1
|
Purev E, Bahmed K, Kosmider B. Alveolar Organoids in Lung Disease Modeling. Biomolecules 2024; 14:115. [PMID: 38254715 PMCID: PMC10813493 DOI: 10.3390/biom14010115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/06/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Lung organoids display a tissue-specific functional phenomenon and mimic the features of the original organ. They can reflect the properties of the cells, such as morphology, polarity, proliferation rate, gene expression, and genomic profile. Alveolar type 2 (AT2) cells have a stem cell potential in the adult lung. They produce and secrete pulmonary surfactant and proliferate to restore the epithelium after damage. Therefore, AT2 cells are used to generate alveolar organoids and can recapitulate distal lung structures. Also, AT2 cells in human-induced pluripotent stem cell (iPSC)-derived alveolospheres express surfactant proteins and other factors, indicating their application as suitable models for studying cell-cell interactions. Recently, they have been utilized to define mechanisms of disease development, such as COVID-19, lung cancer, idiopathic pulmonary fibrosis, and chronic obstructive pulmonary disease. In this review, we show lung organoid applications in various pulmonary diseases, drug screening, and personalized medicine. In addition, stem cell-based therapeutics and approaches relevant to lung repair were highlighted. We also described the signaling pathways and epigenetic regulation of lung regeneration. It is critical to identify novel regulators of alveolar organoid generations to promote lung repair in pulmonary diseases.
Collapse
Affiliation(s)
- Enkhee Purev
- Department of Microbiology, Immunology, and Inflammation, Temple University, Philadelphia, PA 19140, USA
- Center for Inflammation and Lung Research, Temple University, Philadelphia, PA 19140, USA
| | - Karim Bahmed
- Department of Microbiology, Immunology, and Inflammation, Temple University, Philadelphia, PA 19140, USA
- Center for Inflammation and Lung Research, Temple University, Philadelphia, PA 19140, USA
- Department of Thoracic Medicine and Surgery, Temple University, Philadelphia, PA 19140, USA
| | - Beata Kosmider
- Department of Microbiology, Immunology, and Inflammation, Temple University, Philadelphia, PA 19140, USA
- Center for Inflammation and Lung Research, Temple University, Philadelphia, PA 19140, USA
- Department of Thoracic Medicine and Surgery, Temple University, Philadelphia, PA 19140, USA
- Department of Cardiovascular Sciences, Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
2
|
Tian L, Qiang T, Yang X, Gao Y, Zhai X, Kang K, Du C, Lu Q, Gao H, Zhang D, Xie X, Liang C. Development of de-novo coronavirus 3-chymotrypsin-like protease (3CL pro) inhibitors since COVID-19 outbreak: A strategy to tackle challenges of persistent virus infection. Eur J Med Chem 2024; 264:115979. [PMID: 38048696 DOI: 10.1016/j.ejmech.2023.115979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/30/2023] [Accepted: 11/18/2023] [Indexed: 12/06/2023]
Abstract
Although no longer a public health emergency of international concern, COVID-19 remains a persistent and critical health concern. The development of effective antiviral drugs could serve as the ultimate piece of the puzzle to curbing this global crisis. 3-chymotrypsin-like protease (3CLpro), with its substrate specificity mirroring that of the main picornavirus 3C protease and conserved across various coronaviruses, emerges as an ideal candidate for broad-spectrum antiviral drug development. Moreover, it holds the potential as a reliable contingency option to combat emerging SARS-CoV-2 variants. In this light, the approved drugs, promising candidates, and de-novo small molecule therapeutics targeting 3CLpro since the COVID-19 outbreak in 2020 are discussed. Emphasizing the significance of diverse structural characteristics in inhibitors, be they peptidomimetic or nonpeptidic, with a shared mission to minimize the risk of cross-resistance. Moreover, the authors propose an innovative optimization strategy for 3CLpro reversible covalent PROTACs, optimizing pharmacodynamics and pharmacokinetics to better prepare for potential future viral outbreaks.
Collapse
Affiliation(s)
- Lei Tian
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China; Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Taotao Qiang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China.
| | - Xiuding Yang
- Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Shaanxi University of Science & Technology, Xi'an, 710021, PR China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Yue Gao
- College of Pharmacy, Jinan University, Guangzhou, 511436, PR China
| | - Xiaopei Zhai
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Xi'an, 710032, PR China
| | - Kairui Kang
- Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Shaanxi University of Science & Technology, Xi'an, 710021, PR China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Cong Du
- Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Shaanxi University of Science & Technology, Xi'an, 710021, PR China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Qi Lu
- Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Shaanxi University of Science & Technology, Xi'an, 710021, PR China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Hong Gao
- Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Shaanxi University of Science & Technology, Xi'an, 710021, PR China; Shaanxi Pioneer Biotech Co., Ltd., Xi'an, 710021, PR China
| | - Dezhu Zhang
- Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Shaanxi University of Science & Technology, Xi'an, 710021, PR China; Shaanxi Panlong Pharmaceutical Group Co., Ltd., Xi'an, 710025, PR China
| | - Xiaolin Xie
- Shaanxi Panlong Pharmaceutical Group Co., Ltd., Xi'an, 710025, PR China
| | - Chengyuan Liang
- Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Shaanxi University of Science & Technology, Xi'an, 710021, PR China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an, 710021, PR China.
| |
Collapse
|