1
|
Patil TV, Jin H, Dutta SD, Aacharya R, Chen K, Ganguly K, Randhawa A, Lim KT. Zn@TA assisted dual cross-linked 3D printable glycol grafted chitosan hydrogels for robust antibiofilm and wound healing. Carbohydr Polym 2024; 344:122522. [PMID: 39218566 DOI: 10.1016/j.carbpol.2024.122522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 09/04/2024]
Abstract
Rapid regeneration of the injured tissue or organs is necessary to achieve the usual functionalities of the damaged parts. However, bacterial infections delay the regeneration process, a severe challenge in the personalized healthcare sector. To overcome these challenges, 3D-printable multifunctional hydrogels of Zn/tannic acid-reinforced glycol functionalized chitosan for rapid wound healing were developed. Polyphenol strengthened intermolecular connections, while glutaraldehyde stabilized 3D-printed structures. The hydrogel exhibited enhanced viscoelasticity (G'; 1.96 × 104 Pa) and adhesiveness (210 kPa). The dual-crosslinked scaffolds showed remarkable antibacterial activity against Bacillus subtilis (∼81 %) and Escherichia coli (92.75 %). The hydrogels showed no adverse effects on human dermal fibroblasts (HDFs) and macrophages (RAW 264.7), indicating their superior biocompatibility. The Zn/TA-reinforced hydrogels accelerate M2 polarization of macrophages through the activation of anti-inflammatory transcription factors (Arg-1, VEGF, CD163, and IL-10), suggesting better immunomodulatory effects, which is favorable for rapid wound regeneration. Higher collagen deposition and rapid re-epithelialization occurred in scaffold-treated rat groups vis-à-vis controls, demonstrating superior wound healing. Taken together, the developed multifunctional hydrogels have great potential for rapidly regenerating bacteria-infected wounds in the personalized healthcare sector.
Collapse
Affiliation(s)
- Tejal V Patil
- Department of Biosystems Engineering, Kangwon National University, Chuncheon-24341, Republic of Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon-24341, Republic of Korea
| | - Hexiu Jin
- Department of Plastic and Traumatic Surgery, Capital Medical University, Beijing-10096, China
| | - Sayan Deb Dutta
- Department of Biosystems Engineering, Kangwon National University, Chuncheon-24341, Republic of Korea; Center for Surgical Bioengineering, Department of Surgery, School of Medicine, University of California Davis, Sacramento, California-95817, United States
| | - Rumi Aacharya
- Department of Biosystems Engineering, Kangwon National University, Chuncheon-24341, Republic of Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon-24341, Republic of Korea
| | - Kehan Chen
- Department of Plastic and Traumatic Surgery, Capital Medical University, Beijing-10096, China
| | - Keya Ganguly
- Department of Biosystems Engineering, Kangwon National University, Chuncheon-24341, Republic of Korea; Institute of Forest Science, Kangwon National University, Chuncheon-24341, Republic of Korea
| | - Aayushi Randhawa
- Department of Biosystems Engineering, Kangwon National University, Chuncheon-24341, Republic of Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon-24341, Republic of Korea
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon-24341, Republic of Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon-24341, Republic of Korea; Institute of Forest Science, Kangwon National University, Chuncheon-24341, Republic of Korea.
| |
Collapse
|
2
|
Wang Z, Lin L, Li X, Zhang Q, Mi X, Xu B, Xu Y, Liu T, Shen Y, Wang Z, Xie N, Wang J. Improving Thermosensitive Bioink Scaffold Fabrication with a Temperature-Regulated Printhead in Robot-Assisted In Situ Bioprinting System. ACS OMEGA 2024; 9:40618-40631. [PMID: 39371970 PMCID: PMC11447728 DOI: 10.1021/acsomega.4c04373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 10/08/2024]
Abstract
In situ bioprinting enables precise 3D printing inside the human body using modified bioprinters with thermosensitive bioinks such as gelatin methacrylate (GelMA). However, these devices lack refined temperature-regulated mechanisms essential for ensuring bioink viscosity, as compared to traditional bio-3D printers. Addressing this challenge, this study presents a temperature-regulated printhead designed to improve the fabrication of thermosensitive bioink scaffolds in in situ bioprinting, integrated into a UR5 robotic arm. Featuring a closed-loop system, it achieves a temperature steady error of 1 °C and a response time of approximately 1 min. The effectiveness of the printer was validated by bioprinting multilayer lattice 3D bioscaffolds. Comparisons were made with or without temperature control using different concentrations of GelMA + LAP. The deformation of the bioscaffolds under both conditions was analyzed, and cell culture tests were conducted to verify viability. Additionally, the rheology and mechanical properties of GelMA were tested. A final preliminary in situ bioprinting experiment was conducted on a model of a damaged femur to demonstrate practical application. The fabrication of this printhead is entirely open source, facilitating easy modifications to accommodate various robotic arms. We encourage readers to advance this prototype for application in increasingly complex in situ bioprinting situations, especially those utilizing thermosensitive bioinks.
Collapse
Affiliation(s)
- Zitong Wang
- Department
of Biomedical Engineering, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Li Lin
- Shanghai
Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Xiangyu Li
- Department
of Mechanical, School of Mechanical & Electrical Engineering, Henan University of Technology, Zhengzhou 450001, Henan Province, China
| | - Quan Zhang
- School
of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, Jiangsu Province, China
| | - Xuelian Mi
- Institute
of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 611756, Sichuan Province, China
| | - Bide Xu
- Innovative
Medical Device Registration Research and Clinical Transformation Service
Center, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuanjing Xu
- Department
of Biomedical Instrument, Institute of Translational
Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tongyou Liu
- Department
of Biomedical Instrument, Institute of Translational
Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuling Shen
- School
of Future Science and Engineering, Soochow
University, Soochow 215021, Jiangsu Province, China
| | - Zan Wang
- Department
of Mechanical, School of Mechanical & Electrical Engineering, Henan University of Technology, Zhengzhou 450001, Henan Province, China
| | - Neng Xie
- Department
of Biomedical Manufacturing and Engineering, School of Mechanical
Engineering, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Jinwu Wang
- Shanghai
Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| |
Collapse
|
3
|
Boretti G, Baldursson HE, Buonarrivo L, Simonsson S, Brynjólfsson S, Gargiulo P, Sigurjónsson ÓE. Mechanical and Biological Characterization of Ionic and Photo-Crosslinking Effects on Gelatin-Based Hydrogel for Cartilage Tissue Engineering Applications. Polymers (Basel) 2024; 16:2741. [PMID: 39408454 PMCID: PMC11479120 DOI: 10.3390/polym16192741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Articular cartilage degeneration poses a significant public health challenge; techniques such as 3D bioprinting are being explored for its regeneration in vitro. Gelatin-based hydrogels represent one of the most promising biopolymers used in cartilage tissue engineering, especially for its collagen composition and tunable mechanical properties. However, there are no standard protocols that define process parameters such as the crosslinking method to apply. To this aim, a reproducible study was conducted for exploring the influence of different crosslinking methods on 3D bioprinted gelatin structures. This study assessed mechanical properties and cell viability in relation to various crosslinking techniques, revealing promising results particularly for dual (photo + ionic) crosslinking methods, which achieved high cell viability and tunable stiffness. These findings offer new insights into the effects of crosslinking methods on 3D bioprinted gelatin for cartilage applications. For example, ionic and photo-crosslinking methods provide softer materials, with photo-crosslinking supporting cell stretching and diffusion, while ionic crosslinking preserves a spherical stem cell morphology. On the other hand, dual crosslinking provides a stiffer, optimized solution for creating stable cartilage-like constructs. The results of this study offer a new perspective on the standardization of gelatin for cartilage bioprinting, bridging the gap between research and clinical applications.
Collapse
Affiliation(s)
- Gabriele Boretti
- School of Science and Engineering, Reykjavik University, 102 Reykjavik, Iceland; (H.E.B.); (L.B.); (P.G.); (Ó.E.S.)
- Institute of Biomedical and Neural Engineering, Reykjavik University, 102 Reykjavik, Iceland
| | - Hafsteinn Esjar Baldursson
- School of Science and Engineering, Reykjavik University, 102 Reykjavik, Iceland; (H.E.B.); (L.B.); (P.G.); (Ó.E.S.)
| | - Luca Buonarrivo
- School of Science and Engineering, Reykjavik University, 102 Reykjavik, Iceland; (H.E.B.); (L.B.); (P.G.); (Ó.E.S.)
| | - Stina Simonsson
- Institute of Biomedicine, Department of Clinical Chemistry and Transfusion Medicine, University of Gothenburg, 405 30 Gothenburg, Sweden;
| | - Sigurður Brynjólfsson
- Faculty of Industrial Engineering, Mechanical Engineering and Computer Science, University of Iceland, 102 Reykjavik, Iceland;
| | - Paolo Gargiulo
- School of Science and Engineering, Reykjavik University, 102 Reykjavik, Iceland; (H.E.B.); (L.B.); (P.G.); (Ó.E.S.)
- Institute of Biomedical and Neural Engineering, Reykjavik University, 102 Reykjavik, Iceland
| | - Ólafur Eysteinn Sigurjónsson
- School of Science and Engineering, Reykjavik University, 102 Reykjavik, Iceland; (H.E.B.); (L.B.); (P.G.); (Ó.E.S.)
- The Blood Bank, Landspitali—The National University Hospital of Iceland, 101 Reykjavik, Iceland
| |
Collapse
|
4
|
Terriac L, Helesbeux JJ, Maugars Y, Guicheux J, Tibbitt MW, Delplace V. Boronate Ester Hydrogels for Biomedical Applications: Challenges and Opportunities. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:6674-6695. [PMID: 39070669 PMCID: PMC11270748 DOI: 10.1021/acs.chemmater.4c00507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 07/30/2024]
Abstract
Boronate ester (BE) hydrogels are increasingly used for biomedical applications. The dynamic nature of these molecular networks enables bond rearrangement, which is associated with viscoelasticity, injectability, printability, and self-healing, among other properties. BEs are also sensitive to pH, redox reactions, and the presence of sugars, which is useful for the design of stimuli-responsive materials. Together, BE hydrogels are interesting scaffolds for use in drug delivery, 3D cell culture, and biofabrication. However, designing stable BE hydrogels at physiological pH (≈7.4) remains a challenge, which is hindering their development and biomedical application. In this context, advanced chemical insights into BE chemistry are being used to design new molecular solutions for material fabrication. This review article summarizes the state of the art in BE hydrogel design for biomedical applications with a focus on the materials chemistry of this class of materials. First, we discuss updated knowledge in BE chemistry including details on the molecular mechanisms associated with BE formation and breakage. Then, we discuss BE hydrogel formation at physiological pH, with an overview of the main systems reported to date along with new perspectives. A last section covers several prominent biomedical applications of BE hydrogels, including drug delivery, 3D cell culture, and bioprinting, with critical insights on the design relevance, limitations and potential.
Collapse
Affiliation(s)
- Léa Terriac
- Nantes
Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton,
RMeS, UMR 1229, F-44000 Nantes, France
| | | | - Yves Maugars
- Nantes
Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton,
RMeS, UMR 1229, F-44000 Nantes, France
| | - Jérôme Guicheux
- Nantes
Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton,
RMeS, UMR 1229, F-44000 Nantes, France
| | - Mark W. Tibbitt
- Macromolecular
Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Vianney Delplace
- Nantes
Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton,
RMeS, UMR 1229, F-44000 Nantes, France
| |
Collapse
|
5
|
Moon SH, Park TY, Cha HJ, Yang YJ. Photo-/thermo-responsive bioink for improved printability in extrusion-based bioprinting. Mater Today Bio 2024; 25:100973. [PMID: 38322663 PMCID: PMC10844750 DOI: 10.1016/j.mtbio.2024.100973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/08/2024] Open
Abstract
Extrusion-based bioprinting has demonstrated significant potential for manufacturing constructs, particularly for 3D cell culture. However, there is a greatly limited number of bioink candidates exploited with extrusion-based bioprinting, as they meet the opposing requirements for printability with indispensable rheological features and for biochemical functionality with desirable microenvironment. In this study, a blend of silk fibroin (SF) and iota-carrageenan (CG) was chosen as a cell-friendly printable material. The SF/CG ink exhibited suitable viscosity and shear-thinning properties, coupled with the rapid sol-gel transition of CG. By employing photo-crosslinking of SF, the printability with Pr value close to 1 and structural integrity of the 3D constructs were significantly improved within a matter of seconds. The printed constructs demonstrated a Young's modulus of approximately 250 kPa, making them suitable for keratinocyte and myoblast cell culture. Furthermore, the high cell adhesiveness and viability (maximum >98%) of the loaded cells underscored the considerable potential of this 3D culture scaffold applied for skin and muscle tissues, which can be easily manipulated using an extrusion-based bioprinter.
Collapse
Affiliation(s)
- Seo Hyung Moon
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea
| | - Tae Yoon Park
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Hyung Joon Cha
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
- Medical Science and Engineering, School of Convergence Science and Technology, Pohang University of Science, Pohang, 37673, Republic of Korea
| | - Yun Jung Yang
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea
- Inha University Hospital, Incheon, 22332, Republic of Korea
| |
Collapse
|
6
|
Cheng Y, Zhang H, Wei H, Yu CY. Injectable hydrogels as emerging drug-delivery platforms for tumor therapy. Biomater Sci 2024; 12:1151-1170. [PMID: 38319379 DOI: 10.1039/d3bm01840g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Tumor therapy continues to be a prominent field within biomedical research. The development of various drug carriers has been propelled by concerns surrounding the side effects and targeting efficacy of various chemotherapeutic drugs and other therapeutic agents. These carriers strive to enhance drug concentration at tumor sites, minimize systemic side effects, and improve therapeutic outcomes. Among the reported delivery systems, injectable hydrogels have emerged as an emerging candidate for the in vivo delivery of chemotherapeutic drugs due to their minimal invasive drug delivery properties. This review systematically summarizes the composition and preparation methodologies of injectable hydrogels and further highlights the delivery mechanisms of diverse drugs using these hydrogels for tumor therapy, along with an in-depth discussion on the optimized therapeutic efficiency of drugs encapsulated within the hydrogels. The work concludes by providing a dynamic forward-looking perspective on the potential challenges and possible solutions of the in situ injectable hydrogels for non-surgical and real-time diagnostic applications.
Collapse
Affiliation(s)
- Yao Cheng
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, Hengyang Medical School, University of South China, 28 W Changsheng Road, Hengyang 421001, Hunan, China.
| | - Haitao Zhang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, Hengyang Medical School, University of South China, 28 W Changsheng Road, Hengyang 421001, Hunan, China.
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, Hengyang Medical School, University of South China, 28 W Changsheng Road, Hengyang 421001, Hunan, China.
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, Hengyang Medical School, University of South China, 28 W Changsheng Road, Hengyang 421001, Hunan, China.
| |
Collapse
|
7
|
Loh JM, Lim YJL, Tay JT, Cheng HM, Tey HL, Liang K. Design and fabrication of customizable microneedles enabled by 3D printing for biomedical applications. Bioact Mater 2024; 32:222-241. [PMID: 37869723 PMCID: PMC10589728 DOI: 10.1016/j.bioactmat.2023.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/22/2023] [Accepted: 09/30/2023] [Indexed: 10/24/2023] Open
Abstract
Microneedles (MNs) is an emerging technology that employs needles ranging from 10 to 1000 μm in height, as a minimally invasive technique for various procedures such as therapeutics, disease monitoring and diagnostics. The commonly used method of fabrication, micromolding, has the advantage of scalability, however, micromolding is unable to achieve rapid customizability in dimensions, geometries and architectures, which are the pivotal factors determining the functionality and efficacy of the MNs. 3D printing offers a promising alternative by enabling MN fabrication with high dimensional accuracy required for precise applications, leading to improved performance. Furthermore, enabled by its customizability and one-step process, there is propitious potential for growth for 3D-printed MNs especially in the field of personalized and on-demand medical devices. This review provides an overview of considerations for the key parameters in designing MNs, an introduction on the various 3D-printing techniques for fabricating this new generation of MNs, as well as highlighting the advancements in biomedical applications facilitated by 3D-printed MNs. Lastly, we offer some insights into the future prospects of 3D-printed MNs, specifically its progress towards translation and entry into market.
Collapse
Affiliation(s)
- Jia Min Loh
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Yun Jie Larissa Lim
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Jin Ting Tay
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), Singapore
| | | | - Hong Liang Tey
- National Skin Centre (NSC), Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- Yong Loo Ling School of Medicine, National University of Singapore, Singapore
- Skin Research Institute of Singapore, Singapore
| | - Kun Liang
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), Singapore
- Skin Research Institute of Singapore, Singapore
| |
Collapse
|
8
|
Fortunato G, Batoni E, Pasqua I, Nicoletta M, Vozzi G, De Maria C. Automatic Photo-Cross-Linking System for Robotic-Based In Situ Bioprinting. ACS Biomater Sci Eng 2023; 9:6926-6934. [PMID: 37824106 PMCID: PMC10716819 DOI: 10.1021/acsbiomaterials.3c00898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/03/2023] [Indexed: 10/13/2023]
Abstract
This work reports the design and validation of an innovative automatic photo-cross-linking device for robotic-based in situ bioprinting. Photo-cross-linking is the most promising polymerization technique when considering biomaterial deposition directly inside a physiological environment, typical of the in situ bioprinting approach. The photo-cross-linking device was designed for the IMAGObot platform, a 5-degree-of-freedom robot re-engineered for in situ bioprinting applications. The system consists of a syringe pump extrusion module equipped with eight light-emitting diodes (LEDs) with a 405 nm wavelength. The hardware and software of the robot were purposely designed to manage the LEDs switching on and off during printing. To minimize the light exposure of the needle, thus avoiding its clogging, only the LEDs opposite the printing direction are switched on to irradiate the newly deposited filament. Moreover, the LED system can be adjusted in height to modulate substrate exposure. Different scaffolds were bioprinted using a GelMA-based hydrogel, varying the printing speed and light distance from the bed, and were characterized in terms of swelling and mechanical properties, proving the robustness of the photo-cross-linking system in various configurations. The system was finally validated onto anthropomorphic phantoms (i.e., a human humerus head and a human hand with defects) featuring complex nonplanar surfaces. The designed system was successfully used to fill these anatomical defects, thus resulting in a promising solution for in situ bioprinting applications.
Collapse
Affiliation(s)
- Gabriele
Maria Fortunato
- Department of Information
Engineering and Research Centre “E. Piaggio”, University of Pisa, 56122 Pisa, Italy
| | - Elisa Batoni
- Department of Information
Engineering and Research Centre “E. Piaggio”, University of Pisa, 56122 Pisa, Italy
| | - Ilenia Pasqua
- Department of Information
Engineering and Research Centre “E. Piaggio”, University of Pisa, 56122 Pisa, Italy
| | - Matteo Nicoletta
- Department of Information
Engineering and Research Centre “E. Piaggio”, University of Pisa, 56122 Pisa, Italy
| | - Giovanni Vozzi
- Department of Information
Engineering and Research Centre “E. Piaggio”, University of Pisa, 56122 Pisa, Italy
| | - Carmelo De Maria
- Department of Information
Engineering and Research Centre “E. Piaggio”, University of Pisa, 56122 Pisa, Italy
| |
Collapse
|
9
|
Aparicio-Collado JL, Zheng Q, Molina-Mateo J, Torregrosa Cabanilles C, Vidaurre A, Serrano-Aroca Á, Sabater i Serra R. Engineered Highly Porous Polyvinyl Alcohol Hydrogels with Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and Graphene Nanosheets for Musculoskeletal Tissue Engineering: Morphology, Water Sorption, Thermal, Mechanical, Electrical Properties, and Biocompatibility. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3114. [PMID: 37109950 PMCID: PMC10145967 DOI: 10.3390/ma16083114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 06/19/2023]
Abstract
Electroactive composite materials are very promising for musculoskeletal tissue engineering because they can be applied in combination with electrostimulation. In this context, novel graphene-based poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/polyvinyl alcohol (PHBV/PVA) semi-interpenetrated networks (semi-IPN) hydrogels were engineered with low amounts of graphene (G) nanosheets dispersed within the polymer matrix to endow them with electroactive properties. The nanohybrid hydrogels, obtained by applying a hybrid solvent casting-freeze-drying method, show an interconnected porous structure and a high water-absorption capacity (swelling degree > 1200%). The thermal characterization indicates that the structure presents microphase separation, with PHBV microdomains located between the PVA network. The PHBV chains located in the microdomains are able to crystallize; even more after the addition of G nanosheets, which act as a nucleating agent. Thermogravimetric analysis indicates that the degradation profile of the semi-IPN is located between those of the neat components, with an improved thermal stability at high temperatures (>450 °C) after the addition of G nanosheets. The mechanical (complex modulus) and electrical properties (surface conductivity) significantly increase in the nanohybrid hydrogels with 0.2% of G nanosheets. Nevertheless, when the amount of G nanoparticles increases fourfold (0.8%), the mechanical properties diminish and the electrical conductivity does not increase proportionally, suggesting the presence of G aggregates. The biological assessment (C2C12 murine myoblasts) indicates a good biocompatibility and proliferative behavior. These results reveal a new conductive and biocompatible semi-IPN with remarkable values of electrical conductivity and ability to induce myoblast proliferation, indicating its great potential for musculoskeletal tissue engineering.
Collapse
Affiliation(s)
- José Luis Aparicio-Collado
- Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, 46022 València, Spain; (J.L.A.-C.); (J.M.-M.); (C.T.C.); (A.V.)
| | - Qiqi Zheng
- Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, 46022 València, Spain; (J.L.A.-C.); (J.M.-M.); (C.T.C.); (A.V.)
| | - José Molina-Mateo
- Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, 46022 València, Spain; (J.L.A.-C.); (J.M.-M.); (C.T.C.); (A.V.)
| | - Constantino Torregrosa Cabanilles
- Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, 46022 València, Spain; (J.L.A.-C.); (J.M.-M.); (C.T.C.); (A.V.)
| | - Ana Vidaurre
- Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, 46022 València, Spain; (J.L.A.-C.); (J.M.-M.); (C.T.C.); (A.V.)
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 46022 València, Spain
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, 46001 València, Spain
| | - Roser Sabater i Serra
- Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, 46022 València, Spain; (J.L.A.-C.); (J.M.-M.); (C.T.C.); (A.V.)
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 46022 València, Spain
- Department of Electrical Engineering, Universitat Politècnica de València, 46022 València, Spain
| |
Collapse
|
10
|
Seo JS, Tumursukh NE, Choi JH, Song Y, Jeon G, Kim NE, Kim SJ, Kim N, Song JE, Khang G. Modified gellan gum-based hydrogel with enhanced mechanical properties for application as a cell carrier for cornea endothelial cells. Int J Biol Macromol 2023; 236:123878. [PMID: 36894057 DOI: 10.1016/j.ijbiomac.2023.123878] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 02/13/2023] [Accepted: 02/26/2023] [Indexed: 03/09/2023]
Abstract
Recently, the number of people suffering from visual loss due to eye diseases is increasing rapidly around the world. However, due to the severe donor shortage and the immune response, corneal replacement is needed. Gellan gum (GG) is biocompatible and widely used for cell delivery or drug delivery, but its strength is not suitable for the corneal substitute. In this study, a GM hydrogel was prepared by blending methacrylated gellan gum with GG (GM) to give suitable mechanical properties to the corneal tissue. In addition, lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP), a crosslinking initiator, was added to the GM hydrogel. After the photo-crosslinking treatment, it was named GM/LAP hydrogel. GM and GM/LAP hydrogels were analyzed for physicochemical properties, mechanical characterization, and transparency tests to confirm their applicability as carriers for corneal endothelial cells (CEnCs). Also, in vitro studies were performed with cell viability tests, cell proliferation tests, cell morphology, cell-matrix remodeling analysis, and gene expression evaluation. The compressive strength of the GM/LAP hydrogel was improved compared to the GM hydrogel. The GM/LAP hydrogel showed excellent cell viability, proliferation, and cornea-specific gene expression than the GM hydrogel. Crosslinking-improved GM/LAP hydrogel can be applied as a promising cell carrier in corneal tissue engineering.
Collapse
Affiliation(s)
- Jin Sol Seo
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk 54896, Republic of Korea.
| | - Nomin-Erdene Tumursukh
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk 54896, Republic of Korea.
| | - Joo Hee Choi
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk 54896, Republic of Korea
| | - Youngeun Song
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk 54896, Republic of Korea
| | - Gayeong Jeon
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk 54896, Republic of Korea
| | - Na Eun Kim
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk 54896, Republic of Korea
| | - Seung Jae Kim
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk 54896, Republic of Korea
| | - Nahyeon Kim
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk 54896, Republic of Korea
| | - Jeong Eun Song
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk 54896, Republic of Korea.
| | - Gilson Khang
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk 54896, Republic of Korea; Department of PolymerNano Science & Technology and Polymer Materials Fusion Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk 54896, Republic of Korea; Department of Orthopaedic & Traumatology, Airlangga University, Jl. Airlangga No.4 - 6, Airlangga, Kec. Gubeng, Kota SBY, Jawa Timur 60115, Indonesia.
| |
Collapse
|
11
|
Moon SH, Hwang HJ, Jeon HR, Park SJ, Bae IS, Yang YJ. Photocrosslinkable natural polymers in tissue engineering. Front Bioeng Biotechnol 2023; 11:1127757. [PMID: 36970625 PMCID: PMC10037533 DOI: 10.3389/fbioe.2023.1127757] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/15/2023] [Indexed: 03/06/2023] Open
Abstract
Natural polymers have been widely used in scaffolds for tissue engineering due to their superior biocompatibility, biodegradability, and low cytotoxicity compared to synthetic polymers. Despite these advantages, there remain drawbacks such as unsatisfying mechanical properties or low processability, which hinder natural tissue substitution. Several non-covalent or covalent crosslinking methods induced by chemicals, temperatures, pH, or light sources have been suggested to overcome these limitations. Among them, light-assisted crosslinking has been considered as a promising strategy for fabricating microstructures of scaffolds. This is due to the merits of non-invasiveness, relatively high crosslinking efficiency via light penetration, and easily controllable parameters, including light intensity or exposure time. This review focuses on photo-reactive moieties and their reaction mechanisms, which are widely exploited along with natural polymer and its tissue engineering applications.
Collapse
Affiliation(s)
- Seo Hyung Moon
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, Republic of Korea
| | - Hye Jin Hwang
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, Republic of Korea
| | - Hye Ryeong Jeon
- Department of Biological Engineering, Inha University, Incheon, Republic of Korea
| | - Sol Ji Park
- Department of Biological Engineering, Inha University, Incheon, Republic of Korea
| | - In Sun Bae
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, Republic of Korea
| | - Yun Jung Yang
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, Republic of Korea
- Department of Biological Engineering, Inha University, Incheon, Republic of Korea
- *Correspondence: Yun Jung Yang,
| |
Collapse
|
12
|
Kasravi M, Ahmadi A, Babajani A, Mazloomnejad R, Hatamnejad MR, Shariatzadeh S, Bahrami S, Niknejad H. Immunogenicity of decellularized extracellular matrix scaffolds: a bottleneck in tissue engineering and regenerative medicine. Biomater Res 2023; 27:10. [PMID: 36759929 PMCID: PMC9912640 DOI: 10.1186/s40824-023-00348-z] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Tissue-engineered decellularized extracellular matrix (ECM) scaffolds hold great potential to address the donor shortage as well as immunologic rejection attributed to cells in conventional tissue/organ transplantation. Decellularization, as the key process in manufacturing ECM scaffolds, removes immunogen cell materials and significantly alleviates the immunogenicity and biocompatibility of derived scaffolds. However, the application of these bioscaffolds still confronts major immunologic challenges. This review discusses the interplay between damage-associated molecular patterns (DAMPs) and antigens as the main inducers of innate and adaptive immunity to aid in manufacturing biocompatible grafts with desirable immunogenicity. It also appraises the impact of various decellularization methodologies (i.e., apoptosis-assisted techniques) on provoking immune responses that participate in rejecting allogenic and xenogeneic decellularized scaffolds. In addition, the key research findings regarding the contribution of ECM alterations, cytotoxicity issues, graft sourcing, and implantation site to the immunogenicity of decellularized tissues/organs are comprehensively considered. Finally, it discusses practical solutions to overcome immunogenicity, including antigen masking by crosslinking, sterilization optimization, and antigen removal techniques such as selective antigen removal and sequential antigen solubilization.
Collapse
Affiliation(s)
- Mohammadreza Kasravi
- grid.411600.2Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1985711151 Iran ,grid.411600.2Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Armin Ahmadi
- grid.411600.2Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1985711151 Iran
| | - Amirhesam Babajani
- grid.411600.2Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1985711151 Iran
| | - Radman Mazloomnejad
- grid.411600.2Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1985711151 Iran
| | - Mohammad Reza Hatamnejad
- grid.411600.2Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Siavash Shariatzadeh
- grid.19006.3e0000 0000 9632 6718Department of Surgery, University of California Los Angeles, Los Angeles, California USA
| | - Soheyl Bahrami
- grid.454388.60000 0004 6047 9906Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Research Center, Vienna, Austria
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1985711151, Iran.
| |
Collapse
|
13
|
Wei Y, Wang Z, Han J, Jiang X, Lei L, Yang X, Sun W, Gou Z, Chen L. Modularized bioceramic scaffold/hydrogel membrane hierarchical architecture beneficial for periodontal tissue regeneration in dogs. Biomater Res 2022; 26:68. [PMID: 36461132 PMCID: PMC9717521 DOI: 10.1186/s40824-022-00315-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/04/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Destruction of alveolar bone and periodontal ligament due to periodontal disease often requires surgical treatment to reconstruct the biological construction and functions of periodontium. Despite significant advances in dental implants in the past two decades, it remains a major challenge to adapt bone grafts and barrier membrane in surgery due to the complicated anatomy of tooth and defect contours. Herein, we developed a novel biphasic hierarchical architecture with modularized functions and shape based on alveolar bone anatomy to achieve the ideal outcomes. METHODS The integrated hierarchical architecture comprising of nonstoichiometric wollastonite (nCSi) scaffolds and gelatin methacrylate/silanized hydroxypropyl methylcellulose (GelMA/Si-HPMC) hydrogel membrane was fabricated by digital light processing (DLP) and photo-crosslinked hydrogel injection technique respectively. The rheological parameters, mechanical properties and degradation rates of composite hydrogels were investigated. L-929 cells were cultured on the hydrogel samples to evaluate biocompatibility and cell barrier effect. Cell scratch assay, alkaline phosphatase (ALP) staining, and alizarin red (AR) staining were used to reveal the migration and osteogenic ability of hydrogel membrane based on mouse mandible-derived osteoblasts (MOBs). Subsequently, a critical-size one-wall periodontal defect model in dogs was prepared to evaluate the periodontal tissue reconstruction potential of the biphasic hierarchical architecture. RESULTS The personalized hydrogel membrane integrating tightly with the nCSi scaffolds exhibited favorable cell viability and osteogenic ability in vitro, while the scratch assay showed that osteoblast migration was drastically correlated with Si-HPMC content in the composite hydrogel. The equivalent composite hydrogel has proven good physiochemical properties, and its membrane exhibited potent occlusive effect in vivo; meanwhile, the hierarchical architectures exerted a strong periodontal regeneration capability in the periodontal intrabony defect models of dogs. Histological examination showed effective bone and periodontal ligament regeneration in the biomimetic architecture system; however, soft tissue invasion was observed in the control group. CONCLUSIONS Our results suggested that such modularized hierarchical architectures have excellent potential as a next-generation oral implants, and this precisely tuned guided tissue regeneration route offer an opportunity for improving periodontal damage reconstruction and reducing operation sensitivity.
Collapse
Affiliation(s)
- Yingming Wei
- grid.13402.340000 0004 1759 700XDepartment of Oral Medicine, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road 88#, Hangzhou, 310009 People’s Republic of China
| | - Zhongxiu Wang
- grid.13402.340000 0004 1759 700XDepartment of Oral Medicine, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road 88#, Hangzhou, 310009 People’s Republic of China
| | - Jiayin Han
- grid.13402.340000 0004 1759 700XDepartment of Oral Medicine, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road 88#, Hangzhou, 310009 People’s Republic of China
| | - Xiaojian Jiang
- grid.13402.340000 0004 1759 700XDepartment of Oral Medicine, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road 88#, Hangzhou, 310009 People’s Republic of China
| | - Lihong Lei
- grid.13402.340000 0004 1759 700XDepartment of Oral Medicine, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road 88#, Hangzhou, 310009 People’s Republic of China
| | - Xianyan Yang
- grid.13402.340000 0004 1759 700XBio-Nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystems Institute, Zhejiang University, Hangzhou, 310058 People’s Republic of China
| | - Weilian Sun
- grid.13402.340000 0004 1759 700XDepartment of Oral Medicine, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road 88#, Hangzhou, 310009 People’s Republic of China
| | - Zhongru Gou
- grid.13402.340000 0004 1759 700XBio-Nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystems Institute, Zhejiang University, Hangzhou, 310058 People’s Republic of China
| | - Lili Chen
- grid.13402.340000 0004 1759 700XDepartment of Oral Medicine, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road 88#, Hangzhou, 310009 People’s Republic of China
| |
Collapse
|
14
|
Bioresorbable Chitosan-Based Bone Regeneration Scaffold Using Various Bioceramics and the Alteration of Photoinitiator Concentration in an Extended UV Photocrosslinking Reaction. Gels 2022; 8:gels8110696. [DOI: 10.3390/gels8110696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022] Open
Abstract
Bone tissue engineering (BTE) is an ongoing field of research based on clinical needs to treat delayed and non-union long bone fractures. An ideal tissue engineering scaffold should have a biodegradability property matching the rate of new bone turnover, be non-toxic, have good mechanical properties, and mimic the natural extracellular matrix to induce bone regeneration. In this study, biodegradable chitosan (CS) scaffolds were prepared with combinations of bioactive ceramics, namely hydroxyapatite (HAp), tricalcium phosphate-α (TCP- α), and fluorapatite (FAp), with a fixed concentration of benzophenone photoinitiator (50 µL of 0.1% (w/v)) and crosslinked using a UV curing system. The efficacy of the one-step crosslinking reaction was assessed using swelling and compression testing, SEM and FTIR analysis, and biodegradation studies in simulated body fluid. Results indicate that the scaffolds had comparable mechanical properties, which were: 13.69 ± 1.06 (CS/HAp), 12.82 ± 4.10 (CS/TCP-α), 13.87 ± 2.9 (CS/HAp/TCP-α), and 15.55 ± 0.56 (CS/FAp). Consequently, various benzophenone concentrations were added to CS/HAp formulations to determine their effect on the degradation rate. Based on the mechanical properties and degradation profile of CS/HAp, it was found that 5 µL of 0.1% (w/v) benzophenone resulted in the highest degradation rate at eight weeks (54.48% degraded), while maintaining compressive strength between (4.04 ± 1.49 to 10.17 ± 4.78 MPa) during degradation testing. These results indicate that incorporating bioceramics with a suitable photoinitiator concentration can tailor the biodegradability and load-bearing capacity of the scaffolds.
Collapse
|
15
|
Mueller E, Xu F, Hoare T. FRESH Bioprinting of Dynamic Hydrazone-Cross-Linked Synthetic Hydrogels. Biomacromolecules 2022; 23:4883-4895. [PMID: 36206528 DOI: 10.1021/acs.biomac.2c01046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dynamic covalent chemistry is an attractive cross-linking strategy for hydrogel bioinks due to its ability to mimic the dynamic interactions that are natively present in the extracellular matrix. However, the inherent challenges in mixing the reactive precursor polymers during printing and the tendency of the soft printed hydrogels to collapse during free-form printing have limited the use of such chemistry in 3D bioprinting cell scaffolds. Herein, we demonstrate 3D printing of hydrazone-cross-linked poly(oligoethylene glycol methacrylate) (POEGMA) hydrogels using the freeform reversible embedding of suspended hydrogels (FRESH) technique coupled with a customized low-cost extrusion bioprinter. The dynamic nature and reversibility of hydrazone cross-links enables reconfiguration of the initially more heterogeneous gel structure to form a more homogeneous internal gel structure, even for more highly cross-linked hydrogels, over a relatively short time (<3 days) while preserving the degradability of the scaffold over longer time frames. POEGMA hydrogels can successfully print NIH/3T3 fibroblasts and human umbilical vein endothelial cells while maintaining high cell viability (>80%) and supporting F-actin-mediated adhesion to the scaffold over a 14-day in vitro incubation period, demonstrating their potential use in practical tissue engineering applications.
Collapse
Affiliation(s)
- Eva Mueller
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, OntarioL8S 4L8, Canada
| | - Fei Xu
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, OntarioL8S 4L8, Canada
| | - Todd Hoare
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, OntarioL8S 4L8, Canada
| |
Collapse
|
16
|
de Prado EML, de Paula GA, Dutra JAP, Cipriano DF, Kitagawa RR, Siman FDM, Meira EF, de Freitas JCC, Severi JA, Carreira LG, Oréfice RL, Villanova JCO. Crude dry extract from Colocasia esculenta in association with poly(vinyl alcohol) as biomaterial to prepare bioactive wound dressing. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04263-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Comparison of Physicochemical, Mechanical, and (Micro-)Biological Properties of Sintered Scaffolds Based on Natural- and Synthetic Hydroxyapatite Supplemented with Selected Dopants. Int J Mol Sci 2022; 23:ijms23094692. [PMID: 35563084 PMCID: PMC9101299 DOI: 10.3390/ijms23094692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 12/24/2022] Open
Abstract
The specific combinations of materials and dopants presented in this work have not been previously described. The main goal of the presented work was to prepare and compare the different properties of newly developed composite materials manufactured by sintering. The synthetic- (SHAP) or natural- (NHAP) hydroxyapatite serves as a matrix and was doped with: (i) organic: multiwalled carbon nanotubes (MWCNT), fullerenes C60, (ii) inorganic: Cu nanowires. Research undertaken was aimed at seeking novel candidates for bone replacement biomaterials based on hydroxyapatite—the main inorganic component of bone, because bone reconstructive surgery is currently mostly carried out with the use of autografts; titanium or other non-hydroxyapatite -based materials. The physicomechanical properties of the developed biomaterials were tested by Scanning Electron Microscopy (SEM), Dielectric Spectroscopy (BSD), Nuclear Magnetic Resonance (NMR), and Differential Scanning Calorimetry (DSC), as well as microhardness using Vickers method. The results showed that despite obtaining porous sinters. The highest microhardness was achieved for composite materials based on NHAP. Based on NMR spectroscopy, residue organic substances could be observed in NHAP composites, probably due to the organic structures that make up the tooth. Microbiology investigations showed that the selected samples exhibit bacteriostatic properties against Gram-positive reference bacterial strain S. epidermidis (ATCC 12228); however, the property was much less pronounced against Gram-negative reference strain E. coli (ATCC 25922). Both NHAP and SHAP, as well as their doped derivates, displayed in good general compatibility, with the exception of Cu-nanowire doped derivates.
Collapse
|
18
|
Mueller E, Poulin I, Bodnaryk WJ, Hoare T. Click Chemistry Hydrogels for Extrusion Bioprinting: Progress, Challenges, and Opportunities. Biomacromolecules 2022; 23:619-640. [PMID: 34989569 DOI: 10.1021/acs.biomac.1c01105] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The emergence of 3D bioprinting has allowed a variety of hydrogel-based "bioinks" to be printed in the presence of cells to create precisely defined cell-loaded 3D scaffolds in a single step for advancing tissue engineering and/or regenerative medicine. While existing bioinks based primarily on ionic cross-linking, photo-cross-linking, or thermogelation have significantly advanced the field, they offer technical limitations in terms of the mechanics, degradation rates, and the cell viabilities achievable with the printed scaffolds, particularly in terms of aiming to match the wide range of mechanics and cellular microenvironments. Click chemistry offers an appealing solution to this challenge given that proper selection of the chemistry can enable precise tuning of both the gelation rate and the degradation rate, both key to successful tissue regeneration; simultaneously, the often bio-orthogonal nature of click chemistry is beneficial to maintain high cell viabilities within the scaffolds. However, to date, relatively few examples of 3D-printed click chemistry hydrogels have been reported, mostly due to the technical challenges of controlling mixing during the printing process to generate high-fidelity prints without clogging the printer. This review aims to showcase existing cross-linking modalities, characterize the advantages and disadvantages of different click chemistries reported, highlight current examples of click chemistry hydrogel bioinks, and discuss the design of mixing strategies to enable effective 3D extrusion bioprinting of click hydrogels.
Collapse
Affiliation(s)
- Eva Mueller
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| | - Isabelle Poulin
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| | - William James Bodnaryk
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| | - Todd Hoare
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| |
Collapse
|
19
|
Shin GR, Kim HE, Kim JH, Choi S, Kim MS. Advances in Injectable In Situ-Forming Hydrogels for Intratumoral Treatment. Pharmaceutics 2021; 13:1953. [PMID: 34834369 PMCID: PMC8624884 DOI: 10.3390/pharmaceutics13111953] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/08/2021] [Accepted: 11/16/2021] [Indexed: 12/25/2022] Open
Abstract
Chemotherapy has been linked to a variety of severe side effects, and the bioavailability of current chemotherapeutic agents is generally low, which decreases their effectiveness. Therefore, there is an ongoing effort to develop drug delivery systems to increase the bioavailability of these agents and minimize their side effects. Among these, intratumoral injections using in situ-forming hydrogels can improve drugs' bioavailability and minimize drugs' accumulation in non-target organs or tissues. This review describes different types of injectable in situ-forming hydrogels and their intratumoral injection for cancer treatment, after which we discuss the antitumor effects of intratumoral injection of drug-loaded hydrogels. This review concludes with perspectives on the future applicability of, and challenges for, the adoption of this drug delivery technology.
Collapse
Affiliation(s)
- Gi Ru Shin
- Department of Molecular Science and Technology, Ajou University, 206, World Cup-ro, Yeongtong-gu, Suwon-si 16499, Gyeonggi-do, Korea; (G.R.S.); (H.E.K.); (J.H.K.); (S.C.)
| | - Hee Eun Kim
- Department of Molecular Science and Technology, Ajou University, 206, World Cup-ro, Yeongtong-gu, Suwon-si 16499, Gyeonggi-do, Korea; (G.R.S.); (H.E.K.); (J.H.K.); (S.C.)
| | - Jae Ho Kim
- Department of Molecular Science and Technology, Ajou University, 206, World Cup-ro, Yeongtong-gu, Suwon-si 16499, Gyeonggi-do, Korea; (G.R.S.); (H.E.K.); (J.H.K.); (S.C.)
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, 206, World Cup-ro, Yeongtong-gu, Suwon-si 16499, Gyeonggi-do, Korea; (G.R.S.); (H.E.K.); (J.H.K.); (S.C.)
| | - Moon Suk Kim
- Department of Molecular Science and Technology, Ajou University, 206, World Cup-ro, Yeongtong-gu, Suwon-si 16499, Gyeonggi-do, Korea; (G.R.S.); (H.E.K.); (J.H.K.); (S.C.)
- Research Institute, Medipolymer, 274-Samsung-ro, Suwon-si 16522, Gyeonggi-do, Korea
| |
Collapse
|
20
|
Ahmed Rehab, Fathy Hassan. Development of Photocrosslinkable Polymers Containing Chalcone as Pendant Photosensitive Moieties. POLYMER SCIENCE SERIES B 2021. [DOI: 10.1134/s1560090421060257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Perera K, Ivone R, Natekin E, Wilga CA, Shen J, Menon JU. 3D Bioprinted Implants for Cartilage Repair in Intervertebral Discs and Knee Menisci. Front Bioeng Biotechnol 2021; 9:754113. [PMID: 34746106 PMCID: PMC8570130 DOI: 10.3389/fbioe.2021.754113] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/30/2021] [Indexed: 01/10/2023] Open
Abstract
Cartilage defects pose a significant clinical challenge as they can lead to joint pain, swelling and stiffness, which reduces mobility and function thereby significantly affecting the quality of life of patients. More than 250,000 cartilage repair surgeries are performed in the United States every year. The current gold standard is the treatment of focal cartilage defects and bone damage with nonflexible metal or plastic prosthetics. However, these prosthetics are often made from hard and stiff materials that limits mobility and flexibility, and results in leaching of metal particles into the body, degeneration of adjacent soft bone tissues and possible failure of the implant with time. As a result, the patients may require revision surgeries to replace the worn implants or adjacent vertebrae. More recently, autograft - and allograft-based repair strategies have been studied, however these too are limited by donor site morbidity and the limited availability of tissues for surgery. There has been increasing interest in the past two decades in the area of cartilage tissue engineering where methods like 3D bioprinting may be implemented to generate functional constructs using a combination of cells, growth factors (GF) and biocompatible materials. 3D bioprinting allows for the modulation of mechanical properties of the developed constructs to maintain the required flexibility following implantation while also providing the stiffness needed to support body weight. In this review, we will provide a comprehensive overview of current advances in 3D bioprinting for cartilage tissue engineering for knee menisci and intervertebral disc repair. We will also discuss promising medical-grade materials and techniques that can be used for printing, and the future outlook of this emerging field.
Collapse
Affiliation(s)
- Kalindu Perera
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, United States
| | - Ryan Ivone
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, United States
| | - Evelina Natekin
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK, United States
| | - Cheryl. A. Wilga
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, United States
- Department of Electrical, Computer and Biomedical Engineering, University of Rhode Island, Kingston, RI, United States
| | - Jie Shen
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, United States
- Department of Chemical Engineering, University of Rhode Island, Kingston, RI, United States
| | - Jyothi U. Menon
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, United States
- Department of Chemical Engineering, University of Rhode Island, Kingston, RI, United States
| |
Collapse
|
22
|
Agostinacchio F, Mu X, Dirè S, Motta A, Kaplan DL. In Situ 3D Printing: Opportunities with Silk Inks. Trends Biotechnol 2021; 39:719-730. [PMID: 33279280 PMCID: PMC8169713 DOI: 10.1016/j.tibtech.2020.11.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/17/2020] [Accepted: 11/05/2020] [Indexed: 12/27/2022]
Abstract
In situ 3D printing is an emerging technique designed for patient-specific needs and performed directly in the patient's tissues in the operating room. While this technology has progressed rapidly, several improvements are needed to push it forward for widespread utility, including ink formulations and optimization for in situ context. Silk fibroin inks emerge as a viable option due to the diverse range of formulations, aqueous processability, robust and tunable mechanical properties, and self-assembly via biophysical adsorption to avoid exogenous chemical or photochemical sensitizer additives, among other features. In this review, we focus on this new frontier of 3D in situ printing for tissue regeneration, where silk is proposed as candidate biomaterial ink due to the unique and useful properties of this protein polymer.
Collapse
Affiliation(s)
- Francesca Agostinacchio
- Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123 Trento, Italy; BIOTech Research Center and European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Trento, via Delle Regole 101, Trento 38123, Italy
| | - Xuan Mu
- Department of Biomedical Engineering Tufts University Medford, MA 02155, USA
| | - Sandra Dirè
- Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123 Trento, Italy; 'Klaus Muller' Magnetic Resonance Laboratory, Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Antonella Motta
- Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123 Trento, Italy; BIOTech Research Center and European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Trento, via Delle Regole 101, Trento 38123, Italy
| | - David L Kaplan
- Department of Biomedical Engineering Tufts University Medford, MA 02155, USA.
| |
Collapse
|
23
|
Ivone R, Yang Y, Shen J. Recent Advances in 3D Printing for Parenteral Applications. AAPS J 2021; 23:87. [PMID: 34145513 PMCID: PMC8212901 DOI: 10.1208/s12248-021-00610-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/17/2021] [Indexed: 12/25/2022] Open
Abstract
3D printing has emerged as an advanced manufacturing technology in the field of pharmaceutical sciences. Despite much focus on enteral applications, there has been a lack of research focused on potential benefits of 3D printing for parenteral applications such as wound dressings, biomedical devices, and regenerative medicines. 3D printing technologies, including fused deposition modeling, vat polymerization, and powder bed printing, allow for rapid prototyping of personalized medications, capable of producing dosage forms with flexible dimensions based on patient anatomy as well as dosage form properties such as porosity. Considerations such as printing properties and material selection play a key role in determining overall printability of the constructs. These parameters also impact drug release kinetics, and mechanical properties of final printed constructs, which play a role in modulating immune response upon insertion in the body. Despite challenges in sterilization of printed constructs, additional post-printing processing procedures, and lack of regulatory guidance, 3D printing will continue to evolve to meet the needs of developing effective, personalized medicines for parenteral applications.
Collapse
Affiliation(s)
- Ryan Ivone
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, 7 Greenhouse Road, Kingston, Rhode Island, 02881, USA
| | - Yan Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Jie Shen
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, 7 Greenhouse Road, Kingston, Rhode Island, 02881, USA.
- Department of Chemical Engineering, University of Rhode Island, 7 Greenhouse Road, Kingston, Rhode Island, 02881, USA.
| |
Collapse
|
24
|
|
25
|
Agnieray H, Glasson J, Chen Q, Kaur M, Domigan L. Recent developments in sustainably sourced protein-based biomaterials. Biochem Soc Trans 2021; 49:953-964. [PMID: 33729443 PMCID: PMC8106505 DOI: 10.1042/bst20200896] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/17/2021] [Accepted: 02/22/2021] [Indexed: 12/12/2022]
Abstract
Research into the development of sustainable biomaterials is increasing in both interest and global importance due to the increasing demand for materials with decreased environmental impact. This research field utilises natural, renewable resources to develop innovative biomaterials. The development of sustainable biomaterials encompasses the entire material life cycle, from desirable traits, and environmental impact from production through to recycling or disposal. The main objective of this review is to provide a comprehensive definition of sustainable biomaterials and to give an overview of the use of natural proteins in biomaterial development. Proteins such as collagen, gelatin, keratin, and silk, are biocompatible, biodegradable, and may form materials with varying properties. Proteins, therefore, provide an intriguing source of biomaterials for numerous applications, including additive manufacturing, nanotechnology, and tissue engineering. We give an insight into current research and future directions in each of these areas, to expand knowledge on the capabilities of sustainably sourced proteins as advanced biomaterials.
Collapse
Affiliation(s)
- H. Agnieray
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - J.L. Glasson
- Department of Chemical and Material Engineering, University of Auckland, Auckland, New Zealand
| | - Q. Chen
- Department of Chemical and Material Engineering, University of Auckland, Auckland, New Zealand
| | - M. Kaur
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - L.J. Domigan
- Department of Chemical and Material Engineering, University of Auckland, Auckland, New Zealand
| |
Collapse
|
26
|
Curti F, Drăgușin DM, Serafim A, Iovu H, Stancu IC. Development of thick paste-like inks based on superconcentrated gelatin/alginate for 3D printing of scaffolds with shape fidelity and stability. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 122:111866. [DOI: 10.1016/j.msec.2021.111866] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 12/21/2020] [Accepted: 01/04/2021] [Indexed: 01/04/2023]
|
27
|
Zhu Y, Pi J, Zhang Y, Xu D, Yagci Y, Liu R. A new anthraquinone derivative as a near UV and visible light photoinitiator for free-radical, thiol–ene and cationic polymerizations. Polym Chem 2021. [DOI: 10.1039/d1py00347j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a new photoinitiator Q4 which has excellent initiated properties, and can initiate diverse photopolymerization modes. This novel photoinitiator may find use in many specific curing applications due to its unique performance.
Collapse
Affiliation(s)
- Yi Zhu
- Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi
| | - Junyi Pi
- Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi
| | - Yuchao Zhang
- School of Chemistry and Chemical Engineering
- Nanjing University
- 210023 Nanjing
- P. R. China
| | - Dandan Xu
- Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi
| | - Yusuf Yagci
- International Research Center for Photoresponsive Molecules and Materials
- Jiangnan University
- Wuxi
- P. R. China
- Department of Chemistry
| | - Ren Liu
- Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi
| |
Collapse
|
28
|
Marrazzo P, O’Leary C. Repositioning Natural Antioxidants for Therapeutic Applications in Tissue Engineering. Bioengineering (Basel) 2020; 7:E104. [PMID: 32887327 PMCID: PMC7552777 DOI: 10.3390/bioengineering7030104] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/29/2020] [Accepted: 08/31/2020] [Indexed: 12/15/2022] Open
Abstract
Although a large panel of natural antioxidants demonstrate a protective effect in preventing cellular oxidative stress, their low bioavailability limits therapeutic activity at the targeted injury site. The importance to deliver drug or cells into oxidative microenvironments can be realized with the development of biocompatible redox-modulating materials. The incorporation of antioxidant compounds within implanted biomaterials should be able to retain the antioxidant activity, while also allowing graft survival and tissue recovery. This review summarizes the recent literature reporting the combined role of natural antioxidants with biomaterials. Our review highlights how such functionalization is a promising strategy in tissue engineering to improve the engraftment and promote tissue healing or regeneration.
Collapse
Affiliation(s)
- Pasquale Marrazzo
- Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, Corso d’Augusto 237, 47921 Rimini (RN), Italy
| | - Cian O’Leary
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland (RCSI), 123 St Stephen’s Green, 2 D02 Dublin, Ireland;
- Science Foundation Ireland Advanced Materials and Bioengineering (AMBER) Centre, RCSI, 2 D02 Dublin, Ireland
| |
Collapse
|
29
|
Bian L. Functional hydrogel bioink, a key challenge of 3D cellular bioprinting. APL Bioeng 2020; 4:030401. [PMID: 32743233 PMCID: PMC7382604 DOI: 10.1063/5.0018548] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/14/2020] [Indexed: 12/21/2022] Open
Affiliation(s)
- Liming Bian
- Department of Biomedical Engineering, The Chinese University of Hong
Kong, Hong Kong SAR, People's Republic of China
| |
Collapse
|
30
|
Nesic D, Schaefer BM, Sun Y, Saulacic N, Sailer I. 3D Printing Approach in Dentistry: The Future for Personalized Oral Soft Tissue Regeneration. J Clin Med 2020; 9:E2238. [PMID: 32679657 PMCID: PMC7408636 DOI: 10.3390/jcm9072238] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 12/21/2022] Open
Abstract
Three-dimensional (3D) printing technology allows the production of an individualized 3D object based on a material of choice, a specific computer-aided design and precise manufacturing. Developments in digital technology, smart biomaterials and advanced cell culturing, combined with 3D printing, provide promising grounds for patient-tailored treatments. In dentistry, the "digital workflow" comprising intraoral scanning for data acquisition, object design and 3D printing, is already in use for manufacturing of surgical guides, dental models and reconstructions. 3D printing, however, remains un-investigated for oral mucosa/gingiva. This scoping literature review provides an overview of the 3D printing technology and its applications in regenerative medicine to then describe 3D printing in dentistry for the production of surgical guides, educational models and the biological reconstructions of periodontal tissues from laboratory to a clinical case. The biomaterials suitable for oral soft tissues printing are outlined. The current treatments and their limitations for oral soft tissue regeneration are presented, including "off the shelf" products and the blood concentrate (PRF). Finally, tissue engineered gingival equivalents are described as the basis for future 3D-printed oral soft tissue constructs. The existing knowledge exploring different approaches could be applied to produce patient-tailored 3D-printed oral soft tissue graft with an appropriate inner architecture and outer shape, leading to a functional as well as aesthetically satisfying outcome.
Collapse
Affiliation(s)
- Dobrila Nesic
- Division of Fixed Prosthodontics and Biomaterials, University Clinic of Dental Medicine, University of Geneva, Rue Michel-Servet 1, CH-1211 Geneva 4, Switzerland; (Y.S.); (I.S.)
| | | | - Yue Sun
- Division of Fixed Prosthodontics and Biomaterials, University Clinic of Dental Medicine, University of Geneva, Rue Michel-Servet 1, CH-1211 Geneva 4, Switzerland; (Y.S.); (I.S.)
| | - Nikola Saulacic
- Department of Cranio-Maxillofacial Surgery, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 10, CH-3010 Bern, Switzerland;
| | - Irena Sailer
- Division of Fixed Prosthodontics and Biomaterials, University Clinic of Dental Medicine, University of Geneva, Rue Michel-Servet 1, CH-1211 Geneva 4, Switzerland; (Y.S.); (I.S.)
| |
Collapse
|