1
|
Zengin A, Hafeez S, Habibovic P, Baker M, van Rijt S. Extracellular matrix mimetic supramolecular hydrogels reinforced with covalent crosslinked mesoporous silica nanoparticles. J Mater Chem B 2024. [PMID: 39508381 DOI: 10.1039/d4tb00499j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
The extracellular matrix (ECM) is a dynamic environment that is primarily built up from fibrous proteins (e.g., elastins, fibronectins, collagens, and laminins) and plays a vital role in tissue regeneration processes. Therefore, the development of supramolecular hydrogels that can mimic the ECM's dynamicity and fibrous structure is of great interest in regenerative medicine. However, such hydrogels generally have weak mechanical properties and poor structural stability, which significantly limits their potential applications. To overcome this drawback, we developed a new type of hybrid network composed of supramolecular assemblies with covalent nanoparticle-based crosslinkers. The ECM mimetic hydrogels were created through UV-initiated thiol-ene crosslinking between norbornene functionalized benzene-1,3,5-tri carboxamide (NBTA) macromonomers and thiol functionalized mesoporous silica nanoparticles (MSN). We hypothesized that the MSN would improve the mechanical properties by crosslinking the NBTA supramolecular fibrous hydrogels. Notably, the covalent incorporation of MSNs did not disrupt the fibrous morphology of the resulting NBTA-MSN nanocomposites. Furthermore, these supramolecular nanocomposites demonstrated higher structural stability and elasticity compared to pristine NBTA hydrogels. Rheology studies showed that the mechanical properties of NBTA-MSN hydrogels could be tuned by adjusting MSN wt%. Interestingly, NBTA-MSN nanocomposites exhibited self-healing and injectability despite the covalent crosslinking of MSNs. In vitro studies confirmed that NBTA-MSN nanocomposites showed good cytocompatibility and maintained the viability of encapsulated MG63 cells. As a proof of concept, we also demonstrated that MSNs could act as ion reservoirs for calcium and phosphate within the hydrogel networks in addition to being covalent crosslinkers. Taken together, our work offers a promising strategy to create hybrid, biomimetic supramolecular nanocomposite materials for various applications such as injectable materials for bone tissue engineering, and reinforced bioinks for 3D printing applications.
Collapse
Affiliation(s)
- Aygül Zengin
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P. O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - Shahzad Hafeez
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P. O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - Pamela Habibovic
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P. O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - Matthew Baker
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P. O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - Sabine van Rijt
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P. O. Box 616, 6200 MD Maastricht, The Netherlands.
| |
Collapse
|
2
|
Yu H, Luo X, Li Y, Shao L, Yang F, Pang Q, Zhu Y, Hou R. Advanced Hybrid Strategies of GelMA Composite Hydrogels in Bone Defect Repair. Polymers (Basel) 2024; 16:3039. [PMID: 39518248 PMCID: PMC11548276 DOI: 10.3390/polym16213039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
To date, severe bone defects remain a significant challenge to the quality of life. All clinically used bone grafts have their limitations. Bone tissue engineering offers the promise of novel bone graft substitutes. Various biomaterial scaffolds are fabricated by mimicking the natural bone structure, mechanical properties, and biological properties. Among them, gelatin methacryloyl (GelMA), as a modified natural biomaterial, possesses a controllable chemical network, high cellular stability and viability, good biocompatibility and degradability, and holds the prospect of a wide range of applications. However, because they are hindered by their mechanical properties, degradation rate, and lack of osteogenic activity, GelMA hydrogels need to be combined with other materials to improve the properties of the composites and endow them with the ability for osteogenesis, vascularization, and neurogenesis. In this paper, we systematically review and summarize the research progress of GelMA composite hydrogel scaffolds in the field of bone defect repair, and discuss ways to improve the properties, which will provide ideas for the design and application of bionic bone substitutes.
Collapse
Affiliation(s)
- Han Yu
- Department of Cell Biology and Regenerative Medicine, Health Science Center, Ningbo University, Ningbo 315211, China; (H.Y.); (X.L.); (Y.L.); (F.Y.); (Y.Z.)
| | - Xi Luo
- Department of Cell Biology and Regenerative Medicine, Health Science Center, Ningbo University, Ningbo 315211, China; (H.Y.); (X.L.); (Y.L.); (F.Y.); (Y.Z.)
| | - Yanling Li
- Department of Cell Biology and Regenerative Medicine, Health Science Center, Ningbo University, Ningbo 315211, China; (H.Y.); (X.L.); (Y.L.); (F.Y.); (Y.Z.)
| | - Lei Shao
- Research Institute for Medical and Biological Engineering, Ningbo University, Ningbo 315211, China;
| | - Fang Yang
- Department of Cell Biology and Regenerative Medicine, Health Science Center, Ningbo University, Ningbo 315211, China; (H.Y.); (X.L.); (Y.L.); (F.Y.); (Y.Z.)
| | - Qian Pang
- Department of Cell Biology and Regenerative Medicine, Health Science Center, Ningbo University, Ningbo 315211, China; (H.Y.); (X.L.); (Y.L.); (F.Y.); (Y.Z.)
| | - Yabin Zhu
- Department of Cell Biology and Regenerative Medicine, Health Science Center, Ningbo University, Ningbo 315211, China; (H.Y.); (X.L.); (Y.L.); (F.Y.); (Y.Z.)
| | - Ruixia Hou
- Department of Cell Biology and Regenerative Medicine, Health Science Center, Ningbo University, Ningbo 315211, China; (H.Y.); (X.L.); (Y.L.); (F.Y.); (Y.Z.)
| |
Collapse
|
3
|
Chen PH, Chen IH, Kao WH, Wu SY, Tsai WB. Characterization and application of photocrosslinkable collagen maleate as bioink in extrusion-based 3D bioprinting. Biomater Sci 2024; 12:5063-5075. [PMID: 39212588 DOI: 10.1039/d4bm00826j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
3D bioprinting, a significant advancement in biofabrication, is renowned for its precision in creating tissue constructs. Collagen, despite being a gold standard biomaterial, faces challenges in bioink formulations due to its unique physicochemical properties. This study introduces a novel, neutral-soluble, photocrosslinkable collagen maleate (ColME) that is ideal for 3D bioprinting. ColME was synthesized by chemically modifying bovine type I collagen with maleic anhydride, achieving a high substitution ratio that shifted the isoelectric point to enhance solubility in physiological pH environments. This modification was confirmed to preserve the collagen's triple-helix structure substantially. Bioprinting parameters for ColME were optimized, focusing on adjustments to the bioink concentration, extrusion pressure, nozzle speed, and temperature. Results demonstrated that lower temperatures and smaller nozzle sizes substantially improved the print quality of grid structures. Additionally, the application of intermittent photo-crosslinking facilitated the development of structurally robust 3D multilayered constructs, enabling the stable fabrication of complex tissues. Cell viability assays showed that encapsulated cells within the ColME matrix maintained high viability after printing. When compared to methacrylated gelatin, ColME exhibited superior mechanical strength, resistance to enzymatic digestion, and overall printability, positioning it as an outstanding bioink for the creation of durable, bioactive 3D tissues.
Collapse
Affiliation(s)
- Po-Hsun Chen
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan.
| | - I-Hsiang Chen
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan.
| | - Wei-Hsiang Kao
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan.
| | - Song-Yi Wu
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan.
- Program of Green Materials and Precision Devices, School of Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan
- Guangdong Victory Co., Ltd., 4F., A11, Guangdong New Light Source Industrial Park, Luocun, Shishan Town, Nanhai District, Foshan City 528226, China
- Guangxi Shenguan Collagen Biological Group Company Limited, No. 39 Xijiang 4th Rd., Wuzhou, China
| | - Wei-Bor Tsai
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan.
- Program of Green Materials and Precision Devices, School of Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan
| |
Collapse
|
4
|
Chaurasia R, Kaur BP, Pandian N, Pahari S, Das S, Bhattacharya U, Majood M, Mukherjee M. Leveraging the Physicochemical Attributes of Biomimetic Hydrogel Nanocomposites in Stem Cell Differentiation. Biomacromolecules 2024. [PMID: 39277809 DOI: 10.1021/acs.biomac.4c00779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
The field of tissue engineering has witnessed significant advancements with the advent of hydrogel nanocomposites (HNC), emerging as a highly promising platform for regenerative medicine. HNCs provide a versatile platform that significantly enhances the differentiation of stem cells into specific cell lineages, making them highly suitable for tissue engineering applications. By incorporating nanoparticles, the mechanical properties of hydrogels, such as elasticity, porosity, and stiffness, are improved, addressing common challenges such as short-term stability, cytotoxicity, and scalability. These nanocomposites also exhibit enhanced biocompatibility and bioavailability, which are crucial to their effectiveness in clinical applications. Furthermore, HNCs are responsive to various triggers, allowing for precise control over their chemical properties, which is beneficial in creating 3D microenvironments, promoting wound healing, and enabling controlled drug delivery systems. This review provides a comprehensive overview of the production methods of HNCs and the factors influencing their physicochemical and biological properties, particularly in relation to stem cell differentiation and tissue repair. Additionally, it discusses the challenges in developing HNCs and highlights their potential to transform the field of regenerative medicine through improved mechanotransduction and controlled release systems.
Collapse
Affiliation(s)
- Radhika Chaurasia
- Amity Institute of Click Chemistry Research and Studies, Amity University, Sector-125, Noida, Uttar Pradesh 201313, India
| | - Bani Preet Kaur
- Amity Institute of Click Chemistry Research and Studies, Amity University, Sector-125, Noida, Uttar Pradesh 201313, India
| | - Nikhita Pandian
- Amity Institute of Click Chemistry Research and Studies, Amity University, Sector-125, Noida, Uttar Pradesh 201313, India
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh 201301, India
| | - Siddhartha Pahari
- Department of Chemical Engineering & Applied Chemistry, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Susmita Das
- Amity Institute of Click Chemistry Research and Studies, Amity University, Sector-125, Noida, Uttar Pradesh 201313, India
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh 201301, India
| | - Uddipta Bhattacharya
- Amity Institute of Click Chemistry Research and Studies, Amity University, Sector-125, Noida, Uttar Pradesh 201313, India
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh 201301, India
| | - Misba Majood
- Amity Institute of Click Chemistry Research and Studies, Amity University, Sector-125, Noida, Uttar Pradesh 201313, India
- The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Monalisa Mukherjee
- Amity Institute of Click Chemistry Research and Studies, Amity University, Sector-125, Noida, Uttar Pradesh 201313, India
| |
Collapse
|
5
|
Alashi S, Alkhouri I, Alghoraibi I, Kochaji N, Houri A, Karkoutly M. Evaluating various properties of nanohydroxyapatite synthesized from eggshells and dual-doped with Si 4+ and Zn 2+: An in vitro study. Heliyon 2024; 10:e35907. [PMID: 39224256 PMCID: PMC11366878 DOI: 10.1016/j.heliyon.2024.e35907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/04/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Background This study aimed to evaluate morphological, chemical and biocompatible properties of nanohydroxyapatite (N-HA) synthesized from eggshells and dual-doped with Si4+ and Zn2+. Methods In the current study, N-HA was synthesized from chicken eggshells using the wet chemical precipitation method and doped with Si4+ and Zn2+. The physical assessment was carried out using field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray (EDX) analysis, and X-ray diffraction (XRD) analysis. Crystal size was calculated using the Scherrer equation. Cytotoxicity was studied in vitro using the MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) cytotoxicity assay. The optical density (OD) of each well was obtained and recorded at 570 nm for 24 h (t1), 48 h (t2), 72 h (t3), and 5 days (t4) using a microplate reader. Results The results of Si-Zn-doped HA showed a high specific surface area with an irregular nano-sized spherical particle structure. The atomic percentage provided the ratio of calcium to phosphate; for non-doped HA, the atomic Ca/P ratio was 1.6, but for Si-Zn-doped HA, where Zn+2 Ca and Si + replaced 4 substituted P, the atomic ratio (Ca + Zn)/(P + Si) was 1.76. The average crystal size of Si-Zn-doped HA was 46 nm, while for non-doped HA it was 61 nm. both samples were non-toxic and statistically significantly less viable than the control group After 5 days, the mean cell viability of Si-Zn-doped HA (79.17 ± 2.18) was higher than that of non-doped HA (76.26 ± 1.71) (P = 0.091). Conclusions The MTT assay results showed that Si-Zn-doped HA is biocompatible. In addition, it showed characteristic physiochemical properties of a large surface area with interconnected porosity.
Collapse
Affiliation(s)
- Shaza Alashi
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Damascus University, Damascus, Syrian Arab Republic
| | - Isam Alkhouri
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Damascus University, Damascus, Syrian Arab Republic
| | - Ibrahim Alghoraibi
- Department of Physics, Faculty of Science, Damascus University, Damascus, Syrian Arab Republic
| | - Nabil Kochaji
- Department of Oral Pathology, Faculty of Dentistry, Damascus University, Damascus, Syrian Arab Republic
| | - Abdullah Houri
- Department of Physics, Faculty of Science, Damascus University, Damascus, Syrian Arab Republic
| | - Mawia Karkoutly
- Department of Pediatric Dentistry, Faculty of Dentistry, Damascus University, Damascus, Syrian Arab Republic
| |
Collapse
|
6
|
Fang W, Yu Z, Gao G, Yang M, Du X, Wang Y, Fu Q. Light-based 3D bioprinting technology applied to repair and regeneration of different tissues: A rational proposal for biomedical applications. Mater Today Bio 2024; 27:101135. [PMID: 39040222 PMCID: PMC11262185 DOI: 10.1016/j.mtbio.2024.101135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/10/2024] [Accepted: 06/21/2024] [Indexed: 07/24/2024] Open
Abstract
3D bioprinting technology, a subset of 3D printing technology, is currently witnessing widespread utilization in tissue repair and regeneration endeavors. In particular, light-based 3D bioprinting technology has garnered significant interest and favor. Central to its successful implementation lies the judicious selection of photosensitive polymers. Moreover, by fine-tuning parameters such as light irradiation time, choice of photoinitiators and crosslinkers, and their concentrations, the properties of the scaffolds can be tailored to suit the specific requirements of the targeted tissue repair sites. In this comprehensive review, we provide an overview of commonly utilized bio-inks suitable for light-based 3D bioprinting, delving into the distinctive characteristics of each material. Furthermore, we delineate strategies for bio-ink selection tailored to diverse repair locations, alongside methods for optimizing printing parameters. Ultimately, we present a coherent synthesis aimed at enhancing the practical application of light-based 3D bioprinting technology in tissue engineering, while also addressing current challenges and future prospects.
Collapse
Affiliation(s)
- Wenzhuo Fang
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Zhenwei Yu
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Guo Gao
- Key Laboratory for Thin Film and Micro Fabrication of the Ministry of Education, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ming Yang
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Xuan Du
- Key Laboratory for Thin Film and Micro Fabrication of the Ministry of Education, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ying Wang
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Qiang Fu
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai, 200233, China
| |
Collapse
|
7
|
Negi D, Bhavya K, Pal D, Singh Y. Acemannan coated, cobalt-doped biphasic calcium phosphate nanoparticles for immunomodulation regulated bone regeneration. Biomater Sci 2024; 12:3672-3685. [PMID: 38864476 DOI: 10.1039/d4bm00482e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Biomaterials are used as scaffolds in bone regeneration to facilitate the restoration of bone tissues. The local immune microenvironment affects bone repair but the role of immune response in biomaterial-facilitated osteogenesis has been largely overlooked and it presents a major knowledge gap in the field. Nanomaterials that can modulate M1 to M2 macrophage polarization and, thus, promote bone repair are known. This study investigates a novel approach to accelerate bone healing by using acemannan coated, cobalt-doped biphasic calcium phosphate nanoparticles to promote osteogenesis and modulate macrophage polarization to provide a prohealing microenvironment for bone regeneration. Different concentrations of cobalt were doped in biphasic calcium phosphate nanoparticles, which were further coated with acemannan polymer and characterized. The nanoparticles showed >90% cell viability and enhanced cell proliferation along with osteogenic differentiation as demonstrated by the enhanced alkaline phosphatase activity and osteogenic calcium deposition. The morphology of MC3T3-E1 cells remained unchanged even after treatment with nanoparticles. Acemannan coated nanoparticles were also able to decrease the expression of M1 markers, iNOS, and CD68 and enhance the expression of M2 markers, CD206, CD163, and Arg-1 as indicated by RT-qPCR, flow cytometry, and ICC studies. The findings show that acemannan coated nanoparticles can create a supportive immune milieu by inducing and promoting the release of osteogenic markers, and by causing a reduction in inflammatory markers, thus helping in efficient bone regeneration. As per our knowledge, this is the first study showing the combined effect of acemannan and cobalt for bone regeneration using immunomodulation. The work presents a novel approach for enhancing osteogenesis and macrophage polarization, thus, offering a potent strategy for effective bone regeneration.
Collapse
Affiliation(s)
- Deepa Negi
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar-140 001, Punjab, India.
| | - Kumari Bhavya
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar-140 001, Punjab, India.
| | - Durba Pal
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar-140 001, Punjab, India.
| | - Yashveer Singh
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar-140 001, Punjab, India.
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar-140 001, Punjab, India
| |
Collapse
|
8
|
Gaglio CG, Baruffaldi D, Pirri CF, Napione L, Frascella F. GelMA synthesis and sources comparison for 3D multimaterial bioprinting. Front Bioeng Biotechnol 2024; 12:1383010. [PMID: 38590606 PMCID: PMC10999536 DOI: 10.3389/fbioe.2024.1383010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/12/2024] [Indexed: 04/10/2024] Open
Abstract
Gelatin Methacryloyl (GelMA) is one of the most used biomaterials for a wide range of applications, such as drug delivery, disease modeling and tissue regeneration. GelMA is obtained from gelatin, which can be derived from different sources (e.g., bovine skin, and porcine skin), through substitution of reactive amine and hydroxyl groups with methacrylic anhydride (MAA). The degree of functionalization (DoF) can be tuned by varying the MAA amount used; thus, different protocols, with different reaction efficiency, have been developed, using various alkaline buffers (e.g., phosphate-buffered saline, DPBS, or carbonate-bicarbonate solution). Obviously, DoF modulation has an impact on the final GelMA properties, so a deep investigation on the features of the obtained hydrogel must be carried on. The purpose of this study is to investigate how different gelatin sources and synthesis methods affect GelMA properties, as literature lacks direct and systematic comparisons between these parameters, especially between synthesis methods. The final aim is to facilitate the choice of the source or synthesis method according to the needs of the desired application. Hence, chemical and physical properties of GelMA formulations were assessed, determining the DoFs, mechanical and viscoelastic properties by rheological analysis, water absorption by swelling capacity and enzymatic degradation rates. Biological tests with lung adenocarcinoma cells (A549) were performed. Moreover, since 3D bioprinting is a rapidly evolving technology thanks to the possibility of precise deposition of cell-laden biomaterials (bioinks) to mimic the 3D structures of several tissues, the potential of different GelMA formulations as bioinks have been tested with a multi-material approach, revealing its printability and versatility in various applications.
Collapse
Affiliation(s)
- Cesare Gabriele Gaglio
- Department of Applied Science and Technology (DISAT)—PolitoBIOMed Lab—Politecnico di Torino, Turin, Italy
| | - Désireé Baruffaldi
- Department of Applied Science and Technology (DISAT)—PolitoBIOMed Lab—Politecnico di Torino, Turin, Italy
| | - Candido Fabrizio Pirri
- Department of Applied Science and Technology (DISAT)—PolitoBIOMed Lab—Politecnico di Torino, Turin, Italy
- Center for Sustainable Future Technologies, Italian Institute of Technology, Turin, Italy
| | - Lucia Napione
- Department of Applied Science and Technology (DISAT)—PolitoBIOMed Lab—Politecnico di Torino, Turin, Italy
| | - Francesca Frascella
- Department of Applied Science and Technology (DISAT)—PolitoBIOMed Lab—Politecnico di Torino, Turin, Italy
| |
Collapse
|
9
|
Asl SK, Rahimzadegan M, Asl AK. Progress in cardiac tissue engineering and regeneration: Implications of gelatin-based hybrid scaffolds. Int J Biol Macromol 2024; 261:129924. [PMID: 38311143 DOI: 10.1016/j.ijbiomac.2024.129924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/06/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
Cardiovascular diseases, particularly myocardial infarction (MI), remain a leading cause of morbidity and mortality worldwide. Current treatments for MI, more palliative than curative, have limitations in reversing the disease completely. Tissue engineering (TE) has emerged as a promising strategy to address this challenge and may lead to improved therapeutic approaches for MI. Gelatin-based scaffolds, including gelatin and its derivative, gelatin methacrylate (GelMA), have attracted significant attention in cardiac tissue engineering (CTE) due to their optimal physical and biochemical properties and capacity to mimic the native extracellular matrix (ECM). CTE mainly recruits two classes of gelatin/GelMA-based scaffolds: hydrogels and nanofibrous. This article reviews state-of-the-art gelatin/GelMA-based hybrid scaffolds currently applied for CTE and regenerative therapy. Hybrid scaffolds, fabricated by combining gelatin/GelMA hydrogel or nanofibrous scaffolds with other materials such as natural/synthetic polymers, nanoparticles, protein-based biomaterials, etc., are explored for enhanced cardiac tissue regeneration functionality. The engraftment of stem/cardiac cells, bioactive molecules, or drugs into these hybrid systems shows great promise in cardiac tissue repair and regeneration. Finally, the role of gelatin/GelMA scaffolds combined with the 3D bioprinting strategy in CTE will also be briefly highlighted.
Collapse
Affiliation(s)
- Siamak Kazemi Asl
- Deputy of Education, Ministry of Health and Medical Education, Tehran, Iran.
| | - Milad Rahimzadegan
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Kazemi Asl
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Tolmacheva N, Bhattacharyya A, Noh I. Calcium Phosphate Biomaterials for 3D Bioprinting in Bone Tissue Engineering. Biomimetics (Basel) 2024; 9:95. [PMID: 38392140 PMCID: PMC10886915 DOI: 10.3390/biomimetics9020095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/12/2024] [Accepted: 01/31/2024] [Indexed: 02/24/2024] Open
Abstract
Three-dimensional bioprinting is a promising technology for bone tissue engineering. However, most hydrogel bioinks lack the mechanical and post-printing fidelity properties suitable for such hard tissue regeneration. To overcome these weak properties, calcium phosphates can be employed in a bioink to compensate for the lack of certain characteristics. Further, the extracellular matrix of natural bone contains this mineral, resulting in its structural robustness. Thus, calcium phosphates are necessary components of bioink for bone tissue engineering. This review paper examines different recently explored calcium phosphates, as a component of potential bioinks, for the biological, mechanical and structural properties required of 3D bioprinted scaffolds, exploring their distinctive properties that render them favorable biomaterials for bone tissue engineering. The discussion encompasses recent applications and adaptations of 3D-printed scaffolds built with calcium phosphates, delving into the scientific reasons behind the prevalence of certain types of calcium phosphates over others. Additionally, this paper elucidates their interactions with polymer hydrogels for 3D bioprinting applications. Overall, the current status of calcium phosphate/hydrogel bioinks for 3D bioprinting in bone tissue engineering has been investigated.
Collapse
Affiliation(s)
- Nelli Tolmacheva
- Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Amitava Bhattacharyya
- Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
- Medical Electronics Research Center, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Insup Noh
- Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| |
Collapse
|
11
|
Bhattacharyya A, Khatun MR, Narmatha S, Nagarajan R, Noh I. Modulation of 3D Bioprintability in Polysaccharide Bioink by Bioglass Nanoparticles and Multiple Metal Ions for Tissue Engineering. Tissue Eng Regen Med 2024; 21:261-275. [PMID: 37979087 PMCID: PMC10825098 DOI: 10.1007/s13770-023-00605-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/28/2023] [Accepted: 10/01/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Bioglasses are used in applications related to bone rehabilitation and repair. The mechanical and bioactive properties of polysaccharides like alginate and agarose can be modulated or improved using bioglass nanoparticles. Further essential metal ions used as crosslinker have the potential to supplement cultured cells for better growth and proliferation. METHOD In this study, the alginate bioink is modulated for fabrication of tissue engineering scaffolds by extrusion-based 3D bioprinting using agarose, bioglass nanoparticles and combination of essential trace elements such as iron, zinc, and copper. Homogeneous bioink was obtained by in situ mixing and bioprinting of its components with twin screw extruder (TSE) based 3D bioprinting, and then distribution of metal ions was induced through post-printing diffusion of metal ions in the printed scaffolds. The mechanical and 3d bioprinting properties, microscopic structure, biocompatibility of the crosslinked alginate/agarose hydrogels were analyzed for different concentrations of bioglass. The adipose derived mesenchymal stem cells (ADMSC) and osteoblast cells (MC3T3) were used to evaluate this hydrogel's biological performances. RESULTS The porosity of hydrogels significantly improves with the incorporation of the bioglass. More bioglass concentration results in improved mechanical (compressive, dynamic, and cyclic) and 3D bioprinting properties. Cell growth and extracellular matrix are also enhanced with bioglass concentration. CONCLUSION For bioprinting of the bioinks, the advanced TSE head was attached to 3D bioprinter and in situ fabrication of cell encapsulated scaffold was obtained with optimized composition considering minimal effects on cell damage. Fabricated bioinks demonstrate a biocompatible and noncytotoxic scaffold for culturing MC3T3 and ADMSC, while bioglass controls the cellular behaviors such as cell growth and extracellular matrix formation.
Collapse
Affiliation(s)
- Amitava Bhattacharyya
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea
- Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea
- Functional, Innovative and Smart Textiles, PSG Institute of Advanced Studies, Coimbatore, 641004, India
| | - Mst Rita Khatun
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea
| | - S Narmatha
- Functional, Innovative and Smart Textiles, PSG Institute of Advanced Studies, Coimbatore, 641004, India
| | - R Nagarajan
- Functional, Innovative and Smart Textiles, PSG Institute of Advanced Studies, Coimbatore, 641004, India
| | - Insup Noh
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea.
- Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea.
| |
Collapse
|
12
|
Guo A, Zhang S, Yang R, Sui C. Enhancing the mechanical strength of 3D printed GelMA for soft tissue engineering applications. Mater Today Bio 2024; 24:100939. [PMID: 38249436 PMCID: PMC10797197 DOI: 10.1016/j.mtbio.2023.100939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Gelatin methacrylate (GelMA) hydrogels have gained significant traction in diverse tissue engineering applications through the utilization of 3D printing technology. As an artificial hydrogel possessing remarkable processability, GelMA has emerged as a pioneering material in the advancement of tissue engineering due to its exceptional biocompatibility and degradability. The integration of 3D printing technology facilitates the precise arrangement of cells and hydrogel materials, thereby enabling the creation of in vitro models that simulate artificial tissues suitable for transplantation. Consequently, the potential applications of GelMA in tissue engineering are further expanded. In tissue engineering applications, the mechanical properties of GelMA are often modified to overcome the hydrogel material's inherent mechanical strength limitations. This review provides a comprehensive overview of recent advancements in enhancing the mechanical properties of GelMA at the monomer, micron, and nano scales. Additionally, the diverse applications of GelMA in soft tissue engineering via 3D printing are emphasized. Furthermore, the potential opportunities and obstacles that GelMA may encounter in the field of tissue engineering are discussed. It is our contention that through ongoing technological progress, GelMA hydrogels with enhanced mechanical strength can be successfully fabricated, leading to the production of superior biological scaffolds with increased efficacy for tissue engineering purposes.
Collapse
Affiliation(s)
- Ao Guo
- Department of Trauma and Pediatric Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, 231200, China
| | - Shengting Zhang
- Department of Trauma and Pediatric Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, 231200, China
| | - Runhuai Yang
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China
| | - Cong Sui
- Department of Trauma and Pediatric Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, 231200, China
| |
Collapse
|
13
|
Tran HN, Kim IG, Kim JH, Bhattacharyya A, Chung EJ, Noh I. Incorporation of Cell-Adhesive Proteins in 3D-Printed Lipoic Acid-Maleic Acid-Poly(Propylene Glycol)-Based Tough Gel Ink for Cell-Supportive Microenvironment. Macromol Biosci 2023; 23:e2300316. [PMID: 37713590 DOI: 10.1002/mabi.202300316] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/01/2023] [Indexed: 09/17/2023]
Abstract
In extrusion-based 3D printing, the use of synthetic polymeric hydrogels can facilitate fabrication of cellularized and implanted scaffolds with sufficient mechanical properties to maintain the structural integrity and physical stress within the in vivo conditions. However, synthetic hydrogels face challenges due to their poor properties of cellular adhesion, bioactivity, and biofunctionality. New compositions of hydrogel inks have been designed to address this limitation. A viscous poly(maleate-propylene oxide)-lipoate-poly(ethylene oxide) (MPLE) hydrogel is recently developed that shows high-resolution printability, drug-controlled release, excellent mechanical properties with adhesiveness, and biocompatibility. In this study, the authors demonstrate that the incorporation of cell-adhesive proteins like gelatin and albumin within the MPLE gel allows printing of biologically functional 3D scaffolds with rapid cell spreading (within 7 days) and high cell proliferation (twofold increase) as compared with MPLE gel only. Addition of proteins (10% w/v) supports the formation of interconnected cell clusters (≈1.6-fold increase in cell areas after 7-day) and spreading of cells in the printed scaffolds without additional growth factors. In in vivo studies, the protein-loaded scaffolds showed excellent biocompatibility and increased angiogenesis without inflammatory response after 4-week implantation in mice, thus demonstrating the promise to contribute to the printable tough hydrogel inks for tissue engineering.
Collapse
Affiliation(s)
- Hao Nguyen Tran
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea
| | - In Gul Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Jong Heon Kim
- Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea
| | - Amitava Bhattacharyya
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea
- Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea
| | - Eun-Jae Chung
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Insup Noh
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea
- Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea
| |
Collapse
|
14
|
Lee DN, Park JY, Seo YW, Jin X, Hong J, Bhattacharyya A, Noh I, Choi SH. Photo-crosslinked gelatin methacryloyl hydrogel strengthened with calcium phosphate-based nanoparticles for early healing of rabbit calvarial defects. J Periodontal Implant Sci 2023; 53:321-335. [PMID: 36919004 PMCID: PMC10627735 DOI: 10.5051/jpis.2203220161] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/16/2022] [Accepted: 10/24/2022] [Indexed: 02/05/2023] Open
Abstract
PURPOSE The aim of this study was to investigate the efficacy of photo-crosslinked gelatin methacryloyl (GelMa) hydrogel containing calcium phosphate nanoparticles (CNp) when applying different fabrication methods for bone regeneration. METHODS Four circular defects were created in the calvaria of 10 rabbits. Each defect was randomly allocated to the following study groups: 1) the sham control group, 2) the GelMa group (defect filled with crosslinked GelMa hydrogel), 3) the CNp-GelMa group (GelMa hydrogel crosslinked with nanoparticles), and 4) the CNp+GelMa group (crosslinked GelMa loaded with nanoparticles). At 2, 4, and 8 weeks, samples were harvested, and histological and micro-computed tomography analyses were performed. RESULTS Histomorphometric analysis showed that the CNp-GelMa and CNp+GelMa groups at 2 weeks had significantly greater total augmented areas than the control group (P<0.05). The greatest new bone area was observed in the CNp-GelMa group, but without statistical significance (P>0.05). Crosslinked GelMa hydrogel with nanoparticles exhibited good biocompatibility with a minimal inflammatory reaction. CONCLUSIONS There was no difference in the efficacy of bone regeneration according to the synthesized method of photo-crosslinked GelMa hydrogel with nanoparticles. However, these materials could remain within a bone defect up to 2 weeks and showed good biocompatibility with little inflammatory response. Further improvement in mechanical properties and resistance to enzymatic degradation would be needed for the clinical application.
Collapse
Affiliation(s)
- Da-Na Lee
- Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, Korea
| | - Jin-Young Park
- Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, Korea
- Medical & Dental Devices Usability Test Center, Yonsei University Dental Hospital, Seoul, Korea
| | - Young-Wook Seo
- Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, Korea
| | - Xiang Jin
- Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, Korea
| | - Jongmin Hong
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul, Korea
| | - Amitava Bhattacharyya
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul, Korea
- Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology, Seoul, Korea
| | - Insup Noh
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul, Korea
- Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology, Seoul, Korea
| | - Seong-Ho Choi
- Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, Korea
- Medical & Dental Devices Usability Test Center, Yonsei University Dental Hospital, Seoul, Korea.
| |
Collapse
|
15
|
Bhattacharyya A, Ham HW, Sonh J, Gunbayar M, Jeffy R, Nagarajan R, Khatun MR, Noh I. 3D bioprinting of complex tissue scaffolds with in situ homogeneously mixed alginate-chitosan-kaolin bioink using advanced portable biopen. Carbohydr Polym 2023; 317:121046. [PMID: 37364947 DOI: 10.1016/j.carbpol.2023.121046] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 05/19/2023] [Accepted: 05/20/2023] [Indexed: 06/28/2023]
Abstract
Control of in situ 3D bioprinting of hydrogel without toxic crosslinker is ideal for tissue regeneration by reinforcing and homogeneously distributing biocompatible reinforcing agent during fabrication of large area and complex tissue engineering scaffolds. In this study, homogeneous mixing, and simultaneous 3D bioprinting of a multicomponent bioink based on alginate (AL)-chitosan (CH), and kaolin was obtained by an advanced pen-type extruder to ensure structural and biological homogeneity during the large area tissue reconstruction. The static, dynamic and cyclic mechanical properties as well as in situ self-standing printability significantly improved with the kaolin concentration for AL-CH bioink-printed samples due to polymer-kaolin nanoclay hydrogen bonding and cross-linking with less amount of calcium ions. The Biowork pen ensures better mixing effectiveness for the kaolin-dispersed AL-CH hydrogels (evident from computational fluid dynamics study, aluminosilicate nanoclay mapping and 3D printing of complex multilayered structures) than the conventional mixing process. Two different cell lines (osteoblast and fibroblast) introduced during large area multilayered 3D bioprinting have confirmed the suitability of such multicomponent bioinks for in vitro even tissue regeneration. The effect of kaolin to promote uniform growth and proliferation of the cells throughout the bioprinted gel matrix is more significant for this advanced pen-type extruder processed samples.
Collapse
Affiliation(s)
- Amitava Bhattacharyya
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea; Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea; Functional, Innovative and Smart Textiles, PSG Institute of Advanced Studies, Coimbatore 641004, India
| | - Hyeong-Wook Ham
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - JiAe Sonh
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Marla Gunbayar
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - R Jeffy
- Functional, Innovative and Smart Textiles, PSG Institute of Advanced Studies, Coimbatore 641004, India
| | - R Nagarajan
- Functional, Innovative and Smart Textiles, PSG Institute of Advanced Studies, Coimbatore 641004, India
| | - Mst Rita Khatun
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Insup Noh
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea; Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea.
| |
Collapse
|
16
|
Khatun MR, Bhattacharyya A, Gunbayar M, Jung M, Noh I. Study on Bioresponsive Gelatin-Hyaluronic Acid-Genipin Hydrogel for High Cell-Density 3D Bioprinting. Gels 2023; 9:601. [PMID: 37623056 PMCID: PMC10453927 DOI: 10.3390/gels9080601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/14/2023] [Accepted: 07/15/2023] [Indexed: 08/26/2023] Open
Abstract
The Development of bioresponsive extrudable hydrogels for 3D bioprinting is imperative to address the growing demand for scaffold design as well as efficient and reliable methods of tissue engineering and regenerative medicine. This study proposed genipin (5 mg) cross-linked gelatin (1 to 1.5 g)-hyaluronic acid (0.3 g) hydrogel bioink (20 mL) tailored for 3D bioprinting. The focus is on high cell loading and a less artificial extra-cellular matrix (ECM) effect, as well as exploring their potential applications in tissue engineering. The bioresponsiveness of these hydrogel scaffolds was successfully evaluated at 37 °C and room temperature (at pH 2.5, 7.4, and 9). The rheological and mechanical properties (more than three times) increased with the increase in gelatin content in the hydrogel; however, the hydrogel with the least amount of gelatin showed the best extrusion capability. This optimized hydrogel's high extrusion ability and post-printing shape fidelity were evident from 3D and four-axis printing of complex structures such as hollow tubes, stars, pyramids, and zigzag porous tubular (four-axis) scaffolds (printed at 90 kPa pressure, 70 mm/s speed, 22G needle, fourth axis rotation of 4 rpm). 3 million/mL MC3T3-E1 mouse osteoblast cells were used in preparing 3D bioprinted samples. The in vitro cell culture studies have been carried out in a CO2 incubator (at 37 °C, 5% CO2). In the cytocompatibility study, almost three times more cell viability was observed in 3 days compared to day 1 control, proving the non-toxicity and cell-supportiveness of these hydrogels. High cell viability and cell-to-cell interactions observed at the end of day 3 using this moderately stable hydrogel in 3D bioprinting exhibit high potential for precise cell delivery modes in tissue engineering as well as regenerative medicine.
Collapse
Affiliation(s)
- Mst Rita Khatun
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea; (M.R.K.); (A.B.); (M.G.); (M.J.)
| | - Amitava Bhattacharyya
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea; (M.R.K.); (A.B.); (M.G.); (M.J.)
- Functional, Innovative and Smart Textiles, PSG Institute of Advanced Studies, Coimbatore 641004, India
- Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Maral Gunbayar
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea; (M.R.K.); (A.B.); (M.G.); (M.J.)
| | - Minsik Jung
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea; (M.R.K.); (A.B.); (M.G.); (M.J.)
| | - Insup Noh
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea; (M.R.K.); (A.B.); (M.G.); (M.J.)
- Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| |
Collapse
|
17
|
Dayanandan AP, Cho WJ, Kang H, Bello AB, Kim BJ, Arai Y, Lee SH. Emerging nano-scale delivery systems for the treatment of osteoporosis. Biomater Res 2023; 27:68. [PMID: 37443121 DOI: 10.1186/s40824-023-00413-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/11/2023] [Indexed: 07/15/2023] Open
Abstract
Osteoporosis is a pathological condition characterized by an accelerated bone resorption rate, resulting in decreased bone density and increased susceptibility to fractures, particularly among the elderly population. While conventional treatments for osteoporosis have shown efficacy, they are associated with certain limitations, including limited drug bioavailability, non-specific administration, and the occurrence of adverse effects. In recent years, nanoparticle-based drug delivery systems have emerged as a promising approach for managing osteoporosis. Nanoparticles possess unique physicochemical properties, such as a small size, large surface area-to-volume ratio, and tunable surface characteristics, which enable them to overcome the limitations of conventional therapies. These nanoparticles offer several advantages, including enhanced drug stability, controlled release kinetics, targeted bone tissue delivery, and improved drug bioavailability. This comprehensive review aims to provide insights into the recent advancements in nanoparticle-based therapy for osteoporosis. It elucidates the various types of nanoparticles employed in this context, including silica, polymeric, solid lipid, and metallic nanoparticles, along with their specific processing techniques and inherent properties that render them suitable as potential drug carriers for osteoporosis treatment. Furthermore, this review discusses the challenges and future suggestions associated with the development and translation of nanoparticle drug delivery systems for clinical use. These challenges encompass issues such as scalability, safety assessment, and regulatory considerations. However, despite these challenges, the utilization of nanoparticle-based drug delivery systems holds immense promise in revolutionizing the field of osteoporosis management by enabling more effective and targeted therapies, ultimately leading to improved patient outcomes.
Collapse
Affiliation(s)
| | - Woong Jin Cho
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Hyemin Kang
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Alvin Bacero Bello
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | | | - Yoshie Arai
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Soo-Hong Lee
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Republic of Korea.
| |
Collapse
|
18
|
Taheri S, Ghazali HS, Ghazali ZS, Bhattacharyya A, Noh I. Progress in biomechanical stimuli on the cell-encapsulated hydrogels for cartilage tissue regeneration. Biomater Res 2023; 27:22. [PMID: 36935512 PMCID: PMC10026525 DOI: 10.1186/s40824-023-00358-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 02/25/2023] [Indexed: 03/21/2023] Open
Abstract
BACKGROUND Worldwide, many people suffer from knee injuries and articular cartilage damage every year, which causes pain and reduces productivity, life quality, and daily routines. Medication is currently primarily used to relieve symptoms and not to ameliorate cartilage degeneration. As the natural healing capacity of cartilage damage is limited due to a lack of vascularization, common surgical methods are used to repair cartilage tissue, but they cannot prevent massive damage followed by injury. MAIN BODY Functional tissue engineering has recently attracted attention for the repair of cartilage damage using a combination of cells, scaffolds (constructs), biochemical factors, and biomechanical stimuli. As cyclic biomechanical loading is the key factor in maintaining the chondrocyte phenotype, many studies have evaluated the effect of biomechanical stimulation on chondrogenesis. The characteristics of hydrogels, such as their mechanical properties, water content, and cell encapsulation, make them ideal for tissue-engineered scaffolds. Induced cell signaling (biochemical and biomechanical factors) and encapsulation of cells in hydrogels as a construct are discussed for biomechanical stimulation-based tissue regeneration, and several notable studies on the effect of biomechanical stimulation on encapsulated cells within hydrogels are discussed for cartilage regeneration. CONCLUSION Induction of biochemical and biomechanical signaling on the encapsulated cells in hydrogels are important factors for biomechanical stimulation-based cartilage regeneration.
Collapse
Affiliation(s)
- Shiva Taheri
- Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea
| | - Hanieh Sadat Ghazali
- Department of Nanotechnology, School of Advanced Technologies, Iran University of Science and Technology, Tehran, 1684613114, Iran
| | - Zahra Sadat Ghazali
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, 158754413, Iran
| | - Amitava Bhattacharyya
- Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea
- Functional, Innovative, and Smart Textiles, PSG Institute of Advanced Studies, Coimbatore, 641004, India
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea
| | - Insup Noh
- Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea.
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea.
| |
Collapse
|
19
|
PLGA-Based Micro/Nanoparticles: An Overview of Their Applications in Respiratory Diseases. Int J Mol Sci 2023; 24:ijms24054333. [PMID: 36901762 PMCID: PMC10002081 DOI: 10.3390/ijms24054333] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/24/2023] Open
Abstract
Respiratory diseases, such as asthma and chronic obstructive pulmonary disease (COPD), are critical areas of medical research, as millions of people are affected worldwide. In fact, more than 9 million deaths worldwide were associated with respiratory diseases in 2016, equivalent to 15% of global deaths, and the prevalence is increasing every year as the population ages. Due to inadequate treatment options, the treatments for many respiratory diseases are limited to relieving symptoms rather than curing the disease. Therefore, new therapeutic strategies for respiratory diseases are urgently needed. Poly (lactic-co-glycolic acid) micro/nanoparticles (PLGA M/NPs) have good biocompatibility, biodegradability and unique physical and chemical properties, making them one of the most popular and effective drug delivery polymers. In this review, we summarized the synthesis and modification methods of PLGA M/NPs and their applications in the treatment of respiratory diseases (asthma, COPD, cystic fibrosis (CF), etc.) and also discussed the research progress and current research status of PLGA M/NPs in respiratory diseases. It was concluded that PLGA M/NPs are the promising drug delivery vehicles for the treatment of respiratory diseases due to their advantages of low toxicity, high bioavailability, high drug loading capacity, plasticity and modifiability. And at the end, we presented an outlook on future research directions, aiming to provide some new ideas for future research directions and hopefully to promote their widespread application in clinical treatment.
Collapse
|
20
|
Nanotechnology in tissue engineering and regenerative medicine. KOREAN J CHEM ENG 2023. [DOI: 10.1007/s11814-022-1363-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
21
|
Lv B, Lu L, Hu L, Cheng P, Hu Y, Xie X, Dai G, Mi B, Liu X, Liu G. Recent advances in GelMA hydrogel transplantation for musculoskeletal disorders and related disease treatment. Theranostics 2023; 13:2015-2039. [PMID: 37064871 PMCID: PMC10091878 DOI: 10.7150/thno.80615] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 03/06/2023] [Indexed: 04/18/2023] Open
Abstract
Increasing data reveals that gelatin that has been methacrylated is involved in a variety of physiologic processes that are important for therapeutic interventions. Gelatin methacryloyl (GelMA) hydrogel is a highly attractive hydrogels-based bioink because of its good biocompatibility, low cost, and photo-cross-linking structure that is useful for cell survivability and cell monitoring. Methacrylated gelatin (GelMA) has established itself as a typical hydrogel composition with extensive biomedical applications. Recent advances in GelMA have focused on integrating them with bioactive and functional nanomaterials, with the goal of improving GelMA's physical, chemical, and biological properties. GelMA's ability to modify characteristics due to the synthesis technique also makes it a good choice for soft and hard tissues. GelMA has been established to become an independent or supplementary technology for musculoskeletal problems. Here, we systematically review mechanism-of-action, therapeutic uses, and challenges and future direction of GelMA in musculoskeletal disorders. We give an overview of GelMA nanocomposite for different applications in musculoskeletal disorders, such as osteoarthritis, intervertebral disc degeneration, bone regeneration, tendon disorders and so on.
Collapse
Affiliation(s)
- Bin Lv
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 P.R. China
| | - Li Lu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 P.R. China
| | - Liangcong Hu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 P.R. China
| | - Peng Cheng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 P.R. China
| | - Yiqiang Hu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 P.R. China
| | - Xudong Xie
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 P.R. China
| | - Guandong Dai
- Pingshan District People's Hospital of Shenzhen, Pingshan General Hospital of Southern Medical University, Shenzhen, 518118 P.R. China
| | - Bobin Mi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 P.R. China
- ✉ Corresponding author: Bobin Mi, ; Xin Liu, ; Guohui Liu,
| | - Xin Liu
- Third School of Clinical Medicine, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028 P.R. China
- ✉ Corresponding author: Bobin Mi, ; Xin Liu, ; Guohui Liu,
| | - Guohui Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 P.R. China
- ✉ Corresponding author: Bobin Mi, ; Xin Liu, ; Guohui Liu,
| |
Collapse
|
22
|
Tran HN, Kim IG, Kim JH, Chung EJ, Noh I. Control of maleic acid-propylene diepoxide hydrogel for 3D printing application for flexible tissue engineering scaffold with high resolution by end capping and graft polymerization. Biomater Res 2022; 26:75. [PMID: 36494708 PMCID: PMC9733183 DOI: 10.1186/s40824-022-00318-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/11/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Control of 3D printing of highly tough hydrogel inks with adequate printability, scaffold fidelity and mechanical properties are highly desirable for biomedical and tissue engineering applications. However, developing a biocompatible tough ink with high-resolution printability, biodegradability, self-healing, adhesion, and integration with surrounding tissues is a big challenge in 3D printing. The aim of this study was to develop extrusion-based 3D printing of viscous hydrogel composing of maleic acid and propylene diepoxide by controlling continuous mechanisms of condensation and radical polymerization. METHODS The molecular weight of highly adhesive propagating poly(malate-co-propylene oxide) copolymer was controlled by capping its growing chain with mono-functional lipoic acid with different compositions during condensation reaction to form lipoic acid capped gel (LP-capped gel). Poly(ethylene oxide)-diacrylate, PEGDA, is graft-polymerized to the LP-capped backbone polymer (MPLE gel) by UV irradiation during 3D printing process to control the properties of gel printability, mechanical properties, and cell adhesiveness and post-printing fidelity of the printed scaffolds with high resolution and mechanical properties (MPLE scaffold). The scaffolds in complex geometries have been printed out in diverse forms with addition of model drugs with different molecular weights and chemical structures. Both the highly adhesive LP-capped gel and printing-controlled MPLE gel/scaffolds are diversely characterized and compared with for their applications to the extrusion-based printability, including biocompatibility, self-healing, drug releasing, adhesiveness, multi-layered high-resolution printing. Further in vitro/in vivo tests were done to observe cytotoxicity, immune response and tissue formation by using different cells in mice model. RESULTS LP-capped hydrogel from maleic acid and propylene diepoxide gel showed control of gel properties with lipoic acid with one function group of thiol during condensation reaction, and the ratio at 1:0.3 (w/v) between LP-capped gel and PEGDA was chosen for the optimal results during radical polymerization process for 3D printing at high resolution (90-140 μm in strut thickness) with various complex geometries (lattice, rhombus, and honeycomb). The hydrogel showed excellent properties of self-healing, mechanical strength, biocompatibility, etc. In addition, the long-term release profiles of bioactive molecules were well-controlled by incorporating drugs of high molecular bovine serum albumin (BSA, 21 days, 98.4 ± 0.69%), or small molecule ornidazole (ORN, 14 days, 97.1 ± 1.98%) into the MPLE gel scaffolds for the tests of potential therapeutic applications. More importantly, the MPLE gels represents excellent in vitro cyto-compatibility against osteoblast-like cells (MC3T3) with viability value at 96.43% ± 7.48% over 7 culturing days. For in-vivo studies, the flexible MPLE scaffolds showed significant improvement on angiogenesis with minor inflammatory response after 4-week implantation in mice. CONCLUSION The MPLE gel inks was well-controlled for the fabrication of flexible complex tissue engineering scaffold with high resolutions, shear-thinning, 3D printability and post-printing fidelity, by modulating the composition of the highly adhesive LP-capped gel and inert PEGDA as well as end capping of lipoic acid to the propagating poly(malate-co-propylene oxide) copolymer. The gel ink demonstrated its excellent printability, in vitro/in vivo biocompatibility and mechanical properties as well as sustained drug release from the gel.
Collapse
Affiliation(s)
- Hao Nguyen Tran
- grid.412485.e0000 0000 9760 4919Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul, 01811 Republic of Korea
| | - In Gul Kim
- grid.412484.f0000 0001 0302 820XDepartment of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Seoul National University Hospital, Seoul, 03080 Republic of Korea
| | - Jong Heon Kim
- grid.412485.e0000 0000 9760 4919Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul, 01811 Republic of Korea
| | - Eun-Jae Chung
- grid.412484.f0000 0001 0302 820XDepartment of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Seoul National University Hospital, Seoul, 03080 Republic of Korea
| | - Insup Noh
- grid.412485.e0000 0000 9760 4919Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul, 01811 Republic of Korea ,grid.412485.e0000 0000 9760 4919Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology, Seoul, 01811 Republic of Korea
| |
Collapse
|