1
|
Sihver W, Walther M, Ullrich M, Nitt-Weber AK, Böhme J, Reissig F, Saager M, Zarschler K, Neuber C, Steinbach J, Kopka K, Pietzsch HJ, Wodtke R, Pietzsch J. Cyclohexanediamine Triazole (CHDT) Functionalization Enables Labeling of Target Molecules with Al 18F/ 68Ga/ 111In. Bioconjug Chem 2024; 35:1402-1416. [PMID: 39185789 PMCID: PMC11417994 DOI: 10.1021/acs.bioconjchem.4c00313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 08/27/2024]
Abstract
The Al18F-labeling approach offers a one-step access to radiofluorinated biomolecules by mimicking the labeling process for radiometals. Although these labeling conditions are considered to be mild compared to classic radiofluorinations, improvements of the chelating units have led to the discovery of (±)-H3RESCA, which allows Al18F-labeling already at ambient temperature. While the suitability of (±)-H3RESCA for functionalization and radiofluorination of proteins is well established, its use for small molecules or peptides is less explored. Herein, we advanced this acyclic pentadentate ligand by introducing an alkyne moiety for the late-stage functionalization of biomolecules via click chemistry. We show that in addition to Al18F-labeling, the cyclohexanediamine triazole (CHDT) moiety allows stable complexation of 68Ga and 111In. Three novel CHDT-functionalized PSMA inhibitors were synthesized and their Al18F-, 68Ga-, and 111In-labeled analogs were subjected to a detailed in vitro radiopharmacological characterization. Stability studies in vitro in human serum revealed among others a high kinetic inertness of all radiometal complexes. Furthermore, the Al18F-labeled PSMA ligands were characterized for their biodistribution in a LNCaP derived tumor xenograft mouse model by PET imaging. One radioligand, Al[18F]F-CHDT-PSMA-1, bearing a small azidoacetyl linker at the glutamate-urea-lysine motif, provided an in vivo performance comparable to that of [18F]PSMA-1007 but with even higher tumor-to-blood and tumor-to-muscle ratios at 120 min p.i. Overall, our results highlight the suitability of the novel CHDT moiety for functionalization and radiolabeling of small molecules or peptides with Al18F, 68Ga, and 111In and the triazole ring seems to entail favorable pharmacokinetic properties for molecular imaging purposes.
Collapse
Affiliation(s)
- Wiebke Sihver
- Helmholtz-Zentrum
Dresden-Rossendorf, Institute of Radiopharmaceutical
Cancer Research, Bautzner
Landstraße 400, 01328 Dresden, Germany
| | - Martin Walther
- Helmholtz-Zentrum
Dresden-Rossendorf, Institute of Radiopharmaceutical
Cancer Research, Bautzner
Landstraße 400, 01328 Dresden, Germany
| | - Martin Ullrich
- Helmholtz-Zentrum
Dresden-Rossendorf, Institute of Radiopharmaceutical
Cancer Research, Bautzner
Landstraße 400, 01328 Dresden, Germany
| | - Anne-Kathrin Nitt-Weber
- Helmholtz-Zentrum
Dresden-Rossendorf, Institute of Radiopharmaceutical
Cancer Research, Bautzner
Landstraße 400, 01328 Dresden, Germany
| | - Jenny Böhme
- Helmholtz-Zentrum
Dresden-Rossendorf, Institute of Radiopharmaceutical
Cancer Research, Bautzner
Landstraße 400, 01328 Dresden, Germany
| | - Falco Reissig
- Helmholtz-Zentrum
Dresden-Rossendorf, Institute of Radiopharmaceutical
Cancer Research, Bautzner
Landstraße 400, 01328 Dresden, Germany
| | - Magdalena Saager
- Helmholtz-Zentrum
Dresden-Rossendorf, Institute of Radiopharmaceutical
Cancer Research, Bautzner
Landstraße 400, 01328 Dresden, Germany
| | - Kristof Zarschler
- Helmholtz-Zentrum
Dresden-Rossendorf, Institute of Radiopharmaceutical
Cancer Research, Bautzner
Landstraße 400, 01328 Dresden, Germany
| | - Christin Neuber
- Helmholtz-Zentrum
Dresden-Rossendorf, Institute of Radiopharmaceutical
Cancer Research, Bautzner
Landstraße 400, 01328 Dresden, Germany
| | - Jörg Steinbach
- Helmholtz-Zentrum
Dresden-Rossendorf, Institute of Radiopharmaceutical
Cancer Research, Bautzner
Landstraße 400, 01328 Dresden, Germany
| | - Klaus Kopka
- Helmholtz-Zentrum
Dresden-Rossendorf, Institute of Radiopharmaceutical
Cancer Research, Bautzner
Landstraße 400, 01328 Dresden, Germany
- Technische
Universität Dresden, School of Science,
Faculty of Chemistry and Food Chemistry, Mommsenstraße 4, 01069 Dresden, Germany
| | - Hans-Jürgen Pietzsch
- Helmholtz-Zentrum
Dresden-Rossendorf, Institute of Radiopharmaceutical
Cancer Research, Bautzner
Landstraße 400, 01328 Dresden, Germany
- Technische
Universität Dresden, School of Science,
Faculty of Chemistry and Food Chemistry, Mommsenstraße 4, 01069 Dresden, Germany
| | - Robert Wodtke
- Helmholtz-Zentrum
Dresden-Rossendorf, Institute of Radiopharmaceutical
Cancer Research, Bautzner
Landstraße 400, 01328 Dresden, Germany
| | - Jens Pietzsch
- Helmholtz-Zentrum
Dresden-Rossendorf, Institute of Radiopharmaceutical
Cancer Research, Bautzner
Landstraße 400, 01328 Dresden, Germany
- Technische
Universität Dresden, School of Science,
Faculty of Chemistry and Food Chemistry, Mommsenstraße 4, 01069 Dresden, Germany
| |
Collapse
|
2
|
Nadporojskii MA, Orlovskaya VV, Fedorova OS, Sysoev DS, Krasikova RN. Automation of Copper-Mediated 18F-Fluorination of Aryl Pinacol Boronates Using 4-Dimethylaminopyridinium Triflate. Molecules 2024; 29:3342. [PMID: 39064920 PMCID: PMC11279627 DOI: 10.3390/molecules29143342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/29/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Currently, the copper-mediated radiofluorination of aryl pinacol boronates (arylBPin) using the commercially available, air-stable Cu(OTf)2Py4 catalyst is one of the most efficient synthesis approaches, greatly facilitating access to a range of radiotracers, including drug-like molecules with nonactivated aryl scaffolds. Further adjustment of this methodology, in particular, the [18F]fluoride recovery step for the routine preparation of radiotracers, has been the focus of recent research. In our recent study, an organic solution of 4-dimethylaminopyridinium trifluoromethanesulfonate (DMAPOTf) was found to be an efficient PTC for eluting radionuclides retained on the weak anion exchange cartridge, Oasis WAX 1cc, employing the inverse sorption-elution protocol. Notably, the following Cu-mediated radiofluorination of arylBPin precursors in the presence of the Cu(OTf)2(Py)4 catalyst can be performed with high efficiency in the same solvent, bypassing not only the conventional azeotropic drying procedure but any solvent replacement. In the current study, we aimed to translate this methodology, originally developed for remote-controlled operation with manual interventions, into the automated synthesis module on the TRACERlab automation platform. The adjustment of the reagent amounts and solvents allowed for high efficiency in the radiofluorination of a series of model arylBPin substrates on the TRACERlab FXFE Pro synthesis module, which was adapted for nucleophilic radiofluorinations. The practical applicability of the developed radiofluorination approach with DMAPOTf elution was demonstrated in the automated synthesis of 6-L-[18F]FDOPA. The radiotracer was obtained with an activity yield (AY; isolated, not decay-corrected) of 5.2 ± 0.5% (n = 3), with a synthesis time of ca. 70 min on the TRACERlab FX N Pro automation platform. The obtained AY was comparable with one reported by others (6 ± 1%) using the same boronate precursor, while a slightly higher AY of 6-L-[18F]FDOPA (14.5 ± 0.5%) was achieved in our previous work using commercially available Bu4NOTf as the PTC.
Collapse
Affiliation(s)
- Mikhail A. Nadporojskii
- Granov Russian Research Center of Radiology and Surgical Technologies, 197758 St. Petersburg, Russia; (M.A.N.); (D.S.S.)
| | - Viktoriya V. Orlovskaya
- N.P. Bechtereva Institute of the Human Brain, 197022 St. Petersburg, Russia; (V.V.O.); (O.S.F.)
| | - Olga S. Fedorova
- N.P. Bechtereva Institute of the Human Brain, 197022 St. Petersburg, Russia; (V.V.O.); (O.S.F.)
| | - Dmitry S. Sysoev
- Granov Russian Research Center of Radiology and Surgical Technologies, 197758 St. Petersburg, Russia; (M.A.N.); (D.S.S.)
| | - Raisa N. Krasikova
- N.P. Bechtereva Institute of the Human Brain, 197022 St. Petersburg, Russia; (V.V.O.); (O.S.F.)
| |
Collapse
|
3
|
Ford J, Ortalli S, Chen Z, Sap JBI, Tredwell M, Gouverneur V. Expedient Access to 18F-Fluoroheteroarenes via Deaminative Radiofluorination of Aniline-Derived Pyridinium Salts. Angew Chem Int Ed Engl 2024; 63:e202404945. [PMID: 38624193 DOI: 10.1002/anie.202404945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/17/2024]
Abstract
Herein, we disclose that pyridinium salts derived from abundant (hetero)anilines represent a novel precursor class for nucleophilic aromatic substitution reactions with [18F]fluoride. The value of this new 18F-fluorodeamination is demonstrated with the synthesis of over 30 structurally diverse and complex heteroaryl 18F-fluorides, several derived from scaffolds that were yet to be labelled with fluorine-18. The protocol tolerates heteroarenes and functionalities commonly found in drug discovery libraries, and is amenable to scale-up and automation on a commercial radiosynthesiser.
Collapse
Affiliation(s)
- Joseph Ford
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, United Kingdom
| | - Sebastiano Ortalli
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, United Kingdom
| | - Zijun Chen
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, United Kingdom
| | - Jeroen B I Sap
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, United Kingdom
- Current address: Department of Translational Imaging, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Matthew Tredwell
- Wales Research and Diagnostic PET Imaging Centre, Cardiff University, University Hospital of Wales, Heath Park, Cardiff, CF14 4XN, United Kingdom
- School of Chemistry, Cardiff University Main Building, Park Place, Cardiff, CF10 3AT, United Kingdom
| | - Véronique Gouverneur
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, United Kingdom
| |
Collapse
|
4
|
Ovdiichuk O, Lahdenpohja S, Béen Q, Tanguy L, Kuhnast B, Collet-Defossez C. [ 18F]fluoride Activation and 18F-Labelling in Hydrous Conditions-Towards a Microfluidic Synthesis of PET Radiopharmaceuticals. Molecules 2023; 29:147. [PMID: 38202730 PMCID: PMC10779751 DOI: 10.3390/molecules29010147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
18F-labelled radiopharmaceuticals are indispensable in positron emission tomography. The critical step in the preparation of 18F-labelled tracers is the anhydrous F-18 nucleophilic substitution reaction, which involves [18F]F- anions generated in aqueous media by the cyclotron. For this, azeotropic drying by distillation is widely used in standard synthesisers, but microfluidic systems are often not compatible with such a process. To avoid this step, several methods compatible with aqueous media have been developed. We summarised the existing approaches and two of them have been studied in detail. [18F]fluoride elution efficiencies have been investigated under different conditions showing high 18F-recovery. Finally, a large scope of precursors has been assessed for radiochemical conversion, and these hydrous labelling techniques have shown their potential for tracer production using a microfluidic approach, more particularly compatible with iMiDEV™ cassette volumes.
Collapse
Affiliation(s)
- Olga Ovdiichuk
- Nancyclotep, Molecular Imaging Platform, 54500 Vandoeuvre-les-Nancy, France
| | - Salla Lahdenpohja
- Université Paris Saclay, CEA Inserm, CNRS, BioMaps, 91401 Orsay, France
| | - Quentin Béen
- Nancyclotep, Molecular Imaging Platform, 54500 Vandoeuvre-les-Nancy, France
| | | | - Bertrand Kuhnast
- Université Paris Saclay, CEA Inserm, CNRS, BioMaps, 91401 Orsay, France
| | - Charlotte Collet-Defossez
- Nancyclotep, Molecular Imaging Platform, 54500 Vandoeuvre-les-Nancy, France
- Université de Lorraine, Inserm, IADI, 54000 Nancy, France
| |
Collapse
|