1
|
Shangguan X, Yang X, Wang S, Geng L, Wang L, Zhao M, Cao H, Zhang Y, Li X, Yang M, Xu K, Zheng X. Genome-Wide Identification and Expression Pattern of Sugar Transporter Genes in the Brown Planthopper, Nilaparvata lugens (Stål). INSECTS 2024; 15:509. [PMID: 39057242 PMCID: PMC11277001 DOI: 10.3390/insects15070509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/28/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024]
Abstract
Sugar transporters play important roles in controlling carbohydrate transport and are responsible for mediating the movement of sugars into cells in numerous organisms. In insects, sugar transporters not only play a role in sugar transport but may also act as receptors for virus entry and the accumulation of plant defense compounds. The brown planthopper, Nilaparvata lugens, inflicts damage on rice plants by feeding on their phloem sap, which is rich in sugars. In the present study, we identified 34 sugar transporters in N. lugens, which were classified into three subfamilies based on phylogenetic analysis. The motif numbers varied from seven to eleven, and motifs 2, 3, and 4 were identified in the functional domains of all 34 NlST proteins. Chromosome 1 was found to possess the highest number of NlST genes, harboring 15. The gut, salivary glands, fat body, and ovary were the different tissues enriched with NlST gene expression. The expression levels of NlST2, 3, 4, 7, 20, 27, 28, and 31 were higher in the gut than in the other tissues. When expressed in a Saccharomyces cerevisiae hexose transporter deletion mutant (strain EBY.VW4000), only ApST4 (previously characterized) and NlST4, 28, and 31 were found to transport glucose and fructose, resulting in functional rescue of the yeast mutant. These results provide valuable data for further studies on sugar transporters in N. lugens and lay a foundation for finding potential targets to control N. lugens.
Collapse
Affiliation(s)
- Xinxin Shangguan
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China
- Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China
| | - Xiaoyu Yang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, China
| | - Siyin Wang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, China
| | - Lijie Geng
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, China
| | - Lina Wang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, China
| | - Mengfan Zhao
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, China
| | - Haohao Cao
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China
- Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China
| | - Yi Zhang
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China
- Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China
| | - Xiaoli Li
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China
- Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China
| | - Mingsheng Yang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, China
| | - Kedong Xu
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China
- Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China
| | - Xiaohong Zheng
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China
- Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China
| |
Collapse
|
2
|
Ochoa-Alejo N, Gómez-Jiménez MC, Martínez O. Editorial: Transcriptomics of fruit growth, development and ripening. FRONTIERS IN PLANT SCIENCE 2024; 15:1399376. [PMID: 38645390 PMCID: PMC11026863 DOI: 10.3389/fpls.2024.1399376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 03/27/2024] [Indexed: 04/23/2024]
Affiliation(s)
- Neftali Ochoa-Alejo
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Irapuato, Irapuato, Guanajuato, Mexico
| | | | - Octavio Martínez
- Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Guanajuato, Mexico
| |
Collapse
|
3
|
Zhang Y, Yun F, Man X, Huang D, Liao W. Effects of Hydrogen Sulfide on Sugar, Organic Acid, Carotenoid, and Polyphenol Level in Tomato Fruit. PLANTS (BASEL, SWITZERLAND) 2023; 12:719. [PMID: 36840068 PMCID: PMC9965552 DOI: 10.3390/plants12040719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Hydrogen sulfide (H2S) is known to have a positive effect on the postharvest storage of vegetables and fruits, but limited results are available on its influence in fruit flavor quality. Here, we presented the effect of H2S on the flavor quality of tomato fruit during postharvest. H2S decreased the content of fructose, glucose, carotene and lycopene but increased that of soluble protein, organic acid, malic acid and citric acid. These differences were directly associated with the expression of their metabolism-related genes. Moreover, H2S treatment raised the contents of total phenolics, total flavonoids and most phenolic compounds, and up-regulated the expression level of their metabolism-related genes (PAL5, 4CL, CHS1, CHS2, F3H and FLS). However, the effects of the H2S scavenger hypotaurine on the above flavor quality parameters were opposite to that of H2S, thus confirming the role of H2S in tomato flavor quality. Thus, these results provide insight into the significant roles of H2S in tomato fruit quality regulation and implicate the potential application of H2S in reducing the flavor loss of tomato fruit during postharvest.
Collapse
|
4
|
Yang J, Zhang J, Niu XQ, Zheng XL, Chen X, Zheng GH, Wu JC. Comparative transcriptome analysis reveals key genes potentially related to organic acid and sugar accumulation in loquat. PLoS One 2021; 16:e0238873. [PMID: 33914776 PMCID: PMC8084190 DOI: 10.1371/journal.pone.0238873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 08/25/2020] [Indexed: 11/18/2022] Open
Abstract
Organic acids and sugars are the primary components that determine the quality and flavor of loquat fruits. In the present study, major organic acids, sugar content, enzyme activities, and the expression of related genes were analyzed during fruit development in two loquat cultivars, ’JieFangZhong’ (JFZ) and ’BaiLi’ (BL). Our results showed that the sugar content increased during fruit development in the two cultivars; however, the organic acid content dramatically decreased in the later stages of fruit development. The differences in organic acid and sugar content between the two cultivars primarily occured in the late stage of fruit development and the related enzymes showed dynamic changes in activies during development. Phosphoenolpyruvate carboxylase (PEPC) and mNAD malic dehydrogenase (mNAD-MDH) showed higher activities in JFZ at 95 days after flowering (DAF) than in BL. However, NADP-dependent malic enzyme (NADP-ME) activity was the lowest at 95 DAF in both JFZ and BL with BL showing higher activity compared with JFZ. At 125 DAF, the activity of fructokinase (FRK) was significantly higher in JFZ than in BL. The activity of sucrose synthase (SUSY) in the sucrose cleavage direction (SS-C) was low at early stages of fruit development and increased at 125 DAF. SS-C activity was higher in JFZ than in BL. vAI and sucrose phosphate synthase (SPS) activities were similar in the two both cultivars and increased with fruit development. RNA-sequencing was performed to determine the candidate genes for organic acid and sugar metabolism. Our results showed that the differentially expressed genes (DEGs) with the greated fold changes in the later stages of fruit development between the two cultivars were phosphoenolpyruvate carboxylase 2 (PEPC2), mNAD-malate dehydrogenase (mNAD-MDH), cytosolic NADP-ME (cyNADP-ME2), aluminum-activated malate transporter (ALMT9), subunit A of vacuolar H+-ATPase (VHA-A), vacuolar H+-PPase (VHP1), NAD-sorbitol dehydrogenase (NAD-SDH), fructokinase (FK), sucrose synthase in sucrose cleavage (SS-C), sucrose-phosphate synthase 1 (SPS1), neutral invertase (NI), and vacuolar acid invertase (vAI). The expression of 12 key DEGs was validated by quantitative reverese transcription PCR (RT-qPCR). Our findings will help understand the molecular mechanism of organic acid and sugar formation in loquat, which will aid in breeding high-quality loquat cultivars.
Collapse
Affiliation(s)
- Jun Yang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Jing Zhang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Xian-Qian Niu
- Fujian Science Technology of Tropical Crops, Zhangzhou, Fujian, China
| | - Xue-Lian Zheng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Xu Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Guo-Hua Zheng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, PR China
- * E-mail: (GHZ); (JCW)
| | - Jin-Cheng Wu
- College of Environmental and Biological Engineering, Putian University, Putian, China
- * E-mail: (GHZ); (JCW)
| |
Collapse
|
5
|
Cakpo CB, Vercambre G, Baldazzi V, Roch L, Dai Z, Valsesia P, Memah MM, Colombié S, Moing A, Gibon Y, Génard M. Model-assisted comparison of sugar accumulation patterns in ten fleshy fruits highlights differences between herbaceous and woody species. ANNALS OF BOTANY 2020; 126:455-470. [PMID: 32333754 PMCID: PMC7424760 DOI: 10.1093/aob/mcaa082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 04/23/2020] [Indexed: 05/13/2023]
Abstract
BACKGROUND AND AIMS Sugar concentration is a key determinant of fruit quality. Soluble sugars and starch concentrations in fruits vary greatly from one species to another. The aim of this study was to investigate similarities and differences in sugar accumulation strategies across ten contrasting fruit species using a modelling approach. METHODS We developed a coarse-grained model of primary metabolism based on the description of the main metabolic and hydraulic processes (synthesis of compounds other than sugar and starch, synthesis and hydrolysis of starch, and water dilution) involved in the accumulation of soluble sugars during fruit development. KEY RESULTS Statistical analyses based on metabolic rates separated the species into six groups according to the rate of synthesis of compounds other than sugar and starch. Herbaceous species (cucumber, tomato, eggplant, pepper and strawberry) were characterized by a higher synthesis rate than woody species (apple, nectarine, clementine, grape and kiwifruit). Inspection of the dynamics of the processes involved in sugar accumulation revealed that net sugar importation, metabolism and dilution processes were remarkably synchronous in most herbaceous plants, whereas in kiwifruit, apple and nectarine, processes related to starch metabolism were temporally separated from other processes. Strawberry, clementine and grape showed a distinct dynamic compared with all other species. CONCLUSIONS Overall, these results provide fresh insights into species-specific regulatory strategies and into the role of starch metabolism in the accumulation of soluble sugars in fleshy fruits. In particular, inter-specific differences in development period shape the co-ordination of metabolic processes and affect priorities for carbon allocation across species. The six metabolic groups identified by our analysis do not show a clear separation into climacteric and non-climacteric species, possibly suggesting that the metabolic processes related to sugar concentration are not greatly affected by ethylene-associated events.
Collapse
Affiliation(s)
- Coffi Belmys Cakpo
- INRAE, UR1115, Unité Plantes et Systèmes de Culture Horticoles, Avignon, France
| | - Gilles Vercambre
- INRAE, UR1115, Unité Plantes et Systèmes de Culture Horticoles, Avignon, France
| | - Valentina Baldazzi
- INRAE, UR1115, Unité Plantes et Systèmes de Culture Horticoles, Avignon, France
- Université Côte d’Azur, INRAE, CNRS, Institut Sophia Agrobiotech, Sophia-Antipolis, France
- Université Côte d’Azur, Inria, INRAE, Sorbonne Université, BIOCORE, Sophia-Antipolis, France
| | - Léa Roch
- INRAE, Univ. Bordeaux, UMR1332 Biologie du Fruit et Pathologie, Villenave d’Ornon, France
| | - Zhanwu Dai
- EGFV, Bordeaux Sciences Agro, INRAE, Université de Bordeaux, Villenave d’Ornon, France
- Beijing Key Laboratory of Grape Science and Enology and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Pierre Valsesia
- INRAE, UR1115, Unité Plantes et Systèmes de Culture Horticoles, Avignon, France
| | | | - Sophie Colombié
- INRAE, Univ. Bordeaux, UMR1332 Biologie du Fruit et Pathologie, Villenave d’Ornon, France
| | - Annick Moing
- INRAE, Univ. Bordeaux, UMR1332 Biologie du Fruit et Pathologie, Villenave d’Ornon, France
- Bordeaux Metabolome Facility– MetaboHUB, Villenave d’Ornon, France
| | - Yves Gibon
- INRAE, Univ. Bordeaux, UMR1332 Biologie du Fruit et Pathologie, Villenave d’Ornon, France
| | - Michel Génard
- INRAE, UR1115, Unité Plantes et Systèmes de Culture Horticoles, Avignon, France
| |
Collapse
|
6
|
Transcriptome analysis reveals the regulation of metabolic processes during the post-harvest cold storage of pear. Genomics 2020; 112:3933-3942. [PMID: 32629095 DOI: 10.1016/j.ygeno.2020.06.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 06/04/2020] [Accepted: 06/28/2020] [Indexed: 11/20/2022]
Abstract
Pear is a traditional and economically fruit tree worldwide. With the development of the pear industry, pear fruit post-harvest preservation techniques have become very important. Among them, low temperature preservation technology is most widely used, but the molecular mechanism underlying this process is still unclear. To better understand this, RNA-seq was performed on samples collected at different time points with increasing storage time. Here, 19,610 differentially expressed genes were obtained and annotated into 51 GO terms and 26 KEGG-defined significantly overrepresented pathways. 2475 transcription factors belonging to 50 different families were identified with increasing storage time. Ethylene content increased with storage time and was the highest at 105 days of fruit storage. Accordingly, integrative analysis of gene expression revealed that 14 unigenes were related to the ethylene metabolic pathway. This study provides valuable resources to investigate the genetics of the ethylene metabolic pathways and improve pear storage and preservation technology.
Collapse
|
7
|
Abstract
Sucrose is an important component of fruit flavor, but whether sucrose signaling affects the postharvest ripening process of kiwifruit is unclear. The aim of this article was to study the effect of sucrose application on postharvest kiwifruit ripening to clarify the effect of sucrose in this process. Our present study found that exogenous sucrose can promote ethylene synthesis, which increases the ethylene content during fruit ripening, thereby accelerating the ripening and softening of kiwifruit after harvest. A significantly higher expression of AcACS1 and AcACO2 was found in sucrose-treated fruits compared to that in mannitol-treated fruits. Blocking the ethylene signal significantly inhibited the sucrose-modulated expression of most selected ripening-related genes. Sucrose transport is essential for sucrose accumulation in fruits; therefore, we isolated the gene family related to sucrose transport in kiwifruit and analyzed the gene expression of its members. The results show that AcSUT1 and AcTST1 expression increased with fruit ripening and AcSUT4 expression decreased with ripening, indicating that they may have different roles in the regulation of fruit ripening. Additionally, many cis-elements associated with phytohormones and sugar responses were found in the promoter of the three genes, which suggests that they were transcriptionally regulated by sugar signal and phytohormones. This study demonstrates the effect of sucrose on postharvest ripening of kiwifruit, providing a good foundation for further research.
Collapse
|
8
|
Dong T, Xiong B, Huang S, Liao L, Qiu X, Sun G, He Y, Duan C, Wang X, Zhang X, Li S, Zhu J, Wang Z. Investigation of the cause of reduced sugar content in Kiyomi tangor fruit of Ziyang xiangcheng (Citrus junos Sieb. ex Tanaka) rootstock. Sci Rep 2019; 9:19263. [PMID: 31848437 PMCID: PMC6917820 DOI: 10.1038/s41598-019-55957-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 11/30/2019] [Indexed: 12/24/2022] Open
Abstract
Ziyang xiangcheng (Citrus junos Sieb. ex Tanaka) (Cj) rootstock is effective in Citrus production; however, when Cj rootstock was used, sugar content in Kiyomi tangor fruit was significantly lower than that in the fruit produced using Poncirus trifoliata (L.) Raf. rootstock (Pt). Therefore, using K. tangor, we explored the cause of this difference, determining sugar accumulation, sucrose-metabolism enzyme activities, and gene expression. Before ripening, sugar content in fruits with Cj rootstock was significantly lower than that in fruits with Pt rootstock, due to low fructose and sucrose content. Sucrose phosphate synthase (SPS) activity of Pt was higher than that of Cj in the early growth stage (at 90–210 days after anthesis), however it was opposite at 240–300 days after anthesis. Additionally, neutral invertase (NI) activity of Pt was higher than that of Cj. Gene expression in Pt was higher than that in Cj, but is was essentially the same at maturity. SPS and NI activities and CitSPS1 expression were positively correlated with sucrose, fructose, and glucose content, but CSCW1 expression was negatively correlated with the sugars. Overall, the weak flavour of K. tangor fruit with Cj rootstock was regulated by the sucrose metabolism-related enzymes and gene expression.
Collapse
Affiliation(s)
- Tiantian Dong
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Bo Xiong
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Shengjia Huang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Ling Liao
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xia Qiu
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Guochao Sun
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yunzhenzi He
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Changwen Duan
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xiaojia Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xu Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Sichen Li
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jin Zhu
- Sichuan Horticultural Crop Extension Station, 610041, Sichuan, China
| | - Zhihui Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China. .,Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|