1
|
Wei S, Fan H, Zhou W, Huang G, Hua Y, Wu S, Wei X, Chen Y, Tan X, Wei F. Conservation genomics of the critically endangered Chinese pangolin. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2051-2061. [PMID: 38970727 DOI: 10.1007/s11427-023-2540-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/07/2024] [Indexed: 07/08/2024]
Abstract
The Chinese pangolin (Manis pentadactyla, MP) has been extensively exploited and is now on the brink of extinction, but its population structure, evolutionary history, and adaptive potential are unclear. Here, we analyzed 94 genomes from three subspecies of the Chinese pangolin and identified three distinct genetic clusters (MPA, MPB, and MPC), with MPB further divided into MPB1 and MPB2 subpopulations. The divergence of these populations was driven by past climate change. For MPB2 and MPC, recent human activities have caused dramatic population decline and small population size as well as increased inbreeding, but not decrease in genomic variation and increase in genetic load probably due to strong gene flow; therefore, it is crucial to strengthen in situ habitat management for these two populations. By contrast, although human activities have a milder impact on MPA, it is at high risk of extinction due to long-term contraction and isolation, and genetic rescue is urgently needed. MPB1 exhibited a relatively healthy population status and can potentially serve as a source population. Overall, our findings provide novel insights into the conservation of the Chinese pangolin and biogeography of the mammals of eastern Asia.
Collapse
Affiliation(s)
- Shichao Wei
- Jiangxi Province Key Laboratory of Conservation Biology, College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Huizhong Fan
- Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wenliang Zhou
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Guangping Huang
- Jiangxi Province Key Laboratory of Conservation Biology, College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yan Hua
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, 510520, China
| | - Shibao Wu
- School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Xiao Wei
- Terrestrial Wildlife Rescue and Epidemic Diseases Surveillance Center of Guangxi, Nanning, 530003, China
| | - Yiting Chen
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Xinyue Tan
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Fuwen Wei
- Jiangxi Province Key Laboratory of Conservation Biology, College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China.
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
- Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
2
|
Bernáthová I, Swiacká M, Bath Shéba Vitel LC, Tinsman JC, Hulva P, Černá Bolfíková B. Population structure and demographic history of two highly-trafficked species of pangolin in the Congo Basin. Sci Rep 2024; 14:22177. [PMID: 39333261 PMCID: PMC11437027 DOI: 10.1038/s41598-024-68928-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/30/2024] [Indexed: 09/29/2024] Open
Abstract
African pangolins are hunted for their meat and for use in local traditional medicine, as well as for their scales, which are trafficked internationally, especially to growing Asian markets. Pangolin's population genetic structure can be used to trace the geographic origins of trafficked scales, but substantial sampling gaps across pangolins' ranges hinder these efforts. In this study, we documented population structure and dynamics in the two species of African pangolin, the white-bellied pangolin (Phataginus tricuspis) and the giant pangolin (Smutsia gigantea) in the underexplored Republic of Congo. Using the mitochondrial control region and two nuclear markers (beta-fibrinogen and titin), we identified high genetic diversity in both species. We document a distinct mitochondrial lineage of the white-bellied pangolin, which was most likely shaped by river barriers together with dynamics of forest refugia related to the climatic shifts during the Pleistocene. We detected population growth in the white-bellied pangolin coinciding with a dry period during the Pleistocene, suggesting some ability for this typically forest-dwelling species to persist under diverse environmental conditions. Using landscape genetics, we found all but one of the pangolins we sampled at bush meat markets originated locally. A single individual appeared to have been imported to Congo from Cameroon. These findings significantly contribute to our understanding of pangolin population biology and local trade dynamics. In addition, our data from a previously unstudied part of pangolins' ranges will help us to better understand international wildlife trafficking patterns and to target conservation and protection strategies for these highly vulnerable species.
Collapse
Affiliation(s)
- Iva Bernáthová
- Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Markéta Swiacká
- Department of Spatial Sciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | | | - Jen C Tinsman
- Center for Tropical Research, University of California, Los Angeles, CA, USA
- US Fish & Wildlife National Forensic Laboratory, Ashland, OR, USA
| | - Pavel Hulva
- Faculty of Science, Charles University, Prague, Czech Republic
| | - Barbora Černá Bolfíková
- Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czech Republic.
| |
Collapse
|
3
|
Lin AL, Zou MM, Cao LJ, Hayashi F, Yang D, Liu XY. Synergistic effects of Pleistocene geological and climatic events on complex phylogeographic history of widespread sympatric species of Megaloptera in East Asia. Zool Res 2024; 45:1131-1146. [PMID: 39257376 PMCID: PMC11491776 DOI: 10.24272/j.issn.2095-8137.2024.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/04/2024] [Indexed: 09/12/2024] Open
Abstract
Unraveling the phylogeographic histories of species remains a key endeavor for comprehending the evolutionary processes contributing to the rich biodiversity and high endemism found in East Asia. In this study, we explored the phylogeographic patterns and demographic histories of three endemic fishfly and dobsonfly species ( Neochauliodes formosanus, Protohermes costalis, and Neoneuromus orientalis) belonging to the holometabolan order Megaloptera. These species, which share a broad and largely overlapping distribution, were analyzed using comprehensive mitogenomic data. Our findings revealed a consistent influence of vicariance on the population isolation of Neoc. formosanus and P. costalis between Hainan, Taiwan, and the East Asian mainland during the early Pleistocene, potentially hindering subsequent colonization of the later diverged Neon. orientalis to these islands. Additionally, we unveiled the dual function of the major mountain ranges in East Asia, serving both as barriers and conduits, in shaping the population structure of all three species. Notably, we demonstrated that these co-distributed species originated from Southwest, Southern, and eastern Central China, respectively, then subsequently migrated along multi-directional routes, leading to their sympatric distribution on the East Asian mainland. Furthermore, our results highlighted the significance of Pleistocene land bridges along the eastern coast of East Asia in facilitating the dispersal of mountain-dwelling insects with low dispersal ability. Overall, this study provides novel insight into the synergistic impact of Pleistocene geological and climatic events in shaping the diversity and distribution of aquatic insects in East Asia.
Collapse
Affiliation(s)
- Ai-Li Lin
- Department of Entomology, China Agricultural University, Beijing 100193, China
- Sanya Institute of China Agricultural University, Sanya, Hainan 572025, China
- International Joint Laboratory of Taxonomy and Systematic Evolution of Insecta, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Ming-Ming Zou
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Li-Jun Cao
- Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Fumio Hayashi
- Department of Biology, Tokyo Metropolitan University, Hachioji-shi, Tokyo 192-0397, Japan
| | - Ding Yang
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Xing-Yue Liu
- Department of Entomology, China Agricultural University, Beijing 100193, China. E-mail:
| |
Collapse
|
4
|
Pan T, Zhang C, Orozco Terwengel P, Wang H, Ding L, Yang L, Hu C, Li W, Zhou W, Wu X, Zhang B. Comparative phylogeography reveals dissimilar genetic differentiation patterns in two sympatric amphibian species. Integr Zool 2024; 19:863-886. [PMID: 37880913 DOI: 10.1111/1749-4877.12764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Global climate change is expected to have a profound effect on species distribution. Due to the temperature constraints, some narrow niche species could shift their narrow range to higher altitudes or latitudes. In this study, we explored the correlation between species traits, genetic structure, and geographical range size. More specifically, we analyzed how these variables are affected by differences in fundamental niche breadth or dispersal ability in the members of two sympatrically distributed stream-dwelling amphibian species (frog, Quasipaa yei; salamander, Pachyhynobius shangchengensis), in Dabie Mountains, East China. Both species showed relatively high genetic diversity in most geographical populations and similar genetic diversity patterns (JTX, low; BYM, high) correlation with habitat changes and population demography. Multiple clustering analyses were used to disclose differentiation among the geographical populations of these two amphibian species. Q. yei disclosed the relatively shallow genetic differentiation, while P. shangchengensis showed an opposite pattern. Under different historical climatic conditions, all ecological niche modeling disclosed a larger suitable habitat area for Q. yei than for P. shangchengensis; these results indicated a wider environment tolerance or wider niche width of Q. yei than P. shangchengensis. Our findings suggest that the synergistic effects of environmental niche variation and dispersal ability may help shape genetic structure across geographical topology, particularly for species with extremely narrow distribution.
Collapse
Affiliation(s)
- Tao Pan
- School of Life Sciences, Anhui University, Hefei, Anhui, China
- Anhui Province Key Laboratory for Conservation and Exploitation of Biological Resource, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Caiwen Zhang
- School of Life Sciences, Anhui University, Hefei, Anhui, China
| | | | - Hui Wang
- College of Food and Bioengineering, Bengbu University, Bengbu, China
| | - Ling Ding
- School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Liuyang Yang
- Anhui Province Key Laboratory for Conservation and Exploitation of Biological Resource, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Chaochao Hu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Wengang Li
- Anhui Province Key Laboratory for Conservation and Exploitation of Biological Resource, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Wenliang Zhou
- School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Xiaobing Wu
- Anhui Province Key Laboratory for Conservation and Exploitation of Biological Resource, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Baowei Zhang
- School of Life Sciences, Anhui University, Hefei, Anhui, China
| |
Collapse
|
5
|
Liu W, Nie X, Chen F, Guo N, Zhang Y, Xiao S, Huang Y, Xie Y. Field survey data for conservation: Evaluating suitable habitat of Chinese pangolin at the county-level in eastern China (2000-2040). Ecol Evol 2024; 14:e11512. [PMID: 38835522 PMCID: PMC11147814 DOI: 10.1002/ece3.11512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/25/2024] [Accepted: 05/20/2024] [Indexed: 06/06/2024] Open
Abstract
The scarcity of up-to-date data on the distribution and dynamics of the Chinese pangolin (Manis pentadactyla) presented a significant challenge in developing effective conservation strategies and implementing protective measures within China. Currently, most of China's national-level nature reserves and administrative departments operate at the county level, thereby limiting the applicability of larger-scale analyses and studies for these administrative entities. This study employed 11 widely used modeling techniques created within the Biomod2 framework to predict suitable habitats for the pangolin at the county scale, while examining the correlation between environmental variables and pangolin distribution. The results revealed that highly suitable habitats in Mingxi County of China encompassed only 49 km2. Within the county-managed nature reserve, the proportion of highly suitable habitats reached as high as 52%. However, nearly half of these areas, both moderately and highly suitable habitats, remained inadequately addressed and conserved. We found nine administrative villages that necessitated prioritized conservation efforts. The study anticipated an overall expansion in suitable habitats over the ensuing two decades, with significant growth projected in the eastern regions of Xiayang and Hufang Town. This research offered a clear and applicable research paradigm for the specific administrative level at which China operates, particularly pertinent to county-level jurisdictions with established nature reserves.
Collapse
Affiliation(s)
- Wei Liu
- College of Life Sciences Henan Normal University Xinxiang Henan China
| | - Xiaoxiao Nie
- College of Life Sciences Henan Normal University Xinxiang Henan China
| | - Fengjiao Chen
- Luoyuan National Forest Farm in Fujian Province Fuzhou Fujian China
| | - Ning Guo
- Wildlife Protection Center of Fujian Province Fuzhou Fujian China
| | - Yong Zhang
- Fujian Institute of Forest Inventory and Planning Fuzhou Fujian China
| | | | - Yanbin Huang
- Fujian Junzifeng National Nature Reserve Management Bureau Sanming Fujian China
| | - Yanping Xie
- College of Life Sciences Huaibei Normal University Huaibei Anhui China
| |
Collapse
|
6
|
Gu T, Hu J, Yu L. Evolution and conservation genetics of pangolins. Integr Zool 2024; 19:426-441. [PMID: 38146613 DOI: 10.1111/1749-4877.12796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Pangolins (Pholidota, Manidae) are classified as an evolutionarily distinct and globally endangered mammal due to their unique morphology (nail-like scales and a myrmecophagous diet) and being the victim of heavy poaching and worldwide trafficking. As such, pangolins serve as a textbook example for studying the special phenotypic evolutionary adaptations and conservation genetics of an endangered species. Recent years have demonstrated significant advancements in the fields of molecular genetics and genomics, which have translated to a series of important research achievements and breakthroughs concerning the evolution and conservation genetics of pangolins. This review comprehensively presents the hitherto advances in phylogeny, adaptive evolution, conservation genetics, and conservation genomics that are related to pangolins, which will provide an ample understanding of their diversity, molecular adaptation mechanisms, and evolutionary potentials. In addition, we highlight the priority of investigating species/population diversity among pangolins and suggest several avenues of research that are highly relevant for future pangolin conservation.
Collapse
Affiliation(s)
- Tongtong Gu
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, School of Life Sciences, Yunnan University, Kunming, China
| | - Jingyang Hu
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, School of Life Sciences, Yunnan University, Kunming, China
| | - Li Yu
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, School of Life Sciences, Yunnan University, Kunming, China
| |
Collapse
|
7
|
Heighton SP, Allio R, Murienne J, Salmona J, Meng H, Scornavacca C, Bastos ADS, Njiokou F, Pietersen DW, Tilak MK, Luo SJ, Delsuc F, Gaubert P. Pangolin Genomes Offer Key Insights and Resources for the World's Most Trafficked Wild Mammals. Mol Biol Evol 2023; 40:msad190. [PMID: 37794645 PMCID: PMC10551234 DOI: 10.1093/molbev/msad190] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023] Open
Abstract
Pangolins form a group of scaly mammals that are trafficked at record numbers for their meat and purported medicinal properties. Despite their conservation concern, knowledge of their evolution is limited by a paucity of genomic data. We aim to produce exhaustive genomic resources that include 3,238 orthologous genes and whole-genome polymorphisms to assess the evolution of all eight extant pangolin species. Robust orthologous gene-based phylogenies recovered the monophyly of the three genera and highlighted the existence of an undescribed species closely related to Southeast Asian pangolins. Signatures of middle Miocene admixture between an extinct, possibly European, lineage and the ancestor of Southeast Asian pangolins, provide new insights into the early evolutionary history of the group. Demographic trajectories and genome-wide heterozygosity estimates revealed contrasts between continental versus island populations and species lineages, suggesting that conservation planning should consider intraspecific patterns. With the expected loss of genomic diversity from recent, extensive trafficking not yet realized in pangolins, we recommend that populations be genetically surveyed to anticipate any deleterious impact of the illegal trade. Finally, we produce a complete set of genomic resources that will be integral for future conservation management and forensic endeavors for pangolins, including tracing their illegal trade. These comprise the completion of whole-genomes for pangolins through the hybrid assembly of the first reference genome for the giant pangolin (Smutsia gigantea) and new draft genomes (∼43x-77x) for four additional species, as well as a database of orthologous genes with over 3.4 million polymorphic sites.
Collapse
Affiliation(s)
- Sean P Heighton
- Laboratoire Evolution et Diversité Biologique (EDB)— IRD-UPS-CNRS, Université Toulouse III, Toulouse, France
| | - Rémi Allio
- Institut des Sciences de l'Évolution de Montpellier (ISEM), Université de Montpellier, CNRS, IRD, Montpellier, France
| | - Jérôme Murienne
- Laboratoire Evolution et Diversité Biologique (EDB)— IRD-UPS-CNRS, Université Toulouse III, Toulouse, France
| | - Jordi Salmona
- Laboratoire Evolution et Diversité Biologique (EDB)— IRD-UPS-CNRS, Université Toulouse III, Toulouse, France
| | - Hao Meng
- The State Key Laboratory of Protein and Plant Gene Research of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Céline Scornavacca
- Institut des Sciences de l'Évolution de Montpellier (ISEM), Université de Montpellier, CNRS, IRD, Montpellier, France
| | - Armanda D S Bastos
- Mammal Research Institute, Department of Zoology & Entomology, University of Pretoria, Pretoria, South Africa
| | - Flobert Njiokou
- Laboratoire de Parasitologie et Ecologie, Faculté des Sciences, Université de Yaoundé I, Yaoundé, Cameroon
| | - Darren W Pietersen
- Mammal Research Institute, Department of Zoology & Entomology, University of Pretoria, Pretoria, South Africa
| | - Marie-Ka Tilak
- Institut des Sciences de l'Évolution de Montpellier (ISEM), Université de Montpellier, CNRS, IRD, Montpellier, France
| | - Shu-Jin Luo
- The State Key Laboratory of Protein and Plant Gene Research of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Frédéric Delsuc
- Institut des Sciences de l'Évolution de Montpellier (ISEM), Université de Montpellier, CNRS, IRD, Montpellier, France
| | - Philippe Gaubert
- Laboratoire Evolution et Diversité Biologique (EDB)— IRD-UPS-CNRS, Université Toulouse III, Toulouse, France
- CIIMAR/CIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade 16 do Porto, Terminal de Cruzeiros do Porto de Leixões, Porto, Portugal
| |
Collapse
|
8
|
Tong Q, Dong WJ, Long XZ, Hu ZF, Luo ZW, Guo P, Cui LY. Effects of fine-scale habitat quality on activity, dormancy, habitat use, and survival after reproduction in Rana dybowskii (Chordata, Amphibia). BMC ZOOL 2023; 8:1. [PMID: 37170169 PMCID: PMC10127375 DOI: 10.1186/s40850-022-00163-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 12/20/2022] [Indexed: 01/19/2023] Open
Abstract
Amphibians are facing population declines and extinctions, and protecting and supplementing refuges can help species survive. However, the microhabitat requirements of most species are unknown, and artificial shelters or burrows have not been well tested for amphibians. Some amphibians exhibit complex behaviour during the transition from post-reproductive dormancy to activity. However, little is known about the ecology, post-reproductive dormancy, and terrestrial activity of amphibians. Here, habitat site selection in experimental enclosures and the effects of shelters (stones, soil) and shade (with and without shade netting) on the activity, exposed body percentage, burrow depth, body-soil contact percentage, and survival of Rana dybowskii were investigated during post-reproductive dormancy and post-dormant activity. The results showed that R. dybowskii live individually under leaves, soil, stones or tree roots. Furthermore, although the dormant sites of frogs are significantly different, the distribution of male and female frogs in these sites is similar. Shading and shelter significantly affected the exposed body percentage, burrow depth and body-soil contact percentage of frogs compared with soil. In the stone group, soil and stone form the frog's refuge/burrow, whereas in the soil group, the refuge/burrow is composed entirely of soil. Even though the soil group has a deeper burrow and a larger area of soil contact with the body, it still has a higher exposure rate than the stone group. Frog activity frequency was affected by shelter and shade; the interaction of shelter and time and the interaction of shading and time were significant. The soil group had a higher activity frequency than the stone group, and the no-shade group had a higher activity frequency than the shade group. Shelter and shading differences do not significantly affect frog survival; however, the death rate during post-reproductive dormancy is lower than that during the active period.
Collapse
Affiliation(s)
- Qing Tong
- School of Biology and Agriculture, Jiamusi University, Jiamusi, 154007, China.
- Northeast Agricultural University, Harbin, 150030, China.
| | - Wen-Jing Dong
- School of Biology and Agriculture, Jiamusi University, Jiamusi, 154007, China
| | - Xin-Zhou Long
- School of Biology and Agriculture, Jiamusi University, Jiamusi, 154007, China
| | - Zong-Fu Hu
- Northeast Agricultural University, Harbin, 150030, China
| | - Zhi-Wen Luo
- School of Biology and Agriculture, Jiamusi University, Jiamusi, 154007, China
| | - Peng Guo
- School of Biology and Agriculture, Jiamusi University, Jiamusi, 154007, China
| | - Li-Yong Cui
- Jiamusi Branch of Heilongjiang Academy of Forestry, Jiamusi, 154002, China.
| |
Collapse
|