1
|
Bhaumik S, Sarkar A, Debnath S, Debnath B, Ghosh R, Zaki ME, Al-Hussain SA. α-Glucosidase inhibitory potential of Oroxylum indicum using molecular docking, molecular dynamics, and in vitro evaluation. Saudi Pharm J 2024; 32:102095. [PMID: 38766274 PMCID: PMC11101736 DOI: 10.1016/j.jsps.2024.102095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/01/2024] [Indexed: 05/22/2024] Open
Abstract
Background According to the International Diabetes Federation, there will be 578 million individuals worldwide with diabetes by 2030 and 700 million by 2045. One of the promising drug targets to fight diabetes is α-glucosidase (AG), and its inhibitors may be used to manage diabetes by reducing the breakdown of complex carbohydrates into simple sugars. The study aims to identify and validate potential AG inhibitors in natural sources to combat diabetes. Methods Computational techniques such as structure-based virtual screening and molecular dyncamic simulation were employed to predict potential AG inhibitors from compounds of Oroxylum indicum. Finally, in silico results were validated by in vitro analysis using n-butanol fraction of crude methanol extracts. Results The XP glide scores of top seven hits OI_13, OI_66, OI_16, OI_44, OI_43, OI_20, OI_78 and acarbose were -14.261, -13.475, -13.074, -13.045, -12.978, -12.659, -12.354 and -12.296 kcal/mol, respectively. These hits demonstrated excellent binding affinity towards AG, surpassing the known AG inhibitor acarbose. The MM-GBSA dG binding energies of OI_13, OI_66, and acarbose were -69.093, -62.950, and -53.055 kcal/mol, respectively. Most of the top hits were glycosides, indicating that active compounds lie in the n-butanol fraction of the extract. The IC50 value for AG inhibition by n-butanol fraction was 248.1 μg/ml, and for that of pure acarbose it was 89.16 μg/ml. The predicted oral absorption rate in humans for the top seven hits was low like acarbose, which favors the use of these compounds as anti-diabetes in the small intestine. Conclusion In summary, the study provides promising insights into the use of natural compounds derived from O. indicum as potential AG inhibitors to manage diabetes. However, further research, including clinical trials and pharmacological studies, would be necessary to validate their efficacy and safety before clinical use.
Collapse
Affiliation(s)
- Samhita Bhaumik
- Department of Chemistry, Women’s College, Agartala, Tripura 799001, India
| | - Alekhya Sarkar
- Department of Forestry and Biodiversity, Tripura University, Suryamaninagar, Tripura, India
| | - Sudhan Debnath
- Department of Chemistry, Netaji Subhash Mahavidyalaya, Udaipur, Tripura 799 114, India
| | - Bimal Debnath
- Department of Forestry and Biodiversity, Tripura University, Suryamaninagar, Tripura, India
| | - Rajat Ghosh
- In Silico Drug Design Lab., Department of Pharmacy, Tripura University, Suryamaninagar, Tripura, India
| | - Magdi E.A. Zaki
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh 11623, Saudi Arabia
| | - Sami A. Al-Hussain
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh 11623, Saudi Arabia
| |
Collapse
|
2
|
Torres-Benítez A, Ortega-Valencia JE, Jara-Pinuer N, Sanchez M, Vargas-Arana G, Gómez-Serranillos MP, Simirgiotis MJ. Antioxidant and antidiabetic activity and phytoconstituents of lichen extracts with temperate and polar distribution. Front Pharmacol 2023; 14:1251856. [PMID: 38026927 PMCID: PMC10646315 DOI: 10.3389/fphar.2023.1251856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 10/03/2023] [Indexed: 12/01/2023] Open
Abstract
The objective of this research was to characterize the chemical composition of ethanolic extracts of the lichen species Placopsis contortuplicata, Ochrolechia frigida, and Umbilicaria antarctica, their antioxidant activity, and enzymatic inhibition through in vitro and molecular docking analysis. In total phenol content, FRAP, ORAC, and DPPH assays, the extracts showed significant antioxidant activity, and in in vitro assays for the inhibition of pancreatic lipase, α-glucosidase, and α-amylase enzymes, together with in silico studies for the prediction of pharmacokinetic properties, toxicity risks, and intermolecular interactions of compounds, the extracts evidenced inhibitory potential. A total of 13 compounds were identified by UHPLC-ESI-QTOF-MS in P. contortuplicata, 18 compounds in O. frigida, and 12 compounds in U. antarctica. This study contributes to the knowledge of the pool of bioactive compounds present in lichens of temperate and polar distribution and biological characteristics that increase interest in the discovery of natural products that offer alternatives for treatment studies of diseases related to oxidative stress and metabolic syndrome.
Collapse
Affiliation(s)
- Alfredo Torres-Benítez
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | | | - Nicolás Jara-Pinuer
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Marta Sanchez
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Gabriel Vargas-Arana
- Laboratorio de Química de Productos Naturales, Instituto de Investigaciones de la Amazonía Peruana, Avenue Abelardo Quiñones, Iquitos, Peru
- Facultad de Industrias Alimentarias, Universidad Nacional de la Amazonía Peruana, Iquitos, Peru
| | - María Pilar Gómez-Serranillos
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Mario J. Simirgiotis
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
3
|
Roy S, Teron R, Nikku Linga R. PhytoSelectDBT: A database for the molecular models of anti-diabetic targets docked with bioactive peptides from selected ethno-medicinal plants. Bioinformation 2023; 19:908-917. [PMID: 37928486 PMCID: PMC10625370 DOI: 10.6026/97320630019908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/30/2023] [Accepted: 09/30/2023] [Indexed: 11/07/2023] Open
Abstract
It is of interest to assess the effectiveness of bioactive peptides derived from 41 ethno-medicinal plants, classify them according to their anti-diabetic protein targets (DPP-IV, alpha-amylase, alpha-glucosidase, GRK2, GSK3B, GLP-1R, and AdipoR1), and create a web tool named PhytoSelectDBT by using the top seven peptides per target. If one of the target-based medicinal plant suggestions made by PhytoSelectDBT is unsuccessful, alternative target-based possibilities are presented by PhytoSelectDBT for treating the condition and any other related complications. The results provide a useful resource for the management of type 2 diabetes and emphasize the significance of utilising ethnomedical knowledge for the identification of potent anti-diabetic plants and their peptides. We used molecular docking to investigate interactions between anti-diabetic targets (DPP-IV, alpha-amylase, alpha-glucosidase, GRK2, GSK3B, GLP-1R, and AdipoR1) and projected bioactive peptides from 41 ethnomedicinal plants. All bioactive peptides were cross-checked against several databases to determine their allergenicity, toxicity, and cross-reactivity. The presence of B and T cell epitopes was also examined in all simulated digested bioactive peptides for reference. This data is archived at the PhytoselectDBT database.
Collapse
Affiliation(s)
- Susanta Roy
- Department of Life Science, Assam University - Diphu Campus, Diphu, Karbi Anglong, ASSAM - 782 462
| | - Robindra Teron
- North Eastern Institute of Ayurveda and Folk Medicine Research (NEIAFMR) Pasighat, East Siang District, Arunachal Pradesh - 791102
| | - Raju Nikku Linga
- Department of Life Science, Assam University - Diphu Campus, Diphu, Karbi Anglong, ASSAM - 782 462
| |
Collapse
|
4
|
Kumari S, Saini R, Bhatnagar A, Mishra A. HR-LCMS and evaluation of anti-diabetic activity of Hemidesmus indicus (anantmool): Kinetic study, and molecular modelling approach. Comput Biol Chem 2023; 105:107896. [PMID: 37263051 DOI: 10.1016/j.compbiolchem.2023.107896] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/08/2023] [Accepted: 05/20/2023] [Indexed: 06/03/2023]
Abstract
This study delved into the exploration of novel antidiabetic medications acquired from natural resources, utilizing the Ayurvedic Rasayana herb Hemidesmus indicus through cutting-edge chemoprofiling and molecular modelling techniques. The methanolic extract of Hemidesmus indicus root exhibited the highest extractive yield (24.70 ± 0.08 %) and contained substantial levels of total phenolic and flavonoid content as 154.15 ± 1.24 mg Gallic Acid Equivalent/g extract and 70.61 ± 0.35 Quercetin Equivalent/g extract respectively. Invitro study revealed the potent inhibitory potential of methanolic extract of the herb against essential carbohydrate hydrolytic enzymes α-amylase (IC50 = 4.19 ± 0.04 mg/ml) and α-glucosidase (IC50 = 5.78 ± 0.10 mg/ml). Further, the enzyme kinetic study demonstrated the competitive mode of inhibition of both enzymes. HR-LCMS analysis identified the major phytoconstituents present in the extracts, including Solanocapsine, Cyclovirobuxine C, Lucidine B, Zygadenine, Aspidospermidine, silychristin, 3beta-3-Hydroxy-18-lupen-21-one, Manglupenone, and 19-Noretiocholanolone. Molecular docking, molecular dynamic simulation, and MM/GBSA analysis have proved stable, rigid, compact, and folded form of complexes during the entire 100 ns simulation, illustrating Zygadenine, Solanocapsine, and Cyclovirobuxine C as the superior inhibitors of α-A protein, while Zygadenine, Plumieride, and Phlegmarine exhibited greater inhibitory behaviour towards α-G protein than the FDA-approved drug acarbose. Collectively, our findings indicate that the Hemidesmus indicus could be a promising source of α-A and α-G inhibitors, potentially serving as a lead in order to develop medications for type-2 diabetes.
Collapse
Affiliation(s)
- Sonali Kumari
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh, India
| | - Ravi Saini
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh, India
| | - Aditi Bhatnagar
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh, India
| | - Abha Mishra
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh, India.
| |
Collapse
|
5
|
Abdulhafiz F, Reduan MFH, Hisam AH, Mohammad I, Abdul Wahab IR, Abdul Hamid FF, Mohammed A, Nordin ML, Shaari R, Bakar LA, Kari ZA, Wei LS, Goh KW, Ahmad Mohd Zain MR. LC-TOF-MS/MS and GC-MS based phytochemical profiling and evaluation of wound healing activity of Oroxylum Indicum (L.) Kurz (Beka). Front Pharmacol 2022; 13:1050453. [PMID: 36483735 PMCID: PMC9723245 DOI: 10.3389/fphar.2022.1050453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/08/2022] [Indexed: 09/29/2023] Open
Abstract
Background: Beka (Oroxylum indicum (L.) Kurz) has been used as a culinary herb and natural remedy by the local communities in Malaysia. The leaf of O. indicum is traditionally used for the treatment of diarrhea, high blood pressure, and improving digestive health. Objectives: The present study was conducted to evaluate the phytochemical constituents and wound healing properties (in vitro and in vivo models) of aqueous and ethanol extracts of O. indicum leaves. Methods: The total phenolic (TPC) and total flavonoid (TFC) contents in the plant extracts were determined by the spectrophotometric methods. Further, the extract was characterized by Liquid Chromatography Time-of-Flight Mass Spectrometry (LC-TOF-MS/MS) and Gas Chromatography-Mass Spectrometry (GC-MS). The wound healing activity was assessed using the in vitro scratch wound-healing assay and in vivo excisional wound model. Results: The results show the ethanol leaves extract had the higher TPC (164 mg GAE/g) when compared with the aqueous leaves extract (30 mg gallic acid equivalents/g). The ethanol leaves extract was also found to have higher TFC (101 mg Catechin equivalents/g) than the aqueous leaves extract (76 mg Catechin equivalents/g). The ethanol leaves extract was then used for further chemical analysis. The LC-TOF-MS/MS analysis showed that the leaves extracts of O. indicum contains many important compounds such as Orientin, Chrysin, Pinoquercetin, Cupressuflavone, Puerarin xyloside, Forsythiaside and Paederoside. In GC-MS analysis, 19 compounds were identified in ethanolic leaves extract. The wound healing studies shows that O. indicum has promising wound healing activity by increasing the rate of wound contraction significantly (p < 0.05). Conclusion: In conclusion, the present study showed that O. indicum leaf contains important phytochemicals and the wound healing potential of the O. indicum extract may probably be as a result of the presence of various phytoconstituents.
Collapse
Affiliation(s)
- Ferid Abdulhafiz
- Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Kota Bharu, Malaysia
| | | | - Anwar Hazim Hisam
- Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Kota Bharu, Malaysia
| | - Ibtihal Mohammad
- Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Kota Bharu, Malaysia
| | | | | | - Arifullah Mohammed
- Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Kota Bharu, Malaysia
| | | | - Rumaizi Shaari
- Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Kota Bharu, Malaysia
| | - Luqman Abu Bakar
- Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Kota Bharu, Malaysia
| | - Zulhisyam Abdul Kari
- Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Kota Bharu, Malaysia
| | - Lee Seong Wei
- Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Kota Bharu, Malaysia
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai, Malaysia
| | | |
Collapse
|
6
|
Byahut A, Bag A. An update on medicinal plants traditionally used to treat diabetes in southeast Sikkim, India. PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY 2022. [DOI: 10.1007/s43538-022-00074-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|