1
|
Krokengen OC, Raasakka A, Kursula P. The intrinsically disordered protein glue of the myelin major dense line: Linking AlphaFold2 predictions to experimental data. Biochem Biophys Rep 2023; 34:101474. [PMID: 37153862 PMCID: PMC10160357 DOI: 10.1016/j.bbrep.2023.101474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 03/31/2023] [Accepted: 04/19/2023] [Indexed: 05/10/2023] Open
Abstract
Numerous human proteins are classified as intrinsically disordered proteins (IDPs). Due to their physicochemical properties, high-resolution structural information about IDPs is generally lacking. On the other hand, IDPs are known to adopt local ordered structures upon interactions with e.g. other proteins or lipid membrane surfaces. While recent developments in protein structure prediction have been revolutionary, their impact on IDP research at high resolution remains limited. We took a specific example of two myelin-specific IDPs, the myelin basic protein (MBP) and the cytoplasmic domain of myelin protein zero (P0ct). Both of these IDPs are crucial for normal nervous system development and function, and while they are disordered in solution, upon membrane binding, they partially fold into helices, being embedded into the lipid membrane. We carried out AlphaFold2 predictions of both proteins and analysed the models in light of experimental data related to protein structure and molecular interactions. We observe that the predicted models have helical segments that closely correspond to the membrane-binding sites on both proteins. We furthermore analyse the fits of the models to synchrotron-based X-ray scattering and circular dichroism data from the same IDPs. The models are likely to represent the membrane-bound state of both MBP and P0ct, rather than the conformation in solution. Artificial intelligence-based models of IDPs appear to provide information on the ligand-bound state of these proteins, instead of the conformers dominating free in solution. We further discuss the implications of the predictions for mammalian nervous system myelination and their relevance to understanding disease aspects of these IDPs.
Collapse
Affiliation(s)
| | - Arne Raasakka
- Department of Biomedicine, University of Bergen, Norway
| | - Petri Kursula
- Department of Biomedicine, University of Bergen, Norway
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, Oulu, Finland
| |
Collapse
|
2
|
Ruskamo S, Raasakka A, Pedersen JS, Martel A, Škubník K, Darwish T, Porcar L, Kursula P. Human myelin proteolipid protein structure and lipid bilayer stacking. Cell Mol Life Sci 2022; 79:419. [PMID: 35829923 PMCID: PMC9279222 DOI: 10.1007/s00018-022-04428-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/28/2022] [Accepted: 06/13/2022] [Indexed: 11/03/2022]
Abstract
The myelin sheath is an essential, multilayered membrane structure that insulates axons, enabling the rapid transmission of nerve impulses. The tetraspan myelin proteolipid protein (PLP) is the most abundant protein of compact myelin in the central nervous system (CNS). The integral membrane protein PLP adheres myelin membranes together and enhances the compaction of myelin, having a fundamental role in myelin stability and axonal support. PLP is linked to severe CNS neuropathies, including inherited Pelizaeus-Merzbacher disease and spastic paraplegia type 2, as well as multiple sclerosis. Nevertheless, the structure, lipid interaction properties, and membrane organization mechanisms of PLP have remained unidentified. We expressed, purified, and structurally characterized human PLP and its shorter isoform DM20. Synchrotron radiation circular dichroism spectroscopy and small-angle X-ray and neutron scattering revealed a dimeric, α-helical conformation for both PLP and DM20 in detergent complexes, and pinpoint structural variations between the isoforms and their influence on protein function. In phosphatidylcholine membranes, reconstituted PLP and DM20 spontaneously induced formation of multilamellar myelin-like membrane assemblies. Cholesterol and sphingomyelin enhanced the membrane organization but were not crucial for membrane stacking. Electron cryomicroscopy, atomic force microscopy, and X-ray diffraction experiments for membrane-embedded PLP/DM20 illustrated effective membrane stacking and ordered organization of membrane assemblies with a repeat distance in line with CNS myelin. Our results shed light on the 3D structure of myelin PLP and DM20, their structure-function differences, as well as fundamental protein-lipid interplay in CNS compact myelin.
Collapse
Affiliation(s)
- Salla Ruskamo
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland.
| | - Arne Raasakka
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Jan Skov Pedersen
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| | - Anne Martel
- Institut Laue-Langevin (ILL), Grenoble, France
| | - Karel Škubník
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Tamim Darwish
- National Deuteration Facility, The Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, Sydney, NSW, 2232, Australia
| | | | - Petri Kursula
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland.
- Department of Biomedicine, University of Bergen, Bergen, Norway.
| |
Collapse
|
3
|
A Journey to the Conformational Analysis of T-Cell Epitope Peptides Involved in Multiple Sclerosis. Brain Sci 2020; 10:brainsci10060356. [PMID: 32521758 PMCID: PMC7349157 DOI: 10.3390/brainsci10060356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 01/22/2023] Open
Abstract
Multiple sclerosis (MS) is a serious central nervous system (CNS) disease responsible for disability problems and deterioration of the quality of life. Several approaches have been applied to medications entering the market to treat this disease. However, no effective therapy currently exists, and the available drugs simply ameliorate the destructive disability effects of the disease. In this review article, we report on the efforts that have been conducted towards establishing the conformational properties of wild-type myelin basic protein (MBP), myelin proteolipid protein (PLP), myelin oligodendrocyte glycoprotein (MOG) epitopes or altered peptide ligands (ALPs). These efforts have led to the aim of discovering some non-peptide mimetics possessing considerable activity against the disease. These efforts have contributed also to unveiling the molecular basis of the molecular interactions implicated in the trimolecular complex, T-cell receptor (TCR)–peptide–major histocompatibility complex (MHC) or human leucocyte antigen (HLA).
Collapse
|
4
|
Tuusa J, Koski MK, Ruskamo S, Tasanen K. The intracellular domain of BP180/collagen XVII is intrinsically disordered and partially folds in an anionic membrane lipid-mimicking environment. Amino Acids 2020; 52:619-627. [PMID: 32219587 DOI: 10.1007/s00726-020-02840-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/16/2020] [Indexed: 01/09/2023]
Abstract
The trimeric transmembrane collagen BP180, also known as collagen XVII, is an essential component of hemidesmosomes at the dermal-epidermal junction and connects the cytoplasmic keratin network to the extracellular basement membrane. Dysfunction of BP180 caused by mutations in patients with junctional epidermolysis bullosa or autoantibodies in those with bullous pemphigoid leads to severe skin blistering. The extracellular collagenous domain of BP180 participates in the protein's triple-helical folding, but the structure and functional importance of the intracellular domain (ICD) of BP180 are largely unknown. In the present study, we purified and characterized human BP180 ICD. When expressed in Escherichia coli as glutathione-S-transferase or 6 × histidine tagged fusion protein, the BP180 ICD was found to exist as a monomer. Analysis of the secondary structure content by circular dichroism spectroscopy revealed that the domain is intrinsically disordered. This finding aligned with that of a bioinformatic analysis, which predicted a disordered structure. Interestingly, both anionic detergent micelles and lipid vesicles induced partial folding of the BP180 ICD, suggesting that in its natural environment, the domain's folding and unfolding may be regulated by interaction with the cell membrane or accompanying proteins. We hypothesize that the intrinsically disordered structure of the ICD of BP180 contributes to the mechanism that allows the remodeling of hemidesmosome assembly.
Collapse
Affiliation(s)
- Jussi Tuusa
- PEDEGO Research Unit, Department of Dermatology, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland.
| | - M Kristian Koski
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Salla Ruskamo
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Kaisa Tasanen
- PEDEGO Research Unit, Department of Dermatology, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| |
Collapse
|
5
|
Raasakka A, Kursula P. Flexible Players within the Sheaths: The Intrinsically Disordered Proteins of Myelin in Health and Disease. Cells 2020; 9:cells9020470. [PMID: 32085570 PMCID: PMC7072810 DOI: 10.3390/cells9020470] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/16/2020] [Accepted: 02/16/2020] [Indexed: 02/07/2023] Open
Abstract
Myelin ensheathes selected axonal segments within the nervous system, resulting primarily in nerve impulse acceleration, as well as mechanical and trophic support for neurons. In the central and peripheral nervous systems, various proteins that contribute to the formation and stability of myelin are present, which also harbor pathophysiological roles in myelin disease. Many myelin proteins have common attributes, including small size, hydrophobic segments, multifunctionality, longevity, and regions of intrinsic disorder. With recent advances in protein biophysical characterization and bioinformatics, it has become evident that intrinsically disordered proteins (IDPs) are abundant in myelin, and their flexible nature enables multifunctionality. Here, we review known myelin IDPs, their conservation, molecular characteristics and functions, and their disease relevance, along with open questions and speculations. We place emphasis on classifying the molecular details of IDPs in myelin, and we correlate these with their various functions, including susceptibility to post-translational modifications, function in protein–protein and protein–membrane interactions, as well as their role as extended entropic chains. We discuss how myelin pathology can relate to IDPs and which molecular factors are potentially involved.
Collapse
Affiliation(s)
- Arne Raasakka
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, NO-5009 Bergen, Norway;
| | - Petri Kursula
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, NO-5009 Bergen, Norway;
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Aapistie 7A, FI-90220 Oulu, Finland
- Correspondence:
| |
Collapse
|
6
|
Olcum M, Tastan B, Kiser C, Genc S, Genc K. Microglial NLRP3 inflammasome activation in multiple sclerosis. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 119:247-308. [PMID: 31997770 DOI: 10.1016/bs.apcsb.2019.08.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Multiple sclerosis (MS) is a chronic, autoimmune and neuroinflammatory disease of the central nervous system (CNS) mediated by autoreactive T cells directed against myelin antigens. Although the crucial role of adaptive immunity is well established in MS, the contribution of innate immunity has only recently been appreciated. Microglia are the main innate immune cells of the CNS. Similar to other myeloid cells, microglia recognize both exogenous and host-derived endogenous danger signals through pattern recognition receptors (PRRs) localized on their cell surface such as Toll Like receptor 4, or in the cytosol such as NLRP3. The second one is the sensor protein of the multi-molecular NLRP3 inflammasome complex in activated microglia that promotes the maturation and secretion of proinflammatory cytokines, interleukin-1β and interleukin-18. Overactivation of microglia and aberrant activation of the NLRP3 inflammasome have been implicated in the pathogenesis of MS. Indeed, experimental data, together with post-mortem and clinical studies have revealed an increased expression of NLRP3 inflammasome complex elements in microglia and other immune cells. In this review, we focus on microglial NLRP3 inflammasome activation in MS. First, we overview the basic knowledge about MS, microglia and the NLRP3 inflammasome. Then, we summarize studies about microglial NLRP3 inflammasome activation in MS and its animal models. We also highlight experimental therapeutic approaches that target different steps of NLRP inflammasome activation. Finally, we discuss future research avenues and new methods in this rapidly evolving area.
Collapse
Affiliation(s)
- Melis Olcum
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus Balcova, Izmir, Turkey
| | - Bora Tastan
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus Balcova, Izmir, Turkey; Izmir International Biomedicine and Genome Institute (iBG-Izmir), Dokuz Eylul University Health Campus, Balcova, Izmir, Turkey
| | - Cagla Kiser
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus Balcova, Izmir, Turkey; Izmir International Biomedicine and Genome Institute (iBG-Izmir), Dokuz Eylul University Health Campus, Balcova, Izmir, Turkey
| | - Sermin Genc
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus Balcova, Izmir, Turkey; Izmir International Biomedicine and Genome Institute (iBG-Izmir), Dokuz Eylul University Health Campus, Balcova, Izmir, Turkey; Department of Neuroscience, Institute of Health and Science, Dokuz Eylul University Health Campus, Balcova, Izmir, Turkey
| | - Kursad Genc
- Department of Neuroscience, Institute of Health and Science, Dokuz Eylul University Health Campus, Balcova, Izmir, Turkey
| |
Collapse
|
7
|
Laulumaa S, Nieminen T, Raasakka A, Krokengen OC, Safaryan A, Hallin EI, Brysbaert G, Lensink MF, Ruskamo S, Vattulainen I, Kursula P. Structure and dynamics of a human myelin protein P2 portal region mutant indicate opening of the β barrel in fatty acid binding proteins. BMC STRUCTURAL BIOLOGY 2018; 18:8. [PMID: 29940944 PMCID: PMC6020228 DOI: 10.1186/s12900-018-0087-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/13/2018] [Indexed: 02/04/2023]
Abstract
Background Myelin is a multilayered proteolipid sheath wrapped around selected axons in the nervous system. Its constituent proteins play major roles in forming of the highly regular membrane structure. P2 is a myelin-specific protein of the fatty acid binding protein (FABP) superfamily, which is able to stack lipid bilayers together, and it is a target for mutations in the human inherited neuropathy Charcot-Marie-Tooth disease. A conserved residue that has been proposed to participate in membrane and fatty acid binding and conformational changes in FABPs is Phe57. This residue is thought to be a gatekeeper for the opening of the portal region upon ligand entry and egress. Results We performed a structural characterization of the F57A mutant of human P2. The mutant protein was crystallized in three crystal forms, all of which showed changes in the portal region and helix α2. In addition, the behaviour of the mutant protein upon lipid bilayer binding suggested more unfolding than previously observed for wild-type P2. On the other hand, membrane binding rendered F57A heat-stable, similarly to wild-type P2. Atomistic molecular dynamics simulations showed opening of the side of the discontinuous β barrel, giving important indications on the mechanism of portal region opening and ligand entry into FABPs. The results suggest a central role for Phe57 in regulating the opening of the portal region in human P2 and other FABPs, and the F57A mutation disturbs dynamic cross-correlation networks in the portal region of P2. Conclusions Overall, the F57A variant presents similar properties to the P2 patient mutations recently linked to Charcot-Marie-Tooth disease. Our results identify Phe57 as a residue regulating conformational changes that may accompany membrane surface binding and ligand exchange in P2 and other FABPs. Electronic supplementary material The online version of this article (10.1186/s12900-018-0087-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Saara Laulumaa
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.,European Spallation Source (ESS), Lund, Sweden
| | - Tuomo Nieminen
- Department of Physics, Tampere University of Technology, Tampere, Finland
| | - Arne Raasakka
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Oda C Krokengen
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | | | - Erik I Hallin
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Guillaume Brysbaert
- Unité de Glycobiologie Structurale et Fonctionnelle, University of Lille, CNRS UMR8576 UGSF, F-59000, Lille, France
| | - Marc F Lensink
- Unité de Glycobiologie Structurale et Fonctionnelle, University of Lille, CNRS UMR8576 UGSF, F-59000, Lille, France
| | - Salla Ruskamo
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Ilpo Vattulainen
- Department of Physics, Tampere University of Technology, Tampere, Finland.,Department of Physics, University of Helsinki, Helsinki, Finland
| | - Petri Kursula
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland. .,Department of Biomedicine, University of Bergen, Bergen, Norway.
| |
Collapse
|