1
|
Piñera-Avellaneda D, Buxadera-Palomero J, Ginebra MP, Rupérez E, Manero JM. Gallium-doped thermochemically treated titanium reduces osteoclastogenesis and improves osteodifferentiation. Front Bioeng Biotechnol 2023; 11:1303313. [PMID: 38144539 PMCID: PMC10748490 DOI: 10.3389/fbioe.2023.1303313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/20/2023] [Indexed: 12/26/2023] Open
Abstract
Excessive bone resorption is one of the main causes of bone homeostasis alterations, resulting in an imbalance in the natural remodeling cycle. This imbalance can cause diseases such as osteoporosis, or it can be exacerbated in bone cancer processes. In such cases, there is an increased risk of fractures requiring a prosthesis. In the present study, a titanium implant subjected to gallium (Ga)-doped thermochemical treatment was evaluated as a strategy to reduce bone resorption and improve osteodifferentiation. The suitability of the material to reduce bone resorption was proven by inducing macrophages (RAW 264.7) to differentiate to osteoclasts on Ga-containing surfaces. In addition, the behavior of human mesenchymal stem cells (hMSCs) was studied in terms of cell adhesion, morphology, proliferation, and differentiation. The results proved that the Ga-containing calcium titanate layer is capable of inhibiting osteoclastogenesis, hypothetically by inducing ferroptosis. Furthermore, Ga-containing surfaces promote the differentiation of hMSCs into osteoblasts. Therefore, Ga-containing calcium titanate may be a promising strategy for patients with fractures resulting from an excessive bone resorption disease.
Collapse
Affiliation(s)
- David Piñera-Avellaneda
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Barcelona East School of Engineering (EEBE), Technical University of Catalonia (UPC), Barcelona, Spain
- Barcelona Research Center in Multiscale Science and Engineering, EEBE, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Judit Buxadera-Palomero
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Barcelona East School of Engineering (EEBE), Technical University of Catalonia (UPC), Barcelona, Spain
- Barcelona Research Center in Multiscale Science and Engineering, EEBE, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Maria-Pau Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Barcelona East School of Engineering (EEBE), Technical University of Catalonia (UPC), Barcelona, Spain
- Barcelona Research Center in Multiscale Science and Engineering, EEBE, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain
| | - Elisa Rupérez
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Barcelona East School of Engineering (EEBE), Technical University of Catalonia (UPC), Barcelona, Spain
- Barcelona Research Center in Multiscale Science and Engineering, EEBE, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - José María Manero
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Barcelona East School of Engineering (EEBE), Technical University of Catalonia (UPC), Barcelona, Spain
- Barcelona Research Center in Multiscale Science and Engineering, EEBE, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| |
Collapse
|
2
|
Kang X, Yang X, He Y, Guo C, Li Y, Ji H, Qin Y, Wu L. Strategies and materials for the prevention and treatment of biofilms. Mater Today Bio 2023; 23:100827. [PMID: 37859998 PMCID: PMC10582481 DOI: 10.1016/j.mtbio.2023.100827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 10/21/2023] Open
Abstract
Biofilms are aggregates of organized microbial growth that function as barriers and create a stable internal environment for cell survival. The bacteria in the biofilms exhibit characteristics that are quite different from the planktonic bacteria, such as strong resistance to antibiotics and other bactericides, getting out of host immunity, and developing in harsh environments, which all contribute to the persistent and intractable treatment. Hence, there is an urgent need to develop novel materials and strategies to combat biofilms. However, most of the reviews on anti-biofilms published in recent years are based on specific fields or materials. Microorganisms are ubiquitous, except in the context of medical and health issues; however, biofilms exert detrimental effects on the advancement and progress of various fields. Therefore, this review aims to provide a comprehensive summary of effective strategies and methodologies applicable across all industries. Firstly, the process of biofilms formation was introduced to enhance our comprehension of the "enemy". Secondly, strategies to intervene in the important links of biofilms formation were discussed, taking timely action during the early weak stages of the "enemy". Thirdly, treatment strategies for mature biofilms were summarized to deal with biofilms that break through the defense line. Finally, several substances with antibacterial properties were presented. The review concludes with the standpoint of the author about potential developments of anti-biofilms strategies. This review may help researchers quickly understand the research progress and challenges in the field of anti-biofilms to design more efficient methods and strategies to combat biofilms.
Collapse
Affiliation(s)
- Xiaoxia Kang
- School of Public Health, Nantong Key Laboratory of Public Health and Medical Analysis, Nantong University, Nantong, 226019, China
| | - Xiaoxiao Yang
- School of Public Health, Nantong Key Laboratory of Public Health and Medical Analysis, Nantong University, Nantong, 226019, China
| | - Yue He
- School of Public Health, Nantong Key Laboratory of Public Health and Medical Analysis, Nantong University, Nantong, 226019, China
| | - Conglin Guo
- School of Public Health, Nantong Key Laboratory of Public Health and Medical Analysis, Nantong University, Nantong, 226019, China
| | - Yuechen Li
- School of Public Health, Nantong Key Laboratory of Public Health and Medical Analysis, Nantong University, Nantong, 226019, China
| | - Haiwei Ji
- School of Public Health, Nantong Key Laboratory of Public Health and Medical Analysis, Nantong University, Nantong, 226019, China
| | - Yuling Qin
- School of Public Health, Nantong Key Laboratory of Public Health and Medical Analysis, Nantong University, Nantong, 226019, China
| | - Li Wu
- School of Public Health, Nantong Key Laboratory of Public Health and Medical Analysis, Nantong University, Nantong, 226019, China
| |
Collapse
|