1
|
Xiang J, Tao Y, Xia Y, Luo S, Zhao Q, Li B, Zhang X, Sun Y, Xia W, Zhang M, Kang SS, Ahn EH, Liu X, Xie F, Guan Y, Yang JJ, Bu L, Wu S, Wang X, Cao X, Liu C, Zhang Z, Li D, Ye K. Development of an α-synuclein positron emission tomography tracer for imaging synucleinopathies. Cell 2023; 186:3350-3367.e19. [PMID: 37421950 PMCID: PMC10527432 DOI: 10.1016/j.cell.2023.06.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 05/16/2023] [Accepted: 06/07/2023] [Indexed: 07/10/2023]
Abstract
Synucleinopathies are characterized by the accumulation of α-synuclein (α-Syn) aggregates in the brain. Positron emission tomography (PET) imaging of synucleinopathies requires radiopharmaceuticals that selectively bind α-Syn deposits. We report the identification of a brain permeable and rapid washout PET tracer [18F]-F0502B, which shows high binding affinity for α-Syn, but not for Aβ or Tau fibrils, and preferential binding to α-Syn aggregates in the brain sections. Employing several cycles of counter screenings with in vitro fibrils, intraneuronal aggregates, and neurodegenerative disease brain sections from several mice models and human subjects, [18F]-F0502B images α-Syn deposits in the brains of mouse and non-human primate PD models. We further determined the atomic structure of the α-Syn fibril-F0502B complex by cryo-EM and revealed parallel diagonal stacking of F0502B on the fibril surface through an intense noncovalent bonding network via inter-ligand interactions. Therefore, [18F]-F0502B is a promising lead compound for imaging aggregated α-Syn in synucleinopathies.
Collapse
Affiliation(s)
- Jie Xiang
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Neurobiology, Fourth Military Medical University, Xi'an, China
| | - Youqi Tao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China; Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yiyuan Xia
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Biomedical Sciences, School of Medicine, JiangHan University, #8, Sanjiaohu Rd., Wuhan 430056, China
| | - Shilin Luo
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Qinyue Zhao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China; Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bowei Li
- Shenzhen Institute of Advanced Technology, University of Chinese Academy of Science, Shenzhen, Guangdong 518055, China
| | - Xiaoqian Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430022, China
| | - Yunpeng Sun
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Wencheng Xia
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Mingming Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Seong Su Kang
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Eun-Hee Ahn
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Xia Liu
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Fang Xie
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Yihui Guan
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Jenny J Yang
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Lihong Bu
- PET-CT/MRI Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Shengxi Wu
- Department of Neurobiology, Fourth Military Medical University, Xi'an, China
| | - Xiaochuan Wang
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuebing Cao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430022, China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Dan Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China; Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Keqiang Ye
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA; Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
2
|
Bidesi NSR, Vang Andersen I, Windhorst AD, Shalgunov V, Herth MM. The role of neuroimaging in Parkinson's disease. J Neurochem 2021; 159:660-689. [PMID: 34532856 PMCID: PMC9291628 DOI: 10.1111/jnc.15516] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 11/29/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder that affects millions of people worldwide. Two hallmarks of PD are the accumulation of alpha-synuclein and the loss of dopaminergic neurons in the brain. There is no cure for PD, and all existing treatments focus on alleviating the symptoms. PD diagnosis is also based on the symptoms, such as abnormalities of movement, mood, and cognition observed in the patients. Molecular imaging methods such as magnetic resonance imaging (MRI), single-photon emission computed tomography (SPECT), and positron emission tomography (PET) can detect objective alterations in the neurochemical machinery of the brain and help diagnose and study neurodegenerative diseases. This review addresses the application of functional MRI, PET, and SPECT in PD patients. We provide an overview of the imaging targets, discuss the rationale behind target selection, the agents (tracers) with which the imaging can be performed, and the main findings regarding each target's state in PD. Molecular imaging has proven itself effective in supporting clinical diagnosis of PD and has helped reveal that PD is a heterogeneous disorder, which has important implications for the development of future therapies. However, the application of molecular imaging for early diagnosis of PD or for differentiation between PD and atypical parkinsonisms has remained challenging. The final section of the review is dedicated to new imaging targets with which one can detect the PD-related pathological changes upstream from dopaminergic degeneration. The foremost of those targets is alpha-synuclein. We discuss the progress of tracer development achieved so far and challenges on the path toward alpha-synuclein imaging in humans.
Collapse
Affiliation(s)
- Natasha S R Bidesi
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Ida Vang Andersen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Albert D Windhorst
- Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Vladimir Shalgunov
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Matthias M Herth
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
3
|
Kolinger GD, Vállez García D, Lohith TG, Hostetler ED, Sur C, Struyk A, Boellaard R, Koole M. A dual-time-window protocol to reduce acquisition time of dynamic tau PET imaging using [ 18F]MK-6240. EJNMMI Res 2021; 11:49. [PMID: 34046730 PMCID: PMC8160074 DOI: 10.1186/s13550-021-00790-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 05/17/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND [18F]MK-6240 is a PET tracer with sub-nanomolar affinity for neurofibrillary tangles. Therefore, tau quantification is possible with [18F]MK-6240 PET/CT scans, and it can be used for assessment of Alzheimer's disease. However, long acquisition scans are required to provide fully quantitative estimates of pharmacokinetic parameters. Therefore, on the present study, dual-time-window (DTW) acquisitions was simulated to reduce PET/CT acquisition time, while taking into consideration perfusion changes and possible scanning protocol non-compliance. To that end, time activity curves (TACs) representing a 120-min acquisition (TAC120) were simulated using a two-tissue compartment model with metabolite corrected arterial input function from 90-min dynamic [18F]MK-6240 PET scans of three healthy control subjects and five subjects with mild cognitive impairment or Alzheimer's disease. Therefore, TACs corresponding to different levels of specific binding were generated and then various perfusion changes were simulated. Next, DTW acquisitions were simulated consisting of an acquisition starting at tracer injection, a break and a second acquisition starting at 90 min post-injection. Finally, non-compliance with the PET/CT scanning protocol were simulated to assess its impact on quantification. All TACs were quantified using reference Logan's distribution volume ratio (DVR) and standardized uptake value ratio (SUVR90) using the cerebellar cortex as reference region. RESULTS It was found that DVR from a DTW protocol with a 60-min break between two 30-min dynamic scans closely approximates the DVR from the uninterrupted TAC120, with a regional bias smaller than 2.5%. Moreover, SUVR90 estimates were more susceptible (regional bias ≤ 19%) to changes in perfusion compared to DVR from a DTW TAC (regional bias ≤ 10%). Similarly, SUVR90 was affected by late-time scanning protocol delays reaching an increase of 8% for a 20-min delay, while DVR was not affected (regional bias < 1.5%) by DTW protocol non-compliance. CONCLUSIONS Therefore, such DTW protocol has the potential to increase patient comfort and throughput without compromising quantitative accuracy and is more reliable against SUVR in terms of perfusion changes and protocol deviations, which could prove beneficial for drug effect assessment and patient follow-up using longitudinal [18F]MK-6240 PET imaging.
Collapse
Affiliation(s)
- Guilherme D Kolinger
- Medical Imaging Center, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - David Vállez García
- Medical Imaging Center, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Talakad G Lohith
- Translational Imaging Biomarkers, Merck & Co., Inc., 770 Sumneytown Pike, Mailstop WP44D-216, West Point, PA, 19486, USA
| | - Eric D Hostetler
- Translational Imaging Biomarkers, Merck & Co., Inc., 770 Sumneytown Pike, Mailstop WP44D-216, West Point, PA, 19486, USA
| | - Cyrille Sur
- Translational Imaging Biomarkers, Merck & Co., Inc., 770 Sumneytown Pike, Mailstop WP44D-216, West Point, PA, 19486, USA
| | - Arie Struyk
- Translational Pharmacology, Merck & Co., Inc, 351 N Sumneytown Pike, Mailstop UG4D-48, North Wales, PA, 19454, USA
| | - Ronald Boellaard
- Medical Imaging Center, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Location VU Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Michel Koole
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Herestraat 49 - Bus 7003, 3000, Leuven, Belgium.
| |
Collapse
|
4
|
Tamil Selvan S, Ravichandar R, Kanta Ghosh K, Mohan A, Mahalakshmi P, Gulyás B, Padmanabhan P. Coordination chemistry of ligands: Insights into the design of amyloid beta/tau-PET imaging probes and nanoparticles-based therapies for Alzheimer’s disease. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213659] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
5
|
Vasilevskaya A, Taghdiri F, Burke C, Tarazi A, Naeimi SA, Khodadadi M, Goswami R, Sato C, Grinberg M, Moreno D, Wennberg R, Mikulis D, Green R, Colella B, Davis KD, Rusjan P, Houle S, Tator C, Rogaeva E, Tartaglia MC. Interaction of APOE4 alleles and PET tau imaging in former contact sport athletes. Neuroimage Clin 2020; 26:102212. [PMID: 32097865 PMCID: PMC7037542 DOI: 10.1016/j.nicl.2020.102212] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/10/2020] [Accepted: 02/12/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Genetic polymorphisms like apolipoprotein E (APOE) and microtubule-associated protein tau (MAPT) genes increase the risk of neurodegeneration. METHODS 38 former players (age 52.63±14.02) of contact sports underwent neuroimaging, biofluid collection, and comprehensive neuropsychological assessment. The [F-18]AV-1451 tracer signal was compared in the cortical grey matter between APOE4 allele carriers and non-carriers as well as carriers of MAPT H1H1 vs non-H1H1. Participants were then divided into the high (N = 13) and low (N = 13) groups based on cortical PET tau standard uptake value ratios (SUVRs) for comparison. FINDINGS Cortical grey matter PET tau SUVR values were significantly higher in APOE4 carriers compared to non-carriers (p = 0.020). In contrast, there was no significant difference in SUVR between MAPT H1H1 vs non-H1H1 carrier genes (p = 1.00). There was a significantly higher APOE4 allele frequency in the high cortical grey matter PET tau group, comparing to low cortical grey matter PET tau group (p = 0.048). No significant difference in neuropsychological function was found between APOE4 allele carriers and non-carriers. INTERPRETATION There is an association between higher cortical grey matter tau burden as seen with [F-18]AV-1451 PET tracer SUVR, and the APOE4 allele in former professional and semi-professional players at high risk of concussions. APOE4 allele may be a risk factor for tau accumulation in former contact sports athletes at high risk of neurodegeneration. FUNDING Toronto General and Western Hospital Foundations; Weston Brain Institute; Canadian Consortium on Neurodegeneration in ageing; Krembil Research Institute. There was no role of the funders in this study.
Collapse
Affiliation(s)
- Anna Vasilevskaya
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, 60 Leonard avenue, Toronto, ON M5T 0S8, Canada; Institute of Medical Science, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada; Division of Neurology, Toronto Western Hospital, University Health Network, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada; Canadian Concussion Center, Toronto Western Hospital, Krembil Neuroscience Centre, University Health Network, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada
| | - Foad Taghdiri
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, 60 Leonard avenue, Toronto, ON M5T 0S8, Canada; Institute of Medical Science, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada; Canadian Concussion Center, Toronto Western Hospital, Krembil Neuroscience Centre, University Health Network, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada
| | - Charles Burke
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, 60 Leonard avenue, Toronto, ON M5T 0S8, Canada; Institute of Medical Science, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada; Division of Neurology, Toronto Western Hospital, University Health Network, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada; Canadian Concussion Center, Toronto Western Hospital, Krembil Neuroscience Centre, University Health Network, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada; School of Medicine & Dentistry, Western University, Windsor, ON, Canada
| | - Apameh Tarazi
- Division of Neurology, Toronto Western Hospital, University Health Network, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada; Canadian Concussion Center, Toronto Western Hospital, Krembil Neuroscience Centre, University Health Network, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada
| | - Seyed Ali Naeimi
- Canadian Concussion Center, Toronto Western Hospital, Krembil Neuroscience Centre, University Health Network, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada
| | - Mozghan Khodadadi
- Canadian Concussion Center, Toronto Western Hospital, Krembil Neuroscience Centre, University Health Network, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada
| | - Ruma Goswami
- Canadian Concussion Center, Toronto Western Hospital, Krembil Neuroscience Centre, University Health Network, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada
| | - Christine Sato
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, 60 Leonard avenue, Toronto, ON M5T 0S8, Canada
| | - Mark Grinberg
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, 60 Leonard avenue, Toronto, ON M5T 0S8, Canada
| | - Danielle Moreno
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, 60 Leonard avenue, Toronto, ON M5T 0S8, Canada
| | - Richard Wennberg
- Division of Neurology, Toronto Western Hospital, University Health Network, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada; Canadian Concussion Center, Toronto Western Hospital, Krembil Neuroscience Centre, University Health Network, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada
| | - David Mikulis
- Institute of Medical Science, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada; Canadian Concussion Center, Toronto Western Hospital, Krembil Neuroscience Centre, University Health Network, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada; Division of Neuroradiology, Joint Department of Medical Imaging, University Health Network, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada
| | - Robin Green
- Institute of Medical Science, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada; Canadian Concussion Center, Toronto Western Hospital, Krembil Neuroscience Centre, University Health Network, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada; Department of Rehabilitation Sciences, University of Toronto, 500 University Ave, Toronto, ON, M5G 1V7, Canada
| | - Brenda Colella
- Canadian Concussion Center, Toronto Western Hospital, Krembil Neuroscience Centre, University Health Network, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada; Department of Rehabilitation Sciences, University of Toronto, 500 University Ave, Toronto, ON, M5G 1V7, Canada
| | - Karen D Davis
- Institute of Medical Science, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada; Canadian Concussion Center, Toronto Western Hospital, Krembil Neuroscience Centre, University Health Network, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada; Department of Surgery, University of Toronto, 149 College St., Toronto, ON, M5T 1P5, Canada
| | - Pablo Rusjan
- Research Imaging Centre, Campbell Research Institute, Centre for Addiction and Mental Health, 250 College St., Toronto, ON, M5T 1R8, Canada
| | - Sylvain Houle
- Research Imaging Centre, Campbell Research Institute, Centre for Addiction and Mental Health, 250 College St., Toronto, ON, M5T 1R8, Canada
| | - Charles Tator
- Institute of Medical Science, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada; Canadian Concussion Center, Toronto Western Hospital, Krembil Neuroscience Centre, University Health Network, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada; Division of Neurosurgery, Toronto Western Hospital, Krembil Brain Institute, University Health Network, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada
| | - Ekaterina Rogaeva
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, 60 Leonard avenue, Toronto, ON M5T 0S8, Canada; Department of Medicine, Division of Neurology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Maria C Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, 60 Leonard avenue, Toronto, ON M5T 0S8, Canada; Institute of Medical Science, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada; Division of Neurology, Toronto Western Hospital, University Health Network, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada; Canadian Concussion Center, Toronto Western Hospital, Krembil Neuroscience Centre, University Health Network, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada.
| |
Collapse
|
6
|
Sala A, Perani D. Brain Molecular Connectivity in Neurodegenerative Diseases: Recent Advances and New Perspectives Using Positron Emission Tomography. Front Neurosci 2019; 13:617. [PMID: 31258466 PMCID: PMC6587303 DOI: 10.3389/fnins.2019.00617] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/29/2019] [Indexed: 12/12/2022] Open
Abstract
Positron emission tomography (PET) represents a unique molecular tool to get in vivo access to a wide spectrum of biological and neuropathological processes, of crucial relevance for neurodegenerative conditions. Although most PET findings are based on massive univariate approaches, in the last decade the increasing interest in multivariate methods has paved the way to the assessment of unexplored cerebral features, spanning from resting state brain networks to whole-brain connectome properties. Currently, the combination of molecular neuroimaging techniques with multivariate connectivity methods represents one of the most powerful, yet still emerging, approach to achieve novel insights into the pathophysiology of neurodegenerative diseases. In this review, we will summarize the available evidence in the field of PET molecular connectivity, with the aim to provide an overview of how these studies may increase the understanding of the pathogenesis of neurodegenerative diseases, over and above "traditional" structural/functional connectivity studies. Considering the available evidence, a major focus will be represented by molecular connectivity studies using [18F]FDG-PET, today applied in the major neuropathological spectra, from amyloidopathies and tauopathies to synucleinopathies and beyond. Pioneering studies using PET tracers targeting brain neuropathology and neurotransmission systems for connectivity studies will be discussed, their strengths and limitations highlighted with reference to both applied methodology and results interpretation. The most common methods for molecular connectivity assessment will be reviewed, with particular emphasis on the available strategies to investigate molecular connectivity at the single-subject level, of potential relevance for not only research but also diagnostic purposes. Finally, we will highlight possible future perspectives in the field, with reference in particular to newly available PET tracers, which will expand the application of molecular connectivity to new, exciting, unforeseen possibilities.
Collapse
Affiliation(s)
- Arianna Sala
- Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, Milan, Italy.,Division of Neuroscience, Faculty of Psychology, San Raffaele Scientific Institute (IRCCS), Milan, Italy
| | - Daniela Perani
- Division of Neuroscience, Faculty of Psychology, San Raffaele Scientific Institute (IRCCS), Milan, Italy.,Faculty of Psychology, Vita-Salute San Raffaele University, Milan, Italy.,Nuclear Medicine Unit, Faculty of Psychology, San Raffaele Hospital (IRCCS), Milan, Italy
| |
Collapse
|
7
|
Sossi V, Cheng JC, Klyuzhin IS. Imaging in Neurodegeneration: Movement Disorders. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2019. [DOI: 10.1109/trpms.2018.2871760] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
8
|
Mainta IC, Vargas MI, Trombella S, Frisoni GB, Unschuld PG, Garibotto V. Hybrid PET-MRI in Alzheimer's Disease Research. Methods Mol Biol 2019; 1750:185-200. [PMID: 29512073 DOI: 10.1007/978-1-4939-7704-8_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Multiple factors, namely amyloid, tau, inflammation, metabolic, and perfusion changes, contribute to the cascade of neurodegeneration and functional decline occurring in Alzheimer's disease (AD). These molecular and cellular processes and related functional and morphological changes can be visualized in vivo by two imaging modalities, namely positron emission tomography (PET) and magnetic resonance imaging (MRI). These imaging biomarkers are now part of the diagnostic algorithm and of particular interest for patient stratification and targeted drug development.In this field the availability of hybrid PET/MR systems not only offers a comprehensive evaluation in a single imaging session, but also opens new possibilities for the integration of the two imaging information. Here, we cover the clinical protocols and practical details of FDG, amyloid, and tau PET/MR imaging as applied in our institutions.
Collapse
Affiliation(s)
- Ismini C Mainta
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals, Geneva, Switzerland. .,Faculty of Medicine, Nuclear Medicine Department, Geneva University Medical Center, University of Geneva, Geneva, Switzerland.
| | - Maria I Vargas
- Faculty of Medicine, Nuclear Medicine Department, Geneva University Medical Center, University of Geneva, Geneva, Switzerland.,Division of Neuroradiology, Geneva University Hospitals, Geneva, Switzerland
| | - Sara Trombella
- Faculty of Medicine, Nuclear Medicine Department, Geneva University Medical Center, University of Geneva, Geneva, Switzerland
| | - Giovanni B Frisoni
- Faculty of Medicine, Nuclear Medicine Department, Geneva University Medical Center, University of Geneva, Geneva, Switzerland.,Department of Internal Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Paul G Unschuld
- Institute for Regenerative Medicine and Hospital for Psychogeriatric Medicine, University of Zurich, Zurich, Switzerland
| | - Valentina Garibotto
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals, Geneva, Switzerland.,Faculty of Medicine, Nuclear Medicine Department, Geneva University Medical Center, University of Geneva, Geneva, Switzerland
| |
Collapse
|
9
|
Publisher Correction to EJNMMI Radiopharmacy and Chemistry Volume 1 (2016). EJNMMI Radiopharm Chem 2018; 3:13. [PMID: 31329807 PMCID: PMC6261089 DOI: 10.1186/s41181-018-0049-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 10/11/2018] [Indexed: 12/03/2022] Open
|
10
|
Tau PET imaging evidence in patients with cognitive impairment: preparing for clinical use. Clin Transl Imaging 2018. [DOI: 10.1007/s40336-018-0297-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
11
|
Abstract
Recent advances in disease understanding, instrumentation technology, and computationally demanding image analysis approaches are opening new frontiers in the investigation of movement disorders and brain disease in general. A key aspect is the recognition of the need to determine molecular correlates to early functional and metabolic connectivity alterations, which are increasingly recognized as useful signatures of specific clinical disease phenotypes. Such multi-modal approaches are highly likely to provide new information on pathogenic mechanisms and to help the identification of novel therapeutic targets. This chapter describes recent methodological developments in PET starting with a very brief overview of radiotracers relevant to movement disorders while emphasizing the development of instrumentation, algorithms and imaging analysis methods relevant to multi-modal investigation of movement disorders.
Collapse
Affiliation(s)
- Vesna Sossi
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
12
|
Firouzian A, Whittington A, Searle GE, Koychev I, Zamboni G, Lovestone S, Gunn RN. Imaging Aβ and tau in early stage Alzheimer's disease with [ 18F]AV45 and [ 18F]AV1451. EJNMMI Res 2018; 8:19. [PMID: 29500717 PMCID: PMC5834417 DOI: 10.1186/s13550-018-0371-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 02/19/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AD is a progressive neurodegenerative disorder that is associated with the accumulation of two different insoluble protein aggregates, Aβ plaques and hyperphosphorylated tau. This study aimed to investigate the optimal acquisition and quantification of [18F]AV45 and [18F]AV1451 to image Aβ and tau, respectively, in subjects with AD. Fifteen subjects with early stage AD underwent a T1-weighted structural MRI and two dynamic PET scans to image Aβ (60 min, [18F]AV45) and tau (120 min, [18F]AV1451). Both dynamic BPND and static SUVR outcome measures were calculated and compared for 12 out of 15 subjects who completed 60 min of the Aβ PET scan and at least 110 min of the tau PET scan. The SRTM and reference Logan graphical analysis were applied to the dynamic data to estimate regional BPND values and SUVR ratios from the static data. Optimal acquisition windows were explored for both the dynamic and static acquisitions. In addition, the spatial correlation between regional Aβ and tau signals was explored. RESULTS Both the SRTM and graphical analysis methods showed a good fit to the dynamic data for both Aβ and tau dynamic PET scans. Mean regional BPND estimates became stable 30 min p.i. for [18F]AV45 and 80 min p.i. for [18F]AV1451. Time stability analysis of static SUVR data showed that the outcome measure starts to become stable for scan windows of 30-50 min p.i. for [18F]AV45 and 80-100 min p.i. for [18F]AV1451. The results from these time windows correlated well with the results from the full dynamic analysis for both tracers (R2 = 0.74 for [18F]AV45 and R2 = 0.88 for [18F]AV1451). There was a high correlation between amyloid uptake estimate using both dynamic analysis methods in thalamus and tau uptake in thalamus, hippocampus and amygdala. CONCLUSIONS Short static PET scans at appropriate time windows provided SUVR values which were in reasonable agreement with BPND values calculated from dynamic scans using SRTM and reference Logan. These simplified methods may be appropriate for classification and intervention studies, although caution should be employed when considering interventional studies where blood flow and extraction could change.
Collapse
Affiliation(s)
- Azadeh Firouzian
- Imanova Ltd., Burlington Danes Building, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN UK
| | - Alex Whittington
- Department of Medicine, Faculty of Medicine, Imperial College London, South Kensington Campus, London, SW7 2AZ UK
| | - Graham E. Searle
- Imanova Ltd., Burlington Danes Building, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN UK
| | - Ivan Koychev
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, OX3 7JX UK
| | - Giovanna Zamboni
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU UK
| | - Simon Lovestone
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, OX3 7JX UK
| | - Roger N. Gunn
- Imanova Ltd., Burlington Danes Building, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN UK
- Department of Medicine, Faculty of Medicine, Imperial College London, South Kensington Campus, London, SW7 2AZ UK
- Department of Engineering Science, University of Oxford, Oxford, UK
| | - on behalf of the Deep and Frequent Phenotyping study team
- Imanova Ltd., Burlington Danes Building, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN UK
- Department of Medicine, Faculty of Medicine, Imperial College London, South Kensington Campus, London, SW7 2AZ UK
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, OX3 7JX UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU UK
- Department of Engineering Science, University of Oxford, Oxford, UK
| |
Collapse
|
13
|
Ganz ML, Tawah AF, Guo S, Chitnis AS, Silies H, Schäuble B, Jovalekic A, Foster NL. The impact of β-amyloid positron emission tomography on the diagnostic and treatment decisions of dementia experts. Neurodegener Dis Manag 2017; 7:107-117. [DOI: 10.2217/nmt-2016-0059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Amyloid positron emission tomography (aPET) measurement of Alzheimer's disease (AD) pathology could improve the accurate diagnosis of cognitive disorders. Appropriate use criteria recommend that only dementia experts order aPET. Materials & methods: We surveyed 145 dementia experts about their current approaches to evaluation and treatment and the likely influence of aPET. Results: Experts expected aPET to alter diagnostic procedures and patient management and also increase diagnostic certainty. They anticipated confirming AD or altering pharmacological treatment following positive results more than excluding AD following negative results. Experts familiar with aPET reported changes that were more consistent with appropriate use criteria and published evidence. Conclusions: Knowledge about aPET strongly influenced effects on diagnostic certainty and changed clinical practice. Dementia experts may need additional training to achieve optimal benefit from aPET.
Collapse
Affiliation(s)
- Michael L Ganz
- Evidera, 500 Totten Pond Road, 5th Floor, Waltham, MA 02451, USA
| | - Alie F Tawah
- Evidera, 500 Totten Pond Road, 5th Floor, Waltham, MA 02451, USA
| | - Shien Guo
- Evidera, 500 Totten Pond Road, 5th Floor, Waltham, MA 02451, USA
| | - Abhishek S Chitnis
- Johnson & Johnson Co, 410 George Street, New Brunswick, NJ 08901, USA (This study was completed while AS Chitnis was an employee of Evidera)
| | - Hedwig Silies
- formerly Piramal Imaging Ltd., Market Access & HEOR, 23 Science Park, Cambridge, UK
| | - Barbara Schäuble
- formerly Piramal Imaging GmbH, Global Medical Affairs, Tegeler Strasse 6–7 D13353 Berlin, Germany
| | | | - Norman L Foster
- Center for Alzheimer's Care, Imaging & Research, Department of Neurology, 729 Arapeen Drive, Salt Lake City, University of Utah, Salt Lake City, UT 84108, USA
| |
Collapse
|