1
|
A diagnostic accuracy study on an innovative auto-edge detection technique for identifying simulated implant fractures on radiographic images. Sci Rep 2022; 12:19647. [PMID: 36385492 PMCID: PMC9668839 DOI: 10.1038/s41598-022-24266-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022] Open
Abstract
Implant fracture is a rare but devastating complication of treatment in partially or fully edentulous patients which requires prompt diagnosis. Nevertheless, studies on defining the most accurate technique for the detection of implant fractures are lacking. In the present study, the Canny edge detection algorithm was applied on multiple radiographic modalities including parallel periapical (PPA), oblique periapical (OPA), and cone beam CT (CBCT) with and without metal artifact reduction (MAR) to examine its accuracy for diagnosis of simulated implant fractures. Radiographs were taken from 24 intact implants and 24 implants with artificially created fractures. Images were evaluated in their original and Canny formats. The accuracy of each radiograph was assessed by comparison with a reference standard of direct observation of the implant. The greatest area under the receiver operating characteristic curve belonged to Canny CBCT with MAR (0.958), followed by original CBCT with MAR (0.917), original CBCT without MAR = Canny CBCT without MAR = Canny OPA (0.875), Canny PPA (0.833), original PPA = original OPA (0.792), respectively. The Canny edge detection algorithm is suggested as an innovative method for accurate diagnosis of clinically suspected implant fractures on CBCT and periapical radiographies.
Collapse
|
2
|
Li W, Hua G, Cai J, Zhou Y, Zhou X, Wang M, Wang X, Fu B, Ren L. Multi-Stimulus Responsive Multilayer Coating for Treatment of Device-Associated Infections. J Funct Biomater 2022; 13:24. [PMID: 35323224 PMCID: PMC8954600 DOI: 10.3390/jfb13010024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 12/21/2022] Open
Abstract
Antibacterial coating with antibiotics is highly effective in avoiding device-associated infections (DAIs) which is an unsolved healthcare problem that causes significant morbidity and mortality rates. However, bacterial drug resistance caused by uncontrolled release of antibiotics seriously restricts clinical efficacy of antibacterial coating. Hence, a local and controlled-release system which can release antibiotics in response to bacterial infected signals is necessary in antibacterial coating. Herein, a multi-stimulus responsive multilayer antibacterial coating was prepared through layer-by-layer (LbL) self-assembly of montmorillonite (MMT), chlorhexidine acetate (CHA) and Poly(protocatechuic acid-polyethylene glycol 1000-bis(phenylboronic acid carbamoyl) cystamine) (PPPB). The coating can be covered on various substrates such as cellulose acetate membrane, polyacrylonitrile membrane, polyvinyl chloride membrane, and polyurethane membrane, proving it is a versatile coating. Under the stimulation of acids, glucose or dithiothreitol, this coating was able to achieve controlled release of CHA and kill more than 99% of Staphylococcus aureus and Escherichia coli (4 × 108 CFU/mL) within 4 h. In the mouse infection model, CHA releasing of the coating was triggered by infected microenvironment to completely kill bacteria, achieving wounds healing within 14 days.
Collapse
Affiliation(s)
- Wenlong Li
- Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, 422 Siming Nan Road, Xiamen 361005, China; (W.L.); (G.H.); (J.C.); (Y.Z.); (X.Z.)
| | - Guanping Hua
- Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, 422 Siming Nan Road, Xiamen 361005, China; (W.L.); (G.H.); (J.C.); (Y.Z.); (X.Z.)
| | - Jingfeng Cai
- Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, 422 Siming Nan Road, Xiamen 361005, China; (W.L.); (G.H.); (J.C.); (Y.Z.); (X.Z.)
| | - Yaming Zhou
- Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, 422 Siming Nan Road, Xiamen 361005, China; (W.L.); (G.H.); (J.C.); (Y.Z.); (X.Z.)
| | - Xi Zhou
- Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, 422 Siming Nan Road, Xiamen 361005, China; (W.L.); (G.H.); (J.C.); (Y.Z.); (X.Z.)
| | - Miao Wang
- Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, 422 Siming Nan Road, Xiamen 361005, China; (W.L.); (G.H.); (J.C.); (Y.Z.); (X.Z.)
| | - Xiumin Wang
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China;
| | - Baoqing Fu
- Department of Laboratory Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Lei Ren
- Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, 422 Siming Nan Road, Xiamen 361005, China; (W.L.); (G.H.); (J.C.); (Y.Z.); (X.Z.)
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
3
|
Song JY. Implant complications in bruxism patients. J Korean Assoc Oral Maxillofac Surg 2021; 47:149-150. [PMID: 33911049 PMCID: PMC8084741 DOI: 10.5125/jkaoms.2021.47.2.149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 03/29/2021] [Indexed: 11/07/2022] Open
Abstract
Bruxism is defined as a parafunctional activity during sleep or while awake that includes locking and grinding of teeth and clenching. It generates excessive occlusal force that may lead to implant failure. Therefore, diagnosis of bruxism and providing specific protocols such as occlusal splint and/or injection of botulinum toxin before implant installation are important to prevent increases the risk of implant failure in bruxism patients.
Collapse
Affiliation(s)
- Ji-Young Song
- Department of Dentistry, School of Medicine, Jeju National University, Jeju, Korea
| |
Collapse
|
4
|
Kopec M, Brodecki A, Szczęsny G, Kowalewski ZL. Microstructural Analysis of Fractured Orthopedic Implants. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2209. [PMID: 33923086 PMCID: PMC8123362 DOI: 10.3390/ma14092209] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/15/2022]
Abstract
In this paper, fracture behavior of four types of implants with different geometries (pure titanium locking plate, pure titanium femoral implant, Ti-6Al-4V titanium alloy pelvic implant, X2CrNiMo18 14-3 steel femoral implant) was studied in detail. Each implant fractured in the human body. The scanning electron microscopy (SEM) was used to determine the potential cause of implants fracture. It was found that the implants fracture mainly occurred in consequence of mechanical overloads resulting from repetitive, prohibited excessive limb loads or singular, un-intendent, secondary injures. Among many possible loading types, the implants were subjected to an excessive fatigue loads with additional interactions caused by screws that were mounted in their threaded holes. The results of this work enable to conclude that the design of orthopedic implants is not fully sufficient to transduce mechanical loads acting over them due to an increasing weight of treated patients and much higher their physical activity.
Collapse
Affiliation(s)
- Mateusz Kopec
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02106 Warsaw, Poland; (A.B.); (Z.L.K.)
- Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Adam Brodecki
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02106 Warsaw, Poland; (A.B.); (Z.L.K.)
| | - Grzegorz Szczęsny
- Department of Orthopaedic Surgery and Traumatology, Medical University, 4 Lindleya Str, 02005 Warsaw, Poland;
| | - Zbigniew L. Kowalewski
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02106 Warsaw, Poland; (A.B.); (Z.L.K.)
| |
Collapse
|