1
|
Tian R, Zhang Y, Kang H, Zhang F, Jin Z, Wang J, Zhang P, Zhou X, Lanyon JM, Sneath HL, Woolford L, Fan G, Li S, Seim I. Sirenian genomes illuminate the evolution of fully aquatic species within the mammalian superorder afrotheria. Nat Commun 2024; 15:5568. [PMID: 38956050 PMCID: PMC11219930 DOI: 10.1038/s41467-024-49769-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 06/12/2024] [Indexed: 07/04/2024] Open
Abstract
Sirenians of the superorder Afrotheria were the first mammals to transition from land to water and are the only herbivorous marine mammals. Here, we generated a chromosome-level dugong (Dugong dugon) genome. A comparison of our assembly with other afrotherian genomes reveals possible molecular adaptations to aquatic life by sirenians, including a shift in daily activity patterns (circadian clock) and tolerance to a high-iodine plant diet mediated through changes in the iodide transporter NIS (SLC5A5) and its co-transporters. Functional in vitro assays confirm that sirenian amino acid substitutions alter the properties of the circadian clock protein PER2 and NIS. Sirenians show evidence of convergent regression of integumentary system (skin and its appendages) genes with cetaceans. Our analysis also uncovers gene losses that may be maladaptive in a modern environment, including a candidate gene (KCNK18) for sirenian cold stress syndrome likely lost during their evolutionary shift in daily activity patterns. Genomes from nine Australian locations and the functionally extinct Okinawan population confirm and date a genetic break ~10.7 thousand years ago on the Australian east coast and provide evidence of an associated ecotype, and highlight the need for whole-genome resequencing data from dugong populations worldwide for conservation and genetic management.
Collapse
Affiliation(s)
- Ran Tian
- Integrative Biology Laboratory, Nanjing Normal University, Nanjing, 210023, China
| | - Yaolei Zhang
- BGI Research, Qingdao, 266555, China
- BGI Research, Shenzhen, 518083, China
- Qingdao Key Laboratory of Marine Genomics BGI Research, Qingdao, 266555, China
| | - Hui Kang
- Marine Mammal and Marine Bioacoustics Laboratory, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China
- The Innovation Research Center for Aquatic Mammals, and Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Fan Zhang
- Integrative Biology Laboratory, Nanjing Normal University, Nanjing, 210023, China
| | - Zhihong Jin
- Integrative Biology Laboratory, Nanjing Normal University, Nanjing, 210023, China
| | - Jiahao Wang
- BGI Research, Qingdao, 266555, China
- BGI Research, Shenzhen, 518083, China
| | - Peijun Zhang
- Marine Mammal and Marine Bioacoustics Laboratory, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China
| | - Xuming Zhou
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Janet M Lanyon
- School of the Environment, The University of Queensland, Lucia, 4072, Australia
| | - Helen L Sneath
- School of the Environment, The University of Queensland, Lucia, 4072, Australia
| | - Lucy Woolford
- School of Veterinary Sciences, The University of Adelaide, Roseworthy, 5371, Australia
| | - Guangyi Fan
- BGI Research, Qingdao, 266555, China.
- BGI Research, Shenzhen, 518083, China.
- Qingdao Key Laboratory of Marine Genomics BGI Research, Qingdao, 266555, China.
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, 518083, China.
| | - Songhai Li
- Marine Mammal and Marine Bioacoustics Laboratory, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China.
- The Innovation Research Center for Aquatic Mammals, and Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Inge Seim
- Integrative Biology Laboratory, Nanjing Normal University, Nanjing, 210023, China.
- Marine Mammal and Marine Bioacoustics Laboratory, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China.
| |
Collapse
|
2
|
Pashchevskaya S, Fruth B, Hohmann G. Water scooping: tool use by a wild bonobo (Pan paniscus) at LuiKotale, a case report. Primates 2024; 65:145-150. [PMID: 38488904 PMCID: PMC11018684 DOI: 10.1007/s10329-024-01121-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/12/2024] [Indexed: 03/17/2024]
Abstract
Tool use diversity is often considered to differentiate our two closest living relatives: the chimpanzee (Pan troglodytes) and the bonobo (P. paniscus). Chimpanzees appear to have the largest repertoire of tools amongst nonhuman primates, and in this species, many forms of tool use enhance food and water acquisition. In captivity, bonobos seem as adept as chimpanzees in tool use complexity, including in the foraging context. However, in the wild, bonobos have only been observed engaging in habitual tool use in the contexts of comfort, play, self-directed behaviour and communication, whilst no tool-assisted food acquisition has been reported. Whereas captive bonobos use tools for drinking, so far, the only report from the wild populations comes down to four observations of moss sponges used at Lomako. Here, we present the first report of tool use in the form of water scooping by a wild bonobo at LuiKotale. An adult female was observed and videotaped whilst using an emptied Cola chlamydantha pod to scoop and drink water from a stream. We discuss the conditions for such observations and the importance of looking out for rare behaviours and attempt to put the observation into the context of the opportunity versus necessity hypotheses. By adding novel information on tool use, our report contributes to the ongoing efforts to differentiate population-specific traits in the behavioural ecology of the bonobo.
Collapse
Affiliation(s)
- Sonya Pashchevskaya
- Max Planck Institute of Animal Behavior, Constance, DE, Germany.
- Centre for Research and Conservation, Royal Zoological Society of Antwerp, Antwerp, Belgium.
| | - Barbara Fruth
- Max Planck Institute of Animal Behavior, Constance, DE, Germany
- Centre for Research and Conservation, Royal Zoological Society of Antwerp, Antwerp, Belgium
| | | |
Collapse
|
3
|
Boës X, Van Bocxlaer B, Prat S, Feibel C, Lewis J, Arrighi V, Taylor N, Harmand S. Aridity, availability of drinking water and freshwater foods, and hominin and archeological sites during the Late Pliocene-Early Pleistocene in the western region of the Turkana Basin (Kenya): A review. J Hum Evol 2024; 186:103466. [PMID: 38134581 DOI: 10.1016/j.jhevol.2023.103466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/18/2023] [Accepted: 10/18/2023] [Indexed: 12/24/2023]
Abstract
Although the Turkana Basin is one of the driest regions of the East African Rift, its Plio-Pleistocene sediments are rich in freshwater vertebrates and invertebrates, providing evidence that freshwater resources were available to hominins in this region during the Plio-Pleistocene (4.2-0.7 Ma). Here we provide an overview of the hydroconnectivity of the Turkana Basin. We then review the period during which freshwater river and lake systems expanded into the western region of the Turkana Basin, where hominin and archeological sites have been discovered in sediments dating back to the Late Pliocene-Pleistocene. Freshwater conditions are reconstructed from river and lake sediments and the flora and micro- and macofauna they contain. Data synthesis suggests that drinking water and freshwater foods prevailed in the western region of the Turkana Basin at 4.20-3.98 Ma, 3.70-3.10 Ma, 2.53-2.22 Ma, then between 2.10 and 1.30 Ma and intermittently from 1.27 to 0.75 Ma. Milestones in hominin evolution occurred in this context, such as the first occurrence of Australopithecus anamensis (4.20-4.10 Ma) and Kenyanthropus platyops (3.50 Ma and 3.30-3.20 Ma), the presence of Paranthropus aethiopicus (2.53-2.45 Ma), early Homo (2.33 Ma), Paranthropus boisei (2.25 Ma and 1.77-1.72 Ma) and Homo ergaster/Homo erectus (1.75 Ma, 1.47-1.42 Ma and 1.10-0.90 Ma). Developments in hominin behavior also occurred during this timeframe, including the first known stone tools (3.30 Ma), the oldest Oldowan sites (2.34 Ma and 2.25 Ma) in the Turkana Basin, the earliest known evidence for the emergence of bifacial shaping in eastern Africa (1.80 Ma), and the first known Acheulean site (1.76 Ma). Our synthesis suggests that, diachronic variation in hydroconnectivity played a role on the amount of drinking water and freshwater foods available in the western region of the Turkana Basin, despite regional aridity.
Collapse
Affiliation(s)
- Xavier Boës
- Institut National de Recherches Archéologiques Préventives (INRAP), 140 Avenue Du Maréchal Leclerc, 33323 Bordeaux-Bègles, France; CNRS/MNHN/UPVD, Alliance Sorbonne Université, UMR 7194, Musée de L'Homme, Palais Chaillot, 17 Place Du Trocadéro, 75116 Paris Cedex 16, France; Turkana Basin Institute, Stony Brook University, Stony Brook, NY 11794, USA.
| | | | - Sandrine Prat
- CNRS/MNHN/UPVD, Alliance Sorbonne Université, UMR 7194, Musée de L'Homme, Palais Chaillot, 17 Place Du Trocadéro, 75116 Paris Cedex 16, France
| | - Craig Feibel
- Department of Anthropology and Center for Human Evolutionary Studies, Rutgers University, New Brunswick, NJ 08901, USA
| | - Jason Lewis
- Turkana Basin Institute, Stony Brook University, Stony Brook, NY 11794, USA; Chronicle Heritage, 319 E Palm Lane, Phoenix, AZ 85004, USA
| | - Vincent Arrighi
- Institut National de Recherches Archéologiques Préventives (INRAP), 13 Rue Du Négoce, 31650 Orens de Gameville, France
| | - Nicholas Taylor
- Turkana Basin Institute, Stony Brook University, Stony Brook, NY 11794, USA; Turkana University College, Lodwar Rd., Lodwar, Kenya
| | - Sonia Harmand
- Turkana Basin Institute, Stony Brook University, Stony Brook, NY 11794, USA; Laboratoire TRACES-UMR 5608, Université Toulouse Jean Jaurès, Maison de La Recherche, 5 Allée Antonio Machado, 31058 Toulouse, France; Institut Français de Recherche en Afrique (IFRA), UMIFRE, USR 3336, CNRS, Laikipia Road, Kileleshwa, Nairobi, Kenya
| |
Collapse
|
4
|
Estimating bonobo ( Pan paniscus) and chimpanzee ( Pan troglodytes) evolutionary history from nucleotide site patterns. Proc Natl Acad Sci U S A 2022; 119:e2200858119. [PMID: 35452306 PMCID: PMC9170072 DOI: 10.1073/pnas.2200858119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
There is genomic evidence of widespread admixture in deep time between many closely related species, including humans. Our closest living relatives, bonobos and chimpanzees, may also exhibit such patterns. However, assessing the exact degree of interbreeding remains challenging because previous studies have resulted in multiple inconsistent demographic models. We use an approach that addresses these gaps by analyzing all lineages, simultaneously estimating parameters, and comparing previously models. We find evidence of considerable introgression from western into eastern chimpanzees. We also show more breeding females than males and evidence of male-biased dispersal in western chimpanzees. These findings highlight the extent of admixture in bonobo and chimpanzee evolutionary history and are consistent with substantial differences between past and present chimpanzee biogeography. Admixture appears increasingly ubiquitous in the evolutionary history of various taxa, including humans. Such gene flow likely also occurred among our closest living relatives: bonobos (Pan paniscus) and chimpanzees (Pan troglodytes). However, our understanding of their evolutionary history has been limited by studies that do not consider all Pan lineages or do not analyze all lineages simultaneously, resulting in conflicting demographic models. Here, we investigate this gap in knowledge using nucleotide site patterns calculated from whole-genome sequences from the autosomes of 71 bonobos and chimpanzees, representing all five extant Pan lineages. We estimated demographic parameters and compared all previously proposed demographic models for this clade. We further considered sex bias in Pan evolutionary history by analyzing the site patterns from the X chromosome. We show that 1) 21% of autosomal DNA in eastern chimpanzees derives from western chimpanzee introgression and that 2) all four chimpanzee lineages share a common ancestor about 987,000 y ago, much earlier than previous estimates. In addition, we suggest that 3) there was male reproductive skew throughout Pan evolutionary history and find evidence of 4) male-biased dispersal from western to eastern chimpanzees. Collectively, these results offer insight into bonobo and chimpanzee evolutionary history and suggest considerable differences between current and historic chimpanzee biogeography.
Collapse
|
5
|
de Chevalier G, Bouret S, Bardo A, Simmen B, Garcia C, Prat S. Cost-Benefit Trade-Offs of Aquatic Resource Exploitation in the Context of Hominin Evolution. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.812804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
While the exploitation of aquatic fauna and flora has been documented in several primate species to date, the evolutionary contexts and mechanisms behind the emergence of this behavior in both human and non-human primates remain largely overlooked. Yet, this issue is particularly important for our understanding of human evolution, as hominins represent not only the primate group with the highest degree of adaptedness to aquatic environments, but also the only group in which true coastal and maritime adaptations have evolved. As such, in the present study we review the available literature on primate foraging strategies related to the exploitation of aquatic resources and their putative associated cognitive operations. We propose that aquatic resource consumption in extant primates can be interpreted as a highly site-specific behavioral expression of a generic adaptive foraging decision-making process, emerging in sites at which the local cost-benefit trade-offs contextually favor aquatic over terrestrial foods. Within this framework, we discuss the potential impacts that the unique intensification of this behavior in hominins may have had on the evolution of the human brain and spatial ecology.
Collapse
|
6
|
Lucchesi S, Cheng L, Wessling EG, Kambale B, Lokasola AL, Ortmann S, Surbeck M. Importance of subterranean fungi in the diet of bonobos in Kokolopori. Am J Primatol 2021; 83:e23308. [PMID: 34312901 DOI: 10.1002/ajp.23308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 05/28/2021] [Accepted: 07/05/2021] [Indexed: 02/06/2023]
Abstract
Nonstaple food is a food resource which sole consumption does not allow the maintenance of regular physiological functions, thus constituting a minor portion of an individual's diet. Many primates consume nonstaple food such as meat, insects, and fungi. Hypotheses on the dietary importance of nonstaple food include its role as fallback food and as source of specific nutrients. We tested these two hypotheses by investigating mycophagy (i.e., the consumption of fungi) in a population of wild bonobos in the Kokolopori Bonobo Reserve, DRC. Specifically, we examined the relationship between fungus consumption and various factors relevant to bonobo feeding ecology (i.e., fruit abundance and the consumption of other food types). Additionally, we measured the deviation from linear travel when bonobos searched for fungi to evaluate the nature of fungus consumption (e.g., opportunistic or targeted). Lastly, we examined the nutritional content of the major fungus species consumed (Hysterangium bonobo) to test whether this food item was potentially consumed as source of specific nutrients. We found that bonobos spent a higher proportion of their time feeding on fungi when fruit abundance was higher, indicating that fungi were not consumed as a fallback food. Moreover, bonobos deviated from linear travel when visiting fungus patches more than observed when visiting fruit patches, suggesting that they actively sought out fungi. Lastly, initial analyses suggest that H. bonobo samples contained high concentration of sodium. Collectively, these results suggest that subterranean fungi appear to be attractive food source to Kokolopori bonobos, and that mycophagy may serve to supplement nutrients, like sodium, in bonobo diet.
Collapse
Affiliation(s)
- Stefano Lucchesi
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.,Department of Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Leveda Cheng
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.,Department of Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Erin G Wessling
- Department of Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Bienfait Kambale
- Centre de Surveillance de la Biodiversité de l'Université de Kisangani, Kisangani, Democratic Republic of the Congo
| | - Albert L Lokasola
- Vie Sauvage, Kokolopori Bonobo Reserve, Province Equateur, Democratic Republic of the Congo
| | - Sylvia Ortmann
- Leibniz-Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Martin Surbeck
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.,Department of Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
7
|
Butruille L, Vancamp P, Demeneix BA, Remaud S. Thyroid hormone regulation of adult neural stem cell fate: A comparative analysis between rodents and primates. VITAMINS AND HORMONES 2021; 116:133-192. [PMID: 33752817 DOI: 10.1016/bs.vh.2021.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Thyroid hormone (TH) signaling, a highly conserved pathway across vertebrates, is crucial for brain development and function throughout life. In the adult mammalian brain, including that of humans, multipotent neural stem cells (NSCs) proliferate and generate neuronal and glial progenitors. The role of TH has been intensively investigated in the two main neurogenic niches of the adult mouse brain, the subventricular and the subgranular zone. A key finding is that T3, the biologically active form of THs, promotes NSC commitment toward a neuronal fate. In this review, we first discuss the roles of THs in the regulation of adult rodent neurogenesis, as well as how it relates to functional behavior, notably olfaction and cognition. Most research uncovering these roles of TH in adult neurogenesis was conducted in rodents, whose genetic background, brain structure and rate of neurogenesis are considerably different from that of humans. To bridge the phylogenetic gap, we also explore the similarities and divergences of TH-dependent adult neurogenesis in non-human primate models. Lastly, we examine how photoperiodic length changes TH homeostasis, and how that might affect adult neurogenesis in seasonal species to increase fitness. Several aspects by which TH acts on adult NSCs seem to be conserved among mammals, while we only start to uncover the molecular pathways, as well as how other in- and extrinsic factors are intertwined. A multispecies approach delivering more insights in the matter will pave the way for novel NSC-based therapies to combat neurological disorders.
Collapse
Affiliation(s)
- Lucile Butruille
- UMR 7221 Phyma, CNRS/Muséum National d'Histoire Naturelle, Paris, France
| | - Pieter Vancamp
- UMR 7221 Phyma, CNRS/Muséum National d'Histoire Naturelle, Paris, France
| | - Barbara A Demeneix
- UMR 7221 Phyma, CNRS/Muséum National d'Histoire Naturelle, Paris, France
| | - Sylvie Remaud
- UMR 7221 Phyma, CNRS/Muséum National d'Histoire Naturelle, Paris, France.
| |
Collapse
|
8
|
Keestra S, Högqvist Tabor V, Alvergne A. Reinterpreting patterns of variation in human thyroid function: An evolutionary ecology perspective. Evol Med Public Health 2020; 9:93-112. [PMID: 34557302 PMCID: PMC8454515 DOI: 10.1093/emph/eoaa043] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 11/02/2020] [Indexed: 12/21/2022] Open
Abstract
Two hundred million people worldwide experience some form of thyroid disorder, with women being especially at risk. However, why human thyroid function varies between populations, individuals, and across the lifespan has attracted little research to date. This limits our ability to evaluate the conditions under which patterns of variation in thyroid function are best understood as 'normal' or 'pathological'. In this review, we aim to spark interest in research aimed at understanding the causes of variation in thyroid phenotypes. We start by assessing the biomedical literature on thyroid imbalance to discuss the validity of existing reference intervals for diagnosis and treatment across individuals and populations. We then propose an evolutionary ecological framework for understanding the phylogenetic, genetic, ecological, developmental, and physiological causes of normal variation in thyroid function. We build on this approach to suggest testable predictions for how environmental challenges interact with individual circumstances to influence the onset of thyroid disorders. We propose that dietary changes, ecological disruptions of co-evolutionary processes during pregnancy and with pathogens, emerging infections, and exacerbated stress responses can contribute to explaining the onset of thyroid diseases. For patients to receive the best personalized care, research into the causes of thyroid variation at multiple levels is needed.
Collapse
Affiliation(s)
- Sarai Keestra
- School of Anthropology & Museum Ethnography,
University of Oxford, Oxford, UK
- Amsterdam UMC, University of
Amsterdam, Amsterdam, The
Netherlands
| | | | - Alexandra Alvergne
- School of Anthropology & Museum Ethnography,
University of Oxford, Oxford, UK
- ISEM, Université de Montpellier, CNRS, IRD,
EPHE, Montpellier, France
| |
Collapse
|
9
|
Food preference and nutrient composition in captive bonobos (Pan paniscus). Primates 2020; 61:661-671. [PMID: 32246408 DOI: 10.1007/s10329-020-00813-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/11/2020] [Indexed: 12/30/2022]
Abstract
Food preference has been studied in a range of Hominoidea in the wild and in captivity, allowing for interspecific comparisons. Chimpanzees (Pan troglodytes) and gorillas (Gorilla gorilla gorilla) prefer low-fibre, high-sugar foods, suggesting that frugivory and their dietary overlap are a result of their shared preference for the same nutrients. Comparable tests of the nutritional preference of bonobos do not exist. In this study we examined food preferences of five captive bonobos for 23 familiar and ten novel food items. We performed paired-choice food tests, resulting in a clear rank order in food preference, with minor individual differences. Fruits were more preferred than vegetables. We correlated nutritional composition of the food items with the bonobos' preference. We found that preferences for familiar food items were positively correlated with total energy and carbohydrate content and negatively correlated with water and micronutrient (sodium, calcium, phosphorus, iron, zinc, manganese, selenium) content. Food preference for the novel food items also showed a significant positive correlation with total energy and carbohydrate content. Our study supports the idea that food preference among bonobos follows the pattern of the other great apes and that the shared frugivorous diets may be the result of a common preference for the same nutrients. In the wild, these preferences may be less clear due to the interference of preferred nutrients with secondary compounds. Combining food preference data and nutritional information can help in providing a healthy diet with a balanced nutrient composition in captivity. Individual food preferences can help in optimizing food choice for positive reinforcement training and food-related tasks in future research.
Collapse
|
10
|
Lee SM, Murray CM, Lonsdorf EV, Fruth B, Stanton MA, Nichols J, Hohmann G. Wild bonobo and chimpanzee females exhibit broadly similar patterns of behavioral maturation but some evidence for divergence. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2019; 171:100-109. [DOI: 10.1002/ajpa.23935] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/21/2019] [Accepted: 09/13/2019] [Indexed: 02/07/2023]
Affiliation(s)
- Sean M. Lee
- Center for the Advanced Study of Human Paleobiology, Department of AnthropologyGeorge Washington University Washington District of Columbia
| | - Carson M. Murray
- Center for the Advanced Study of Human Paleobiology, Department of AnthropologyGeorge Washington University Washington District of Columbia
| | | | - Barbara Fruth
- Faculty of Science, School of Natural Sciences and PsychologyLiverpool John Moores University Liverpool United Kingdom
- Centre for Research and ConservationRoyal Zoological Society of Antwerp Antwerp Belgium
| | - Margaret A. Stanton
- Department of PsychologyFranklin and Marshall College Lancaster Pennsylvania
| | - Jennifer Nichols
- Center for the Advanced Study of Human Paleobiology, Department of AnthropologyGeorge Washington University Washington District of Columbia
| | | |
Collapse
|