1
|
Bertolo A, Valido E, Stoyanov J. Optimized bacterial community characterization through full-length 16S rRNA gene sequencing utilizing MinION nanopore technology. BMC Microbiol 2024; 24:58. [PMID: 38365589 PMCID: PMC10870487 DOI: 10.1186/s12866-024-03208-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/28/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND Accurate identification of bacterial communities is crucial for research applications, diagnostics, and clinical interventions. Although 16S ribosomal RNA (rRNA) gene sequencing is a widely employed technique for bacterial taxonomic classification, it often results in misclassified or unclassified bacterial taxa. This study sought to refine the full-length 16S rRNA gene sequencing protocol using the MinION sequencer, focusing on the V1-V9 regions. Our methodological enquiry examined several factors, including the number of PCR amplification cycles, choice of primers and Taq polymerase, and specific sequence databases and workflows employed. We used a microbial standard comprising eight bacterial strains (five gram-positive and three gram-negative) in known proportions as a validation control. RESULTS Based on the MinION protocol, we employed the microbial standard as the DNA template for the 16S rRNA gene amplicon sequencing procedure. Our analysis showed that an elevated number of PCR amplification cycles introduced PCR bias, and the selection of Taq polymerase and primer sets significantly affected the subsequent analysis. Bacterial identification at genus level demonstrated Pearson correlation coefficients ranging from 0.73 to 0.79 when assessed using BugSeq, Kraken-Silva and EPI2ME-16S workflows. Notably, the EPI2ME-16S workflow exhibited the highest Pearson correlation with the microbial standard, minimised misclassification, and increased alignment accuracy. At the species taxonomic level, the BugSeq workflow was superior, with a Pearson correlation coefficient of 0.92. CONCLUSIONS These findings emphasise the importance of careful selection of PCR settings and a well-structured analytical framework for 16S rRNA full-length gene sequencing. The results showed a robust correlation between the predicted and observed bacterial abundances at both the genus and species taxonomic levels, making these findings applicable across diverse research contexts and with clinical utility for reliable pathogen identification.
Collapse
Affiliation(s)
- Alessandro Bertolo
- SCI Population Biobanking & Translational Research Group, Swiss Paraplegic Research, Nottwil, Switzerland
- Department of Orthopaedic Surgery, University of Bern, Bern Inselspital, Bern, Switzerland
| | - Ezra Valido
- SCI Population Biobanking & Translational Research Group, Swiss Paraplegic Research, Nottwil, Switzerland
| | - Jivko Stoyanov
- SCI Population Biobanking & Translational Research Group, Swiss Paraplegic Research, Nottwil, Switzerland.
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland.
| |
Collapse
|
2
|
Ohta A, Nishi K, Hirota K, Matsuo Y. Using nanopore sequencing to identify fungi from clinical samples with high phylogenetic resolution. Sci Rep 2023; 13:9785. [PMID: 37328565 PMCID: PMC10275880 DOI: 10.1038/s41598-023-37016-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/14/2023] [Indexed: 06/18/2023] Open
Abstract
The study of microbiota has been revolutionized by the development of DNA metabarcoding. This sequence-based approach enables the direct detection of microorganisms without the need for culture and isolation, which significantly reduces analysis time and offers more comprehensive taxonomic profiles across broad phylogenetic lineages. While there has been an accumulating number of researches on bacteria, molecular phylogenetic analysis of fungi still remains challenging due to the lack of standardized tools and the incompleteness of reference databases limiting the accurate and precise identification of fungal taxa. Here, we present a DNA metabarcoding workflow for characterizing fungal microbiota with high taxonomic resolution. This method involves amplifying longer stretches of ribosomal RNA operons and sequencing them using nanopore long-read sequencing technology. The resulting reads were error-polished to generate consensus sequences with 99.5-100% accuracy, which were then aligned against reference genome assemblies. The efficacy of this method was explored using a polymicrobial mock community and patient-derived specimens, demonstrating the marked potential of long-read sequencing combined with consensus calling for accurate taxonomic classification. Our approach offers a powerful tool for the rapid identification of pathogenic fungi and has the promise to significantly improve our understanding of the role of fungi in health and disease.
Collapse
Affiliation(s)
- Atsufumi Ohta
- Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka, 573-1010, Japan
| | - Kenichiro Nishi
- Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka, 573-1010, Japan
- Department of Anesthesiology and Intensive Care, Osaka Red Cross Hospital, Osaka, Japan
| | - Kiichi Hirota
- Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka, 573-1010, Japan
| | - Yoshiyuki Matsuo
- Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka, 573-1010, Japan.
| |
Collapse
|
3
|
Butler J, Upton M. What's really down the hospital plughole? J Hosp Infect 2023:S0195-6701(23)00118-4. [PMID: 37080487 DOI: 10.1016/j.jhin.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/13/2023] [Accepted: 04/13/2023] [Indexed: 04/22/2023]
Affiliation(s)
- James Butler
- Department of Clinical and Biomedical Sciences, Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, EX1 2LU, UK.
| | - Mathew Upton
- School of Biomedical Sciences, Faculty of Health, University of Plymouth, Plymouth, PL4 8AA, UK
| |
Collapse
|
4
|
Full-Length 16S rRNA Gene Analysis Using Long-Read Nanopore Sequencing for Rapid Identification of Bacteria from Clinical Specimens. Methods Mol Biol 2023; 2632:193-213. [PMID: 36781730 DOI: 10.1007/978-1-0716-2996-3_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Amplicon sequencing of the 16S ribosomal RNA (rRNA) gene is a practical and reliable measure for taxonomic profiling of bacterial communities. This chapter describes the detailed workflow for full-length 16S rRNA gene amplicon analysis using nanopore sequencing and bioinformatics pipelines to analyze nanopore sequencing data for taxonomic assignment. This approach offers a higher taxonomic resolution for bacterial identification from clinical specimens with a markedly reduced timeframe and improved versatility.
Collapse
|
5
|
Kryukov K, Imanishi T, Nakagawa S. Nanopore Sequencing Data Analysis of 16S rRNA Genes Using the GenomeSync-GSTK System. Methods Mol Biol 2023; 2632:215-226. [PMID: 36781731 DOI: 10.1007/978-1-0716-2996-3_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
With the development of nanopore sequencing technology, long reads of DNA sequences can now be determined rapidly from various samples. This protocol introduces the GenomeSync-GSTK system for bacterial species identification in a given sample using nanopore sequencing data of 16S rRNA genes as an example. GenomeSync is a collection of genome sequences designed to provide easy access to genomic data of the species as demanded. GSTK (genome search toolkit) is a set of scripts for managing local homology searches using genomes obtained from the GenomeSync database. Based on this protocol, nanopore sequencing data analyses of metagenomes and amplicons could be efficiently performed. We also noted reanalysis in conjunction with future developments in nanopore sequencing technology and the accumulation of genome sequencing data.
Collapse
Affiliation(s)
- Kirill Kryukov
- Department of Informatics, National Institute of Genetics, Shizuoka, Japan
| | - Tadashi Imanishi
- Department of Molecular Life Science, Tokai University School of Medicine, Kanagawa, Japan
| | - So Nakagawa
- Department of Molecular Life Science, Tokai University School of Medicine, Kanagawa, Japan.
| |
Collapse
|
6
|
Tabata Y, Matsuo Y, Fujii Y, Ohta A, Hirota K. Rapid detection of single nucleotide polymorphisms using the MinION nanopore sequencer: a feasibility study for perioperative precision medicine. JA Clin Rep 2022; 8:17. [PMID: 35244794 PMCID: PMC8897523 DOI: 10.1186/s40981-022-00506-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 11/10/2022] Open
Abstract
Introduction Precision medicine is a phrase used to describe personalized medical care tailored to specific patients based on their clinical presentation and genetic makeup. However, despite the fact that several single nucleotide polymorphisms (SNPs) have been reported to be associated with increased susceptibility to particular anesthetic agents and the occurrence of perioperative complications, genomic profiling and thus precision medicine has not been widely applied in perioperative management. Methods We validated six SNP loci known to affect perioperative outcomes in Japanese patients using genomic DNA from saliva specimens and nanopore sequencing of each SNP loci to facilitate allele frequency calculations and then compared the nanopore results to those produced using the conventional dideoxy sequencing method. Results Nanopore sequencing reads clustered into the expected genotypes in both homozygous and heterozygous cases. In addition, the nanopore sequencing results were consistent with those obtained using conventional dideoxy sequencing and the workflow provided reliable allele frequency estimation, with a total analysis time of less than 4 h. Conclusion Thus, our results suggest that nanopore sequencing is a promising and versatile tool for SNP genotyping, allowing for rapid and feasible risk prediction of perioperative outcomes. Supplementary Information The online version contains supplementary material available at 10.1186/s40981-022-00506-7.
Collapse
Affiliation(s)
- Yoshiteru Tabata
- Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, Hirakata, Osaka, Japan
| | - Yoshiyuki Matsuo
- Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, Hirakata, Osaka, Japan.
| | - Yosuke Fujii
- Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, Hirakata, Osaka, Japan.,Department of Anesthesia, Otsu City Hospital, Otsu, Shiga, Japan
| | - Atsufumi Ohta
- Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, Hirakata, Osaka, Japan
| | - Kiichi Hirota
- Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, Hirakata, Osaka, Japan
| |
Collapse
|
7
|
Ciuffreda L, Rodríguez-Pérez H, Flores C. Nanopore sequencing and its application to the study of microbial communities. Comput Struct Biotechnol J 2021; 19:1497-1511. [PMID: 33815688 PMCID: PMC7985215 DOI: 10.1016/j.csbj.2021.02.020] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/24/2021] [Accepted: 02/27/2021] [Indexed: 12/14/2022] Open
Abstract
Since its introduction, nanopore sequencing has enhanced our ability to study complex microbial samples through the possibility to sequence long reads in real time using inexpensive and portable technologies. The use of long reads has allowed to address several previously unsolved issues in the field, such as the resolution of complex genomic structures, and facilitated the access to metagenome assembled genomes (MAGs). Furthermore, the low cost and portability of platforms together with the development of rapid protocols and analysis pipelines have featured nanopore technology as an attractive and ever-growing tool for real-time in-field sequencing for environmental microbial analysis. This review provides an up-to-date summary of the experimental protocols and bioinformatic tools for the study of microbial communities using nanopore sequencing, highlighting the most important and recent research in the field with a major focus on infectious diseases. An overview of the main approaches including targeted and shotgun approaches, metatranscriptomics, epigenomics, and epitranscriptomics is provided, together with an outlook to the major challenges and perspectives over the use of this technology for microbial studies.
Collapse
Affiliation(s)
- Laura Ciuffreda
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, 38010 Santa Cruz de Tenerife, Spain
| | - Héctor Rodríguez-Pérez
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, 38010 Santa Cruz de Tenerife, Spain
| | - Carlos Flores
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, 38010 Santa Cruz de Tenerife, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), 38600 Santa Cruz de Tenerife, Spain
- Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna, 38200 Santa Cruz de Tenerife, Spain
| |
Collapse
|
8
|
Matsuo Y, Komiya S, Yasumizu Y, Yasuoka Y, Mizushima K, Takagi T, Kryukov K, Fukuda A, Morimoto Y, Naito Y, Okada H, Bono H, Nakagawa S, Hirota K. Full-length 16S rRNA gene amplicon analysis of human gut microbiota using MinION™ nanopore sequencing confers species-level resolution. BMC Microbiol 2021; 21:35. [PMID: 33499799 PMCID: PMC7836573 DOI: 10.1186/s12866-021-02094-5] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 01/18/2021] [Indexed: 12/13/2022] Open
Abstract
Background Species-level genetic characterization of complex bacterial communities has important clinical applications in both diagnosis and treatment. Amplicon sequencing of the 16S ribosomal RNA (rRNA) gene has proven to be a powerful strategy for the taxonomic classification of bacteria. This study aims to improve the method for full-length 16S rRNA gene analysis using the nanopore long-read sequencer MinION™. We compared it to the conventional short-read sequencing method in both a mock bacterial community and human fecal samples. Results We modified our existing protocol for full-length 16S rRNA gene amplicon sequencing by MinION™. A new strategy for library construction with an optimized primer set overcame PCR-associated bias and enabled taxonomic classification across a broad range of bacterial species. We compared the performance of full-length and short-read 16S rRNA gene amplicon sequencing for the characterization of human gut microbiota with a complex bacterial composition. The relative abundance of dominant bacterial genera was highly similar between full-length and short-read sequencing. At the species level, MinION™ long-read sequencing had better resolution for discriminating between members of particular taxa such as Bifidobacterium, allowing an accurate representation of the sample bacterial composition. Conclusions Our present microbiome study, comparing the discriminatory power of full-length and short-read sequencing, clearly illustrated the analytical advantage of sequencing the full-length 16S rRNA gene. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02094-5.
Collapse
Affiliation(s)
- Yoshiyuki Matsuo
- Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka, 573-1010, Japan.
| | - Shinnosuke Komiya
- HORAC Grand Front Osaka Clinic, Osaka, Japan.,Obstetrics and Gynecology, Kansai Medical University Graduate School of Medicine, Hirakata, Japan
| | - Yoshiaki Yasumizu
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan.,Faculty of Medicine, Osaka University, Osaka, Japan
| | - Yuki Yasuoka
- Faculty of Medicine, Osaka University, Osaka, Japan
| | - Katsura Mizushima
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tomohisa Takagi
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kirill Kryukov
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Japan.,Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Japan
| | | | | | - Yuji Naito
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hidetaka Okada
- Obstetrics and Gynecology, Kansai Medical University Graduate School of Medicine, Hirakata, Japan
| | - Hidemasa Bono
- Database Center for Life Science (DBCLS), Research Organization of Information and Systems, Mishima, Japan.,Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - So Nakagawa
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Japan
| | - Kiichi Hirota
- Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka, 573-1010, Japan
| |
Collapse
|
9
|
Latorre-Pérez A, Pascual J, Porcar M, Vilanova C. A lab in the field: applications of real-time, in situ metagenomic sequencing. Biol Methods Protoc 2020; 5:bpaa016. [PMID: 33134552 PMCID: PMC7585387 DOI: 10.1093/biomethods/bpaa016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/07/2020] [Accepted: 08/18/2020] [Indexed: 01/18/2023] Open
Abstract
High-throughput metagenomic sequencing is considered one of the main technologies fostering the development of microbial ecology. Widely used second-generation sequencers have enabled the analysis of extremely diverse microbial communities, the discovery of novel gene functions, and the comprehension of the metabolic interconnections established among microbial consortia. However, the high cost of the sequencers and the complexity of library preparation and sequencing protocols still hamper the application of metagenomic sequencing in a vast range of real-life applications. In this context, the emergence of portable, third-generation sequencers is becoming a popular alternative for the rapid analysis of microbial communities in particular scenarios, due to their low cost, simplicity of operation, and rapid yield of results. This review discusses the main applications of real-time, in situ metagenomic sequencing developed to date, highlighting the relevance of this technology in current challenges (such as the management of global pathogen outbreaks) and in the next future of industry and clinical diagnosis.
Collapse
Affiliation(s)
| | | | - Manuel Porcar
- Darwin Bioprospecting Excellence SL, Valencia, Spain
- Institute for Integrative Systems Biology, I2SysBio, University of Valencia-CSIC, Valencia, Spain
| | | |
Collapse
|
10
|
Nakagawa S, Inoue S, Kryukov K, Yamagishi J, Ohno A, Hayashida K, Nakazwe R, Kalumbi M, Mwenya D, Asami N, Sugimoto C, Mutengo MM, Imanishi T. Rapid sequencing-based diagnosis of infectious bacterial species from meningitis patients in Zambia. Clin Transl Immunology 2019; 8:e01087. [PMID: 31709051 PMCID: PMC6831930 DOI: 10.1002/cti2.1087] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 10/05/2019] [Accepted: 10/10/2019] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES We have developed a portable system for the rapid determination of bacterial composition for the diagnosis of infectious diseases. Our system comprises of a nanopore technology-based sequencer, MinION, and two laptop computers. To examine the accuracy and time efficiency of our system, we provided a proof-of-concept for the detection of the causative bacteria of 11 meningitis patients in Zambia. METHODS We extracted DNA from cerebrospinal fluid samples of each patient and amplified the 16S rRNA gene regions. The sequencing library was prepared, and the sequenced reads were simultaneously processed for bacterial composition determination using the minimap2 software and the representative prokaryote genomes. RESULTS The sequencing results of four of the six culture-positive samples were consistent with those of conventional culture-based methods. The dominant bacterial species in each of these samples were identified from the sequencing data within only 3 min. Although the major bacterial species were also detected from the other two culture-positive samples and five culture-negative samples, their presence could not be confirmed. Moreover, as a whole, although the number of sequencing reads obtained within a short sequencing run was small, there was no change in the major bacterial species over time with prolonged sequencing. In addition, the processing time strongly correlated with the number of sequencing reads used for the analysis. CONCLUSION Our results suggest that time-effective analysis could be achieved by determining the number of sequencing reads required for the rapid diagnosis of infectious bacterial species depending on the complexity of bacterial species in a sample.
Collapse
Affiliation(s)
- So Nakagawa
- Department of Molecular Life ScienceTokai University School of MedicineIseharaJapan
- Micro/Nano Technology CenterTokai UniversityHiratsukaJapan
| | - Shigeaki Inoue
- Department of Emergency and Critical Care MedicineTokai University School of MedicineIseharaJapan
- Department of Disaster and Emergency MedicineKobe University Graduate School of MedicineKobeJapan
| | - Kirill Kryukov
- Department of Molecular Life ScienceTokai University School of MedicineIseharaJapan
| | - Junya Yamagishi
- Research Center for Zoonosis ControlHokkaido UniversitySapporoJapan
- Global Station for Zoonosis ControlGI‐CoREHokkaido UniversitySapporoJapan
| | - Ayumu Ohno
- Department of Molecular Life ScienceTokai University School of MedicineIseharaJapan
| | - Kyoko Hayashida
- Research Center for Zoonosis ControlHokkaido UniversitySapporoJapan
| | - Ruth Nakazwe
- Department of Pathology and MicrobiologyUniversity Teaching HospitalLusakaZambia
| | - Mox Kalumbi
- Department of Pathology and MicrobiologyUniversity Teaching HospitalLusakaZambia
- Institute of Basic and Biomedical SciencesLevy Mwanawasa Medical UniversityLusakaZambia
| | - Darlington Mwenya
- Department of Pathology and MicrobiologyUniversity Teaching HospitalLusakaZambia
| | - Nana Asami
- Department of Molecular Life ScienceTokai University School of MedicineIseharaJapan
| | - Chihiro Sugimoto
- Research Center for Zoonosis ControlHokkaido UniversitySapporoJapan
- Global Station for Zoonosis ControlGI‐CoREHokkaido UniversitySapporoJapan
| | - Mable M Mutengo
- Department of Pathology and MicrobiologyUniversity Teaching HospitalLusakaZambia
- Institute of Basic and Biomedical SciencesLevy Mwanawasa Medical UniversityLusakaZambia
| | - Tadashi Imanishi
- Department of Molecular Life ScienceTokai University School of MedicineIseharaJapan
| |
Collapse
|