Vietnam
| | - Tran Thi Khanh Hoa
- Faculty of Veterinary Medicine, Vietnam National Univeristy of Agriculture, Trau Quy, Gia Lam, Hanoi 12406, Vietnam
| | - Nguyen Thi Lan
- Department of Pathoglogy, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Trau Quy, Gia Lam, Hanoi 12406, Vietnam
| | - Truong Quang Lam
- Faculty of Veterinary Medicine, Vietnam National Univeristy of Agriculture, Trau Quy, Gia Lam, Hanoi 12406, Vietnam
| | - Dale Rozeboom
- Department of Animal Science, Michigan State University Cooperative Extension, Lansing, MI 48824, USA
| | - Marta D Remmenga
- Center for Epidemiology and Animal Health, Veterinary Service, U.S. Department of Agriculture, Animal and Plant Health Inspection Services, Fort Collins, CO 80521, USA
| | - Matthew Vuolo
- Center for Epidemiology and Animal Health, Veterinary Service, U.S. Department of Agriculture, Animal and Plant Health Inspection Services, Fort Collins, CO 80521, USA
| | - Robert Miknis
- U.S. Department of Agriculture, Animal and Plant Health Inspection Services, Fort Collins, CO 80521, USA
| | - Amira Burns
- Department of Statistics, Colorado State University, Fort Collins, CO 80523, USA
| | - Renée Flory
- English Department, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
4
|
Composting of Wild Boar Carcasses in Lithuania Leads to Inactivation of African Swine Fever Virus in Wintertime. Pathogens 2023; 12:pathogens12020285. [PMID: 36839556 PMCID: PMC9966675 DOI: 10.3390/pathogens12020285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023] Open
Abstract
African swine fever (ASF) continues to spread and persist in the Eurasian wild boar population. The infection pressure resulting from infected carcasses in the environment can be a major contributor to disease persistence and spread. For this reason, it is crucial to find a safe and efficient method of carcass disposal under different circumstances. In the presented study, we investigated open-air composting of carcasses under winter conditions in northeastern Europe, i.e., Lithuania. We can demonstrate that the ASF virus (ASFV) is inactivated in both entire wild boar carcasses and pieces thereof in a time- and temperature-dependent manner. Composting piles reached up to 59.0 °C, and ASFV was shown to be inactivated. However, the ASFV genome was still present until the end of the 112-day sampling period. While further studies are needed to explore potential risk factors (and their mitigation), such as destruction of composting piles by scavengers or harsh weather conditions, composting seems to present a valid method to inactivate the ASFV in wild boar carcasses where rendering or other disposal methods are not feasible. In summary, composting provides a new tool in our toolbox of ASF control in wild boar and can be considered for carcass disposal.
Collapse
|
5
|
Chen Y, Li X, Li S, Xu Y. Effect of C/N ration on disposal of pig carcass by co-composting with swine manure: experiment at laboratory scale. ENVIRONMENTAL TECHNOLOGY 2021; 42:4415-4425. [PMID: 32324113 DOI: 10.1080/09593330.2020.1760358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/17/2020] [Indexed: 06/11/2023]
Abstract
Disposal of animal carcasses by co-composting with animal waste usually selected conventional carbon to nitrogen (C/N) ratio around 25:1, in which the compost is widely used throughout the world. In this study, the pig carcass tissue blocks were sampled for composting at a laboratory scale to evaluate the effect of C/N ratio on the pig carcass compost. The time of thermophilic phase between 60 °C - 70 °C at a lower C/N ratio of 20:1 was significantly longer than that at the conventional C/N ratio, and it was the only one with the temperature beyond 70 °C that lasted for 2 days. Germination index and T value (the final C/N ratio / the initial C/N ratio) of the treatment with a C/N ratio of 20:1 were 94.67% and 0.69, respectively, meeting the standards of animal carcass compost. The degradation rate was 75.67%, and no significant difference was obtained as compared to the conventional C/N ratio groups. Organic fertilizer produced from the treatment with a C/N ratio of 20:1 was selected to evaluate the fertility by pot experiment of Cayenne pepper compared with chemical fertilizer. The results showed that organic fertilizer from this treatment could significantly improve the growth of Cayenne pepper. Overall, the use of the lower C/N ratio of 20:1 in the disposal of pig carcass by co-composting with swine manure could achieve the similar degradation rate as well as the maturity and stability of organic fertilizer as compared with the traditional C/N ratio at lab scale.
Collapse
Affiliation(s)
- Yan Chen
- School of Bioengineering, Dalian University of Technology, Dalian, People's Republic of China
| | - Xiaoyu Li
- School of Bioengineering, Dalian University of Technology, Dalian, People's Republic of China
- Ministry of Education Center for Food Safety of Animal Origin, Dalian, People's Republic of China
| | - Shuying Li
- Dalian SEM Bio-Engineering Technology Co. Ltd., Dalian, People's Republic of China
| | - Yongping Xu
- School of Bioengineering, Dalian University of Technology, Dalian, People's Republic of China
- Ministry of Education Center for Food Safety of Animal Origin, Dalian, People's Republic of China
- Dalian SEM Bio-Engineering Technology Co. Ltd., Dalian, People's Republic of China
| |
Collapse
|
6
|
Costa T, Akdeniz N, Gates RS, Lowe J, Zhang Y. Testing the plastic-wrapped composting system to dispose of swine mortalities during an animal disease outbreak. JOURNAL OF ENVIRONMENTAL QUALITY 2021; 50:899-910. [PMID: 33872403 DOI: 10.1002/jeq2.20235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
Composting has been used to dispose of animal mortalities and infected materials, such as manure and feed, during major animal disease outbreaks. In this study, we adapted the plastic-wrapped mortality composting system developed by the Canadian Food Inspection Agency during the 2004 highly pathogenic avian influenza outbreak to compost swine mortalities. The goals of the study were to evaluate the performance of the plastic-wrapped composting system to dispose of swine mortalities and to field test its ability to eliminate the spread of airborne pathogens through the aeration ducts. Two cover materials, ground cornstalks and woodchips, were tested using passively and actively aerated composting sheds. The mortalities were inoculated with Salmonella spp. and vaccine strains of Bovine herpesvirus-1 and Bovine viral diarrhea virus. Air samples collected from the upper aeration duct (air outlet) during the first 10 d of composting were negative for Salmonella and the viruses tested, which indicated that aerosol transmission of the pathogens was limited. The aeration plenum placed under the mortalities helped to keep conditions aerobic, as O2 concentrations of both passively and actively aerated test units were above 11%. Actively aerated cornstalks had the highest degree-hours (1,462 °C h d-1 ), which was followed by passively aerated cornstalks (1,312 °C h d-1 ), actively aerated woodchips (1,303 °C h d-1 ), and passively aerated woodchips (1,062 °C h d-1 ). After a 7-wk composting period, all three pathogens were inactivated based on quantitative polymerase chain reaction test results. The mortalities were not inoculated with the African swine fever virus, but temperature data showed that if they were, the system had the potential to eliminate this virus.
Collapse
Affiliation(s)
- Tiago Costa
- Dep. of Agricultural and Biological Engineering, Univ. of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Neslihan Akdeniz
- Dep. of Agricultural and Biological Engineering, Univ. of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Richard S Gates
- Dep. of Agricultural and Biological Engineering, Univ. of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Dep. of Agricultural and Biosystems Engineering, IA State Univ., Ames, IA, 50011, USA
| | - James Lowe
- Dep. of Veterinary Clinical Medicine, Univ. of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
| | - Yuanhui Zhang
- Dep. of Agricultural and Biological Engineering, Univ. of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
7
|
Pepin B, Williams T, Polson D, Gauger P, Dee S. Survival of swine pathogens in compost formed from preprocessed carcasses. Transbound Emerg Dis 2020; 68:2239-2249. [PMID: 33037785 PMCID: PMC8359276 DOI: 10.1111/tbed.13876] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/11/2020] [Accepted: 10/06/2020] [Indexed: 11/29/2022]
Abstract
An introduction of a Foreign Animal Disease (FAD) like African Swine Fever Virus (ASF) would be financially devastating. For example, ASF, a highly contagious pathogen with high mortality rates, is a World Health Organization reportable disease that has recently been spreading across Asia and Europe. Control of ASF would likely require mass euthanasia of infected and exposed animals similar to the United Kingdom's elimination of Foot and Mouth Disease (FMD). Subsequent disposal of infectious carcasses must adequately eliminate the virus and prevent further transmission of the disease. Although composting swine carcasses is widely used throughout the industry, limited data is available describing pathogen survival or elimination during this process. While current methods have evaluated the composting of swine carcasses under temperature-controlled settings, they have not considered the effects of adverse weather conditions (e.g., cold winter conditions) where composting is routinely performed. This study utilized preprocessing (grinding) of swine carcasses prior to composting, which decreases the amount of required carbon material and land space. The ability of composting to reduce the level of viral nucleic acid during cold weather conditions and the risk of environmental contamination that may occur during preprocessing was evaluated. In this study, pigs challenged with Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) and Porcine Epidemic Diarrhea Virus (PEDV), common domestic diseases, before euthanasia provided infectious carcasses containing pathogen surrogates. Composting of preprocessed carcasses achieved adequate temperatures necessary to eliminate FAD and common swine pathogens during cold weather conditions (monitored by compost temperature over time, virus diagnostic testing, and swine bioassay for PRRSV and PEDV). Under the conditions of this study, composting preprocessed carcasses presents minimal risk to air and groundwater contamination. In conclusion, composting preprocessed euthanized swine under adverse weather conditions is a safe and feasible option for mass disposal of infected carcasses.
Collapse
Affiliation(s)
- Brent Pepin
- Pipestone Veterinary Services, Pipestone, MN, USA
| | | | - Dale Polson
- Boehringer Ingelheim Animal Health, Duluth, GA, USA
| | | | - Scott Dee
- Pipestone Veterinary Services, Pipestone, MN, USA
| |
Collapse
|
8
|
Ahmadifard A. Unmasking the hidden pandemic: sustainability in the setting of the COVID-19 pandemic. Br Dent J 2020; 229:343-345. [PMID: 32978576 PMCID: PMC7517750 DOI: 10.1038/s41415-020-2055-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Indexed: 11/09/2022]
Abstract
The advent of the COVID-19 pandemic has seen disruptions to almost all aspects of society, and the environment will not be left unaffected. With increased personal protective equipment (PPE) provisions in dental settings, plastic consumption and disposal are likely to increase significantly. This poses the risk of an environmental crisis from increased pollution if the production and disposal of plastic-based PPE products are not managed effectively. Learning from natural disaster management approaches and past crises, we must align our short-term goals of responding to the COVID-19 pandemic with our long-term vision for environmentally conscious action. Sustainable activity will underpin a successful response to our current health crisis.
Collapse
Affiliation(s)
- Arefeh Ahmadifard
- Barts and the London School of Medicine and Dentistry. Turner St, Whitechapel, London, E1 2AD, UK.
| |
Collapse
|
9
|
Bucini G, Merrill SC, Clark E, Moegenburg SM, Zia A, Koliba CJ, Wiltshire S, Trinity L, Smith JM. Risk Attitudes Affect Livestock Biosecurity Decisions With Ramifications for Disease Control in a Simulated Production System. Front Vet Sci 2019; 6:196. [PMID: 31294037 PMCID: PMC6604760 DOI: 10.3389/fvets.2019.00196] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/31/2019] [Indexed: 01/10/2023] Open
Abstract
Hog producers' operational decisions can be informed by an awareness of risks associated with emergent and endemic diseases. Outbreaks of porcine epidemic diarrhea virus (PEDv) have been re-occurring every year since the first onset in 2013 with substantial losses across the hog production supply chain. Interestingly, a decreasing trend in PEDv incidence is visible. We assert that changes in human behaviors may underlie this trend. Disease prevention using biosecurity practices is used to minimize risk of infection but its efficacy is conditional on human behavior and risk attitude. Standard epidemiological models bring important insights into disease dynamics but have limited predictive ability. Since research shows that human behavior plays a driving role in the disease spread process, the explicit inclusion of human behavior into models adds an important dimension to understanding disease spread. Here we analyze PEDv incidence emerging from an agent-based model (ABM) that uses both epidemiological dynamics and algorithms that incorporate heterogeneous human decisions. We investigate the effects of shifting fractions of hog producers between risk tolerant and risk averse positions. These shifts affect the dynamics describing willingness to increase biosecurity as a response to disease threats and, indirectly, change infection probabilities and the resultant intensity and impact of the disease outbreak. Our ABM generates empirically verifiable patterns of PEDv transmission. Scenario results show that relatively small shifts (10% of the producer agents) toward a risk averse position can lead to a significant decrease in total incidence. For significantly steeper decreases in disease incidence, the model's hog producer population needed at least 37.5% of risk averse. Our study provides insight into the link between risk attitude, decisions related to biosecurity, and consequent spread of disease within a livestock production system. We suggest that it is possible to create positive, lasting changes in animal health by nudging the population of livestock producers toward more risk averse behaviors. We make a case for integrating social and epidemiological aspects in disease spread models to test intervention strategies intended to improve biosecurity and animal health at the system scale.
Collapse
Affiliation(s)
- Gabriela Bucini
- Department of Plant and Soil Science, University of Vermont, Burlington, VT, United States
| | - Scott C. Merrill
- Department of Plant and Soil Science, University of Vermont, Burlington, VT, United States
| | - Eric Clark
- The Vermont Complex Systems Center, University of Vermont, Burlington, VT, United States
| | - Susan M. Moegenburg
- Department of Plant and Soil Science, University of Vermont, Burlington, VT, United States
| | - Asim Zia
- Department of Community Development and Applied Economics, University of Vermont, Burlington, VT, United States
| | - Christopher J. Koliba
- Department of Community Development and Applied Economics, University of Vermont, Burlington, VT, United States
| | - Serge Wiltshire
- Department of Food Systems, University of Vermont, Burlington, VT, United States
| | - Luke Trinity
- Department of Mathematics and Statistics, University of Vermont, Burlington, VT, United States
| | - Julia M. Smith
- Department of Animal and Veterinary Sciences, University of Vermont, Burlington, VT, United States
| |
Collapse
|
10
|
Costa T, Akdeniz N. A review of the animal disease outbreaks and biosecure animal mortality composting systems. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 90:121-131. [PMID: 31088667 PMCID: PMC7126724 DOI: 10.1016/j.wasman.2019.04.047] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/19/2019] [Accepted: 04/22/2019] [Indexed: 05/05/2023]
Abstract
Despite the development of new vaccines and the application of rigorous biosecurity measures, animal diseases pose a continuing threat to animal health, food safety, national economy, and the environment. Intense livestock production, increased travel, and changing climate have increased the risk of catastrophic animal losses due to infectious diseases. In the event of an outbreak, it is essential to properly manage the infected animals to prevent the spread of diseases. The most common disposal methods used during a disease outbreak include burial, landfilling, incineration and composting. Biosecurity, transportation logistics, public perception, and environmental concerns limit the use of some of these methods. During a disease outbreak, the large number of mortalities often exceeds the capacity of local rendering plants and landfills. Transporting mortalities to disposal and incineration facilities outside the production operation introduces biosecurity risks. Burying mortalities is limited by the size and availability of suitable sites and it has the risk of pathogen survival and contamination of groundwater and soil. Portable incinerators are expensive and have the potential to aerosolize infectious particles. Composting, on the other hand, has been recognized as a biosecure disposal method. Research showed that it eliminates bacterial pathogens such as Escherichia coli O157: H7, Salmonella spp., as well as viruses including highly pathogenic avian influenza, foot-and-mouth disease, Newcastle disease, and porcine epidemic diarrhea. This paper summarizes the lessons learned during the major animal disease outbreaks including the 2010 foot-and-mouth disease, 2016 highly pathogenic avian influenza, and recent African swine fever outbreaks. The purpose of this review is to critically discuss the biosecurity of composting as a mortality disposal method during the outbreaks of infectious animal diseases.
Collapse
Affiliation(s)
- Tiago Costa
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, IL 61801, USA
| | - Neslihan Akdeniz
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, IL 61801, USA.
| |
Collapse
|
11
|
Liu J, Li LM, Han JQ, Sun TR, Zhao X, Xu RT, Song QY. A TaqMan probe-based real-time PCR to differentiate porcine epidemic diarrhea virus virulent strains from attenuated vaccine strains. Mol Cell Probes 2019; 45:37-42. [PMID: 31004698 DOI: 10.1016/j.mcp.2019.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/12/2019] [Accepted: 04/16/2019] [Indexed: 10/27/2022]
Abstract
Porcine epidemic diarrhea virus (PEDV) is an important pathogen causing severe watery diarrhea, vomiting, dehydration, and death in sucking piglets. Attenuated vaccines have been used widely in sows in order to protect piglets through passive lactogenic immunity. Rapid and sensitive detection methods for differentiating attenuated vaccine strains from virulent ones are essential and practical in PEDV prevention and control. Based on the deletion mutation in ORF3 gene sequence, a TaqMan probe-based real-time quantitative PCR (TaqMan qPCR) was developed to distinguish PEDV virulent strains from attenuated vaccine ones in this study. The TaqMan qPCR could specifically detect PEDV virulent strain but not attenuated vaccine strain and other viruses. At least 37 DNA copies and PEDV of 0.995 TCID50 could be detected by TaqMan qPCR. The reproducibility was evaluated using various dilution of plasmids carrying PEDV ORF3 gene and virulent PEDV, and the inter-assay coefficient of variation (CV) was less than 0.44%. The TaqMan qPCR was further applied to detect 38 samples including intestines and their contents, fecal swabs, and mesenteric lymph nodes. Meanwhile, indirect immunofluorescence assay (IFA) was employed to detect PEDV-specific antigen. PEDV positive rates were 31.58% (12/38) and 26.32% (10/38) by TaqMan PCR and IFA, respectively, which suggested that the former was more sensitive than the latter. The TaqMan qPCR based on PEDV ORF3 gene could be a valuable tool in diagnose of porcine epidemic diarrhea and in molecular epidemiological study of the virulent PEDV.
Collapse
Affiliation(s)
- Jing Liu
- College of Animal Medicine, Hebei Agricultural University, Baoding, Hebei, 071000, China.
| | - Li-Min Li
- College of Animal Medicine, Hebei Agricultural University, Baoding, Hebei, 071000, China.
| | - Jiu-Qaun Han
- College of Foreign Languages, Hebei Agricultural University, Baoding, Hebei, 071000, China.
| | - Tai-Ran Sun
- Baoding Animal Disease Control and Prevention Center, Baoding, Hebei, 071000, China.
| | - Xue Zhao
- College of Animal Medicine, Hebei Agricultural University, Baoding, Hebei, 071000, China.
| | - Rui-Tao Xu
- College of Animal Medicine, Hebei Agricultural University, Baoding, Hebei, 071000, China.
| | - Qin-Ye Song
- College of Animal Medicine, Hebei Agricultural University, Baoding, Hebei, 071000, China.
| |
Collapse
|
12
|
Stability of Porcine Epidemic Diarrhea Virus on Fomite Materials at Different Temperatures. Vet Sci 2018; 5:vetsci5010021. [PMID: 29438310 PMCID: PMC5876564 DOI: 10.3390/vetsci5010021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/09/2018] [Accepted: 02/11/2018] [Indexed: 12/20/2022] Open
Abstract
Indirect transmission of porcine epidemic diarrhea virus (PEDV) ensues when susceptible animals contact PEDV-contaminated fomite materials. Although the survival of PEDV under various pHs and temperatures has been studied, virus stability on different fomite surfaces under varying temperature conditions has not been explored. Hence, we evaluated the survival of PEDV on inanimate objects routinely used on swine farms such as styrofoam, rubber, plastic, coveralls, and other equipment. The titer of infectious PEDV at 4 °C decreased by only 1 to 2 log during the first 5 days, and the virus was recoverable for up to 15 days on Styrofoam, aluminum, Tyvek® coverall, cloth, and plastic. However, viral titers decreased precipitously when stored at room temperature; no virus was detectable after one day on all materials tested. A more sensitive immunoplaque assay was able to detect virus from Styrofoam, metal, and plastic at 20 days post application, representing a 3-log loss of input virus on fomite materials. Recovery of infectious PEDV from Tyvek® coverall and rubber was above detection limit at 20 days. Our findings indicate that the type of fomite material and temperatures impact PEDV stability, which is important in understanding the nuances of indirect transmission and epidemiology of PEDV.
Collapse
|