1
|
Łajczak PM, Jóźwik K, Jaldin Torrico C. Current Applications of the Three-Dimensional Printing Technology in Neurosurgery: A Review. J Neurol Surg A Cent Eur Neurosurg 2024. [PMID: 39151914 DOI: 10.1055/a-2389-5207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
Abstract
BACKGROUND In the recent years, three-dimensional (3D) printing technology has emerged as a transformative tool, particularly in health care, offering unprecedented possibilities in neurosurgery. This review explores the diverse applications of 3D printing in neurosurgery, assessing its impact on precision, customization, surgical planning, and education. METHODS A literature review was conducted using PubMed, Web of Science, Embase, and Scopus, identifying 84 relevant articles. These were categorized into spine applications, neurovascular applications, neuro-oncology applications, neuroendoscopy applications, cranioplasty applications, and modulation/stimulation applications. RESULTS 3D printing applications in spine surgery showcased advancements in guide devices, prosthetics, and neurosurgical planning, with patient-specific models enhancing precision and minimizing complications. Neurovascular applications demonstrated the utility of 3D-printed guide devices in intracranial hemorrhage and enhanced surgical planning for cerebrovascular diseases. Neuro-oncology applications highlighted the role of 3D printing in guide devices for tumor surgery and improved surgical planning through realistic models. Neuroendoscopy applications emphasized the benefits of 3D-printed guide devices, anatomical models, and educational tools. Cranioplasty applications showed promising outcomes in patient-specific implants, addressing biomechanical considerations. DISCUSSION The integration of 3D printing into neurosurgery has significantly advanced precision, customization, and surgical planning. Challenges include standardization, material considerations, and ethical issues. Future directions involve integrating artificial intelligence, multimodal imaging fusion, biofabrication, and global collaboration. CONCLUSION 3D printing has revolutionized neurosurgery, offering tailored solutions, enhanced surgical planning, and invaluable educational tools. Addressing challenges and exploring future innovations will further solidify the transformative impact of 3D printing in neurosurgical care. This review serves as a comprehensive guide for researchers, clinicians, and policymakers navigating the dynamic landscape of 3D printing in neurosurgery.
Collapse
Affiliation(s)
- Paweł Marek Łajczak
- Zbigiew Religa Scientific Club at Biophysics Department, Silesian Medical University, Zabrze, Poland
| | - Kamil Jóźwik
- Zbigiew Religa Scientific Club at Biophysics Department, Silesian Medical University, Zabrze, Poland
| | - Cristian Jaldin Torrico
- Zbigiew Religa Scientific Club at Biophysics Department, Silesian Medical University, Zabrze, Poland
| |
Collapse
|
2
|
Kumi M, Chen T, Zhang Z, Wang A, Li G, Hou Z, Cheng T, Wang J, Wang T, Li P. Integration of Hydrogels and 3D Bioprinting Technologies for Chronic Wound Healing Management. ACS Biomater Sci Eng 2024; 10:5995-6016. [PMID: 39228365 DOI: 10.1021/acsbiomaterials.4c00957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The integration of hydrogel-based bioinks with 3D bioprinting technologies presents an innovative approach to chronic wound management, which is particularly challenging to treat because of its multifactorial nature and high risk of complications. Using precise deposition techniques, 3D bioprinting significantly alters traditional wound care paradigms by enabling the fabrication of patient-specific wound dressings that imitate natural tissue properties. Hydrogels are notably beneficial for these applications because of their abundant water content and mechanical properties, which promote cell viability and pathophysiological processes of wound healing, such as re-epithelialization and angiogenesis. This article reviews key 3D printing technologies and their significance in enhancing the structural and functional outcomes of wound-care solutions. Challenges in bioink viscosity, cell viability, and printability are addressed, along with discussions on the cross-linking and mechanical stability of the constructs. The potential of 3D bioprinting to revolutionize chronic wound management rests on its capacity to generate remedies that expedite healing and minimize infection risks. Nevertheless, further studies and clinical trials are necessary to advance these therapies from laboratory to clinical use.
Collapse
Affiliation(s)
- Moses Kumi
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, P. R. China
| | - Tianyi Chen
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, P. R. China
| | - Zhengheng Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, P. R. China
| | - An Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, P. R. China
| | - Gangfeng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, P. R. China
| | - Zishuo Hou
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, P. R. China
| | - Tian Cheng
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, P. R. China
| | - Junjie Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, P. R. China
| | - Tengjiao Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, P. R. China
- Chongqing Innovation Center, Northwestern Polytechnical University, Chongqing 401135, P. R. China
- School of Flexible Electronics, Henan Institute of Flexible Electronics (HIFE), Henan University, 379 Mingli Road, Zhengzhou 450046, P. R. China
| | - Peng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, P. R. China
- School of Flexible Electronics, Henan Institute of Flexible Electronics (HIFE), Henan University, 379 Mingli Road, Zhengzhou 450046, P. R. China
| |
Collapse
|
3
|
Moldovanu CG. Virtual and augmented reality systems and three-dimensional printing of the renal model-novel trends to guide preoperative planning for renal cancer. Asian J Urol 2024; 11:521-529. [PMID: 39534007 PMCID: PMC11551381 DOI: 10.1016/j.ajur.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/09/2023] [Indexed: 11/16/2024] Open
Abstract
Objective This study aimed to explore the applications of three-dimensional (3D) technology, including virtual reality, augmented reality (AR), and 3D printing system, in the field of medicine, particularly in renal interventions for cancer treatment. Methods A specialized software transforms 2D medical images into precise 3D digital models, facilitating improved anatomical understanding and surgical planning. Patient-specific 3D printed anatomical models are utilized for preoperative planning, intraoperative guidance, and surgical education. AR technology enables the overlay of digital perceptions onto real-world surgical environments. Results Patient-specific 3D printed anatomical models have multiple applications, such as preoperative planning, intraoperative guidance, trainee education, and patient counseling. Virtual reality involves substituting the real world with a computer-generated 3D environment, while AR overlays digitally created perceptions onto the existing reality. The advances in 3D modeling technology have sparked considerable interest in their application to partial nephrectomy in the realm of renal cancer. 3D printing, also known as additive manufacturing, constructs 3D objects based on computer-aided design or digital 3D models. Utilizing 3D-printed preoperative renal models provides benefits for surgical planning, offering a more reliable assessment of the tumor's relationship with vital anatomical structures and enabling better preparation for procedures. AR technology allows surgeons to visualize patient-specific renal anatomical structures and their spatial relationships with surrounding organs by projecting CT/MRI images onto a live laparoscopic video. Incorporating patient-specific 3D digital models into healthcare enhances best practice, resulting in improved patient care, increased patient satisfaction, and cost saving for the healthcare system.
Collapse
Affiliation(s)
- Claudia-Gabriela Moldovanu
- Department of Radiology, Municipal Clinical Hospital, Cluj-Napoca, Romania
- Department of Radiology, Emergency Heart Institute “N. Stancioiu”, Cluj-Napoca, Romania
| |
Collapse
|
4
|
Recker F, Remmersmann L, Jost E, Jimenez-Cruz J, Haverkamp N, Gembruch U, Strizek B, Schäfer VS. Development of a 3D-printed nuchal translucency model: a pilot study for prenatal ultrasound training. Arch Gynecol Obstet 2024; 310:2055-2064. [PMID: 38796557 PMCID: PMC11393208 DOI: 10.1007/s00404-024-07561-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/14/2024] [Indexed: 05/28/2024]
Abstract
BACKGROUND We used two 3D ultrasound volumes of fetal heads at 13 weeks to create live-size 3D-printed phantoms with a view to training or assessment of diagnostic abilities for normal and abnormal nuchal translucency measurements. The phantoms are suitable for use in a water bath, imitating a real-life exam. They were then used to study measurement accuracy and reproducibility in examiners of different skill levels. METHODS Ultrasound scans of a 13 + 0-week fetus were processed using 3D Slicer software, producing a stereolithography file for 3D printing. The model, crafted in Autodesk Fusion360™, adhered to FMF guidelines for NT dimensions (NT 2.3 mm). Additionally, a model with pathologic NT was designed (NT 4.2 mm). Printing was performed via Formlabs Form 3® printer using High Temp Resin V2. The externally identical looking 3D models were embedded in water-filled condoms for ultrasound examination. Eight specialists of varying expertise levels conducted five NT measurements for each model, classifying them in physiological and abnormal models. RESULTS Classification of the models in physiological or abnormal NT resulted in a detection rate of 100%. Average measurements for the normal NT model and the increased NT model were 2.27 mm (SD ± 0.38) and 4.165 mm (SD ± 0.51), respectively. The interrater reliability was calculated via the intraclass correlation coefficient (ICC) which yielded a result of 0.883, indicating robust agreement between the raters. Cost-effectiveness analysis demonstrated the economical nature of the 3D printing process. DISCUSSION This study underscores the potential of 3D printed fetal models for enhancing ultrasound training through high inter-rater reliability, consistency across different expert levels, and cost-effectiveness. Limitations, including population variability and direct translation to clinical outcomes, warrant further exploration. The study contributes to ongoing discussions on integrating innovative technologies into medical education, offering a practical and economical method to acquire, refine and revise diagnostic skills in prenatal ultrasound. Future research should explore broader applications and long-term economic implications, paving the way for transformative advancements in medical training and practice.
Collapse
Affiliation(s)
- Florian Recker
- Department of Obstetrics and Prenatal Medicine, University Hospital Bonn, Venusberg Campus 1, 53127, Bonn, Germany.
| | - Laura Remmersmann
- Department of Obstetrics and Prenatal Medicine, University Hospital Bonn, Venusberg Campus 1, 53127, Bonn, Germany
| | - Elena Jost
- Department of Obstetrics and Prenatal Medicine, University Hospital Bonn, Venusberg Campus 1, 53127, Bonn, Germany
| | - Jorge Jimenez-Cruz
- Department of Obstetrics and Prenatal Medicine, University Hospital Bonn, Venusberg Campus 1, 53127, Bonn, Germany
| | - Nicolas Haverkamp
- Office of Academic Affairs, University Hospital Bonn, Venusberg Campus 1, 53127, Bonn, Germany
| | - Ulrich Gembruch
- Department of Obstetrics and Prenatal Medicine, University Hospital Bonn, Venusberg Campus 1, 53127, Bonn, Germany
| | - Brigitte Strizek
- Department of Obstetrics and Prenatal Medicine, University Hospital Bonn, Venusberg Campus 1, 53127, Bonn, Germany
| | - Valentin S Schäfer
- Department of Rheumatology and Clinical Immunology, Clinic of Internal Medicine III, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
5
|
Warshafsky C, Flaxman T, Duigenan S, Singh SS. From Imaging to Visualization: Seeing the Future of Endometriosis Care. J Minim Invasive Gynecol 2024:S1553-4650(24)00301-7. [PMID: 38971402 DOI: 10.1016/j.jmig.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/16/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
STUDY OBJECTIVE To describe how the knowledge from standard imaging practices can be translated into 3-dimensional visualization techniques and used in the surgical planning and management of endometriosis. DESIGN Two case studies of patients with endometriosis are described. SETTING Tertiary care academic center. INTERVENTIONS Transvaginal ultrasound [1], magnetic resonance imaging, 3-dimensional printing [2], and 3-dimensional virtual reality modeling [3] were used during patient workup and preparation. Three-dimensional modeling was performed by a virtual reality technician and verified for accuracy by a fellowship-trained radiologist. Surgical management for endometriosis was performed. CONCLUSION Although expert transvaginal ultrasound and magnetic resonance imaging suffice for most cases, 3-dimensional printing and virtual reality modeling are a novel adjunct to standard imaging modalities. Rendering 2-dimensional images into a 3-dimensional representation allows users to interact with the anatomy and is particularly useful when distorted by complex pathology. These techniques contributed to improved patient understanding and experience and helped medical learners better grasp regular imaging techniques and its translation to pelvic anatomy. Finally, it augmented surgeon comprehension of the relationship between the pelvic structures, allowing for enhanced surgical planning and intraoperative decision making. Further study is being performed to quantify these effects.
Collapse
Affiliation(s)
| | - Teresa Flaxman
- Department of Radiology, Radiation Oncology and Medical Physics (Drs. Flaxman and Duigenan), The Ottawa Hospital, Ottawa, Ontario, Canada; Department of Clinical Epidemiology, The Ottawa Hospital Research Institute (Drs. Flaxman and Singh), Ottawa, Ontario, Canada
| | - Shauna Duigenan
- Department of Radiology, Radiation Oncology and Medical Physics (Drs. Flaxman and Duigenan), The Ottawa Hospital, Ottawa, Ontario, Canada
| | - Sukhbir S Singh
- Department of Obstetrics and Gynecology (Drs. Warshafsky and Singh); Department of Clinical Epidemiology, The Ottawa Hospital Research Institute (Drs. Flaxman and Singh), Ottawa, Ontario, Canada
| |
Collapse
|
6
|
Yasli M, Dabbagh SR, Tasoglu S, Aydin S. Additive manufacturing and three-dimensional printing in obstetrics and gynecology: a comprehensive review. Arch Gynecol Obstet 2023; 308:1679-1690. [PMID: 36635490 DOI: 10.1007/s00404-023-06912-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/03/2023] [Indexed: 01/14/2023]
Abstract
Three-dimensional (3D) printing, also known as additive manufacturing, is a technology used to create complex 3D structures out of a digital model that can be almost any shape. Additive manufacturing allows the creation of customized, finely detailed constructs. Improvements in 3D printing, increased 3D printer availability, decreasing costs, development of biomaterials, and improved cell culture techniques have enabled complex, novel, and customized medical applications to develop. There have been rapid development and utilization of 3D printing technologies in orthopedics, dentistry, urology, reconstructive surgery, and other health care areas. Obstetrics and Gynecology (OBGYN) is an emerging application field for 3D printing. This technology can be utilized in OBGYN for preventive medicine, early diagnosis, and timely treatment of women-and-fetus-specific health issues. Moreover, 3D printed simulations of surgical procedures enable the training of physicians according to the needs of any given procedure. Herein, we summarize the technology and materials behind additive manufacturing and review the most recent advancements in the application of 3D printing in OBGYN studies, such as diagnosis, surgical planning, training, simulation, and customized prosthesis. Furthermore, we aim to give a future perspective on the integration of 3D printing and OBGYN applications and to provide insight into the potential applications.
Collapse
Affiliation(s)
- Mert Yasli
- Koç University School of Medicine, Koç University, Sariyer, 34450, Istanbul, Turkey
| | - Sajjad Rahmani Dabbagh
- Department of Mechanical Engineering, Koç University, Sariyer, 34450, Istanbul, Turkey
- Arçelik Research Center for Creative Industries (KUAR), Koç University, Koç University, Sariyer, 3445, Istanbul, Turkey
- Koc University Is Bank Artificial Intelligence Lab (KUIS AILab), Koç University, Sariyer, 34450, Istanbul, Turkey
| | - Savas Tasoglu
- Department of Mechanical Engineering, Koç University, Sariyer, 34450, Istanbul, Turkey
- Arçelik Research Center for Creative Industries (KUAR), Koç University, Koç University, Sariyer, 3445, Istanbul, Turkey
- Koc University Is Bank Artificial Intelligence Lab (KUIS AILab), Koç University, Sariyer, 34450, Istanbul, Turkey
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Serdar Aydin
- Department of Obstetrics and Gynecology, Koç University Hospital, Davutpaşa Cad. No:4, Zeytinburnu, 34010, Istanbul, Turkey.
- Koç University School of Medicine, Koç University, Sariyer, 34450, Istanbul, Turkey.
| |
Collapse
|
7
|
Paxton NC, Wilkinson BG, Fitzpatrick D, Owen EC, Luposchainsky S, Dalton PD. Technical improvements in preparing 3D printed anatomical models for comminuted fracture preoperative planning. 3D Print Med 2023; 9:25. [PMID: 37695521 PMCID: PMC10494395 DOI: 10.1186/s41205-023-00189-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/31/2023] [Indexed: 09/12/2023] Open
Abstract
Preoperative planning of comminuted fracture repair using 3D printed anatomical models is enabling surgeons to visualize and simulate the fracture reduction processes before surgery. However, the preparation of such models can be challenging due to the complexity of certain fractures, particularly in preserving fine detail in bone fragments, maintaining the positioning of displaced fragments, and accurate positioning of multiple bones. This study described several key technical considerations for preparing 3D printed anatomical models for comminuted fracture preoperative planning. An optimized segmentation protocol was developed that preserves fine detail in bone fragments, resulting in a more accurate representation of the fracture. Additionally, struts were manually added to the digital model to maintain the positioning of displaced fragments after fabrication, reducing the likelihood of errors during printing or misrepresentation of fragment positioning. Magnets were also used to enable separation and visualization of accurate positioning of multiple bones, making it easier to visualize fracture components otherwise obscured by the anatomy. Finally, the infill for non-target structures was adjusted to minimize print time and material wastage. These technical optimizations improved the accuracy and efficiency of preparing 3D printed anatomical models for comminuted fracture preoperative planning, improving opportunities for surgeons to better plan surgical treatment in advance, reducing the likelihood of errors, with the goal of improving surgical outcomes.
Collapse
Affiliation(s)
- Naomi C Paxton
- Phil & Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, 1505 Franklin Blvd, Eugene, OR, 97403, USA.
| | | | | | - Erin C Owen
- Slocum Research & Education Foundation, Eugene, OR, USA
| | - Simon Luposchainsky
- Phil & Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, 1505 Franklin Blvd, Eugene, OR, 97403, USA
| | - Paul D Dalton
- Phil & Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, 1505 Franklin Blvd, Eugene, OR, 97403, USA
| |
Collapse
|
8
|
Cooke CM, Flaxman TE, Sikora L, Miguel O, Singh SS. Individualized medicine using 3D printing technology in gynecology: a scoping review. 3D Print Med 2023; 9:6. [PMID: 36932284 PMCID: PMC10024374 DOI: 10.1186/s41205-023-00169-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 02/17/2023] [Indexed: 03/19/2023] Open
Abstract
OBJECTIVE Developments in 3-dimensional (3D) printing technology has made it possible to produce high quality, affordable 3D printed models for use in medicine. As a result, there is a growing assessment of this approach being published in the medical literature. The objective of this study was to outline the clinical applications of individualized 3D printing in gynecology through a scoping review. DATA SOURCES Four medical databases (Medline, Embase, Cochrane CENTRAL, Scopus) and grey literature were searched for publications meeting eligibility criteria up to 31 May 2021. STUDY ELIGIBILITY CRITERIA Publications were included if they were published in English, had a gynecologic context, and involved production of patient specific 3D printed product(s). STUDY APPRAISAL AND SYNTHESIS METHODS Studies were manually screened and assessed for eligibility by two independent reviewers and data were extracted using pre-established criteria using Covidence software. RESULTS Overall, 32 studies (15 abstracts,17 full text articles) were included in the scoping review. Most studies were either case reports (12/32,38%) or case series (15/32,47%). Gynecologic sub-specialties in which the 3D printed models were intended for use included: gynecologic oncology (21/32,66%), benign gynecology (6/32,19%), pediatrics (2/32,6%), urogynecology (2/32,6%) and reproductive endocrinology and infertility (1/32,3%). Twenty studies (63%) printed 5 or less models, 6/32 studies (19%) printed greater than 5 (up to 50 models). Types of 3D models printed included: anatomical models (11/32,34%), medical devices, (2/32,6%) and template/guide/cylindrical applicators for brachytherapy (19/32,59%). CONCLUSIONS Our scoping review has outlined novel clinical applications for individualized 3D printed models in gynecology. To date, they have mainly been used for production of patient specific 3D printed brachytherapy guides/applicators in patients with gynecologic cancer. However, individualized 3D printing shows great promise for utility in surgical planning, surgical education, and production of patient specific devices, across gynecologic subspecialties. Evidence supporting the clinical value of individualized 3D printing in gynecology is limited by studies with small sample size and non-standardized reporting, which should be the focus of future studies.
Collapse
Affiliation(s)
- Carly M Cooke
- Department of Obstetrics, Gynecology and Newborn Care, University of Ottawa, Ottawa, Ontario, Canada
| | - Teresa E Flaxman
- Department of Obstetrics, Gynecology and Newborn Care, University of Ottawa, Ottawa, Ontario, Canada
- Department of Clinical Epidemiology, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Radiology, Radiation Oncology and Medical Physics, University of Ottawa, Ottawa, Ontario, Canada
| | - Lindsey Sikora
- Health Sciences Library, University of Ottawa, Ottawa, Ontario, Canada
| | - Olivier Miguel
- Department of Clinical Epidemiology, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Radiology, Radiation Oncology and Medical Physics, University of Ottawa, Ottawa, Ontario, Canada
| | - Sukhbir S Singh
- Department of Obstetrics, Gynecology and Newborn Care, University of Ottawa, Ottawa, Ontario, Canada.
- Department of Clinical Epidemiology, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.
- Department of Obstetrics and Gynecology, The Ottawa Hospital, Riverside Campus, 1967 Riverside Dr., 7th Floor, Ottawa, Ontario, K1H 7W9, Canada.
| |
Collapse
|
9
|
AlRawi A, Basha T, Elmeligy AO, Mousa NA, Mohammed G. The Role of Three-dimensional Printed Models in Women's Health. WOMEN'S HEALTH (LONDON, ENGLAND) 2023; 19:17455057231199040. [PMID: 37688305 PMCID: PMC10493061 DOI: 10.1177/17455057231199040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/26/2023] [Accepted: 08/11/2023] [Indexed: 09/10/2023]
Abstract
Three-dimensional printing is an innovative technology that has gained prominence in recent years due to its attractive features such as affordability, efficiency, and quick production. The technology is used to produce a three-dimensional model by depositing materials in layers using specific printers. In the medical field, it has been increasingly used in various specialties, including neurosurgery, cardiology, and orthopedics, most commonly for the pre-planning of complex surgeries. In addition, it has been applied in therapeutic treatments, patient education, and training wof medical professionals. In the field of obstetrics and gynecology, there is a limited number of studies in which three-dimensional printed models were applied. In this review, we aim to provide an overview of three-dimensional printing applications in the medical field, highlighting the few reported applications in obstetrics and gynecology. We also review all relevant studies and discuss the current challenges and limitations of adopting the technology in routine clinical practice. The technology has the potential to expand for wider applications related to women's health, including patient counseling, surgical training, and medical education.
Collapse
Affiliation(s)
- Afnan AlRawi
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Tasneem Basha
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Ahmed O Elmeligy
- Department of Electrical and Computer Engineering, Faculty of Engineering, McGill University, Montreal, QC, Canada
| | - Noha A Mousa
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Ghada Mohammed
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
10
|
Manti F, Battaglia C, Bruno I, Ammendola M, Navarra G, Currò G, Laganà D. The Role of Magnetic Resonance Imaging in the Planning of Surgical Treatment of Deep Pelvic Endometriosis. Front Surg 2022; 9:944399. [PMID: 35836610 PMCID: PMC9273906 DOI: 10.3389/fsurg.2022.944399] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
Background To prospectively evaluate the diagnostic accuracy of magnetic resonance imaging (MRI) for the planning of surgical treatment of deep pelvic endometriosis. Materials and Methods From January 2020 to December 2021, we evaluated 72 patients with symptoms characteristic of endometriosis to plan appropriate surgical treatment. Sensitivity (Se), specificity (Sp), positive and negative predictive values (VPP/VPN), and the accuracy of MRI for the detection of deep pelvic endometriosis were calculated. Results Seventy-two patients (mean age, 35.5 years; range, 20–46 years) suspected of having pelvic endometriosis were recruited. Pelvic endometriosis was confirmed at pathologic examination in 56 (77.7%) of 72 patients. A total of 22 (39.3%) of 56 patients were subjected to video laparoscopy (VLS), and 16 (72.2%) of 22 were treated by surgery. Se, Sp, VPP, and VPN in intestinal endometriosis diagnosis were, respectively, 100%, 93.3%, 100%, and 87.5%, and diagnostic accuracy was 95.4%. MRI Se in ureteral endometriosis diagnosis was 50%, Sp 100%, VPP 100%, VPN 78%, and diagnostic accuracy 82%. MRI Se in endometrioma diagnosis was 92.3%, Sp 100%, VPP 100%, VPN 90%, and diagnostic accuracy 95.4%. MRI Se in rectum-vaginal septum (SRV) endometriosis diagnosis was 80%, Sp 100%, VPP 100% VPN 85.7%, and diagnostic accuracy 91%. The MRI Se in the diagnosis of endometriosis involving ULS was 100%, Sp 92.8%, VPP 89%, VPN 100%, and diagnostic accuracy 95.4%. Complete concordance results in a 100% accuracy for all calculated values in diagnosing bladder endometriosis localizations. Conclusion MR imaging demonstrates high accuracy in detecting deep pelvic endometriosis in specific locations. It allows the localization of deep pelvic lesions with highly fibrotic components that are hardly recognizable with other imaging methods and not visible with VLS.
Collapse
Affiliation(s)
- Francesco Manti
- Radiology Unit, Department of Experimental and Clinical Medicine, “Magna Graecia” University, Catanzaro, Italy
| | - Caterina Battaglia
- Radiology Unit, Department of Experimental and Clinical Medicine, “Magna Graecia” University, Catanzaro, Italy
| | - Iennarella Bruno
- Radiology Unit, Department of Experimental and Clinical Medicine, “Magna Graecia” University, Catanzaro, Italy
| | - Michele Ammendola
- Science of Health Department, Digestive Surgery Unit, University “Magna Graecia” Medical School, Catanzaro, Italy
- Correspondence: Michele Ammendola
| | - Giuseppe Navarra
- Department of Human Pathology of Adult and Evolutive Age, Surgical Oncology Division, “G. Martino” Hospital, University of Messina, Messina, Italy
| | - Giuseppe Currò
- Science of Health Department, General Surgery Unit, University “Magna Graecia” Medical School, Catanzaro, Italy
| | - Domenico Laganà
- Radiology Unit, Department of Experimental and Clinical Medicine, “Magna Graecia” University, Catanzaro, Italy
| |
Collapse
|
11
|
Coté JJ, Coté BP, Badura-Brack AS. 3D printed models in pregnancy and its utility in improving psychological constructs: a case series. 3D Print Med 2022; 8:16. [PMID: 35678895 PMCID: PMC9178798 DOI: 10.1186/s41205-022-00144-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 05/30/2022] [Indexed: 12/01/2022] Open
Abstract
Background 3D printing is being utilized in almost every aspect of medicine. 3D printing has especially been used in conjunction with 3D ultrasonography to assist in antenatal assessment and presurgical planning with fetal malformations. As printing capabilities improve and applications are explored there may be more advantages for all parents to visualize and touch 3D printed models of their fetus. Case presentation We present three cases involving 3D printed models and four different but interrelated psychological constructs- antenatal depression, antenatal anxiety, maternal-fetal attachment, and paternal-fetal attachment. Each case shows for the first time possible beneficial effects within these prevalent and significant problems. Conclusions The degree to which the anxiety, depression, and attachment scores improved after the presentation of the 3D printed models is encouraging. Randomized controlled trials utilizing 3D printed models to improve psychological constructs should be supported considering the findings within these four cases.
Collapse
Affiliation(s)
- John Joseph Coté
- Department of Obstetrics and Gynecology, CommonSpirit Health, Creighton University School of Medicine, 16909 Lakeside Hills Court, Suite 401, Omaha, NE, 68130, USA.
| | - Brayden Patric Coté
- Department of Psychological Science, Creighton University, 2500 California Plaza, Omaha, NE, 68178, USA
| | - Amy S Badura-Brack
- Department of Psychological Science, Creighton University, 2500 California Plaza, Omaha, NE, 68178, USA
| |
Collapse
|
12
|
Meyer-Szary J, Luis MS, Mikulski S, Patel A, Schulz F, Tretiakow D, Fercho J, Jaguszewska K, Frankiewicz M, Pawłowska E, Targoński R, Szarpak Ł, Dądela K, Sabiniewicz R, Kwiatkowska J. The Role of 3D Printing in Planning Complex Medical Procedures and Training of Medical Professionals-Cross-Sectional Multispecialty Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:3331. [PMID: 35329016 PMCID: PMC8953417 DOI: 10.3390/ijerph19063331] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/18/2022] [Accepted: 03/05/2022] [Indexed: 12/19/2022]
Abstract
Medicine is a rapidly-evolving discipline, with progress picking up pace with each passing decade. This constant evolution results in the introduction of new tools and methods, which in turn occasionally leads to paradigm shifts across the affected medical fields. The following review attempts to showcase how 3D printing has begun to reshape and improve processes across various medical specialties and where it has the potential to make a significant impact. The current state-of-the-art, as well as real-life clinical applications of 3D printing, are reflected in the perspectives of specialists practicing in the selected disciplines, with a focus on pre-procedural planning, simulation (rehearsal) of non-routine procedures, and on medical education and training. A review of the latest multidisciplinary literature on the subject offers a general summary of the advances enabled by 3D printing. Numerous advantages and applications were found, such as gaining better insight into patient-specific anatomy, better pre-operative planning, mock simulated surgeries, simulation-based training and education, development of surgical guides and other tools, patient-specific implants, bioprinted organs or structures, and counseling of patients. It was evident that pre-procedural planning and rehearsing of unusual or difficult procedures and training of medical professionals in these procedures are extremely useful and transformative.
Collapse
Affiliation(s)
- Jarosław Meyer-Szary
- Department of Pediatric Cardiology and Congenital Heart Defects, Faculty of Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Marlon Souza Luis
- Department of Pediatric Cardiology and Congenital Heart Defects, Faculty of Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland
- First Doctoral School, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | - Szymon Mikulski
- Department of Head and Neck Surgery, Singapore General Hospital, Singapore 169608, Singapore
| | - Agastya Patel
- First Doctoral School, Medical University of Gdańsk, 80-211 Gdańsk, Poland
- Department of General, Endocrine and Transplant Surgery, Faculty of Medicine, Medical University of Gdańsk, 80-214 Gdańsk, Poland
| | - Finn Schulz
- University Clinical Centre in Gdańsk, 80-952 Gdańsk, Poland
| | - Dmitry Tretiakow
- Department of Otolaryngology, Faculty of Medicine, Medical University of Gdańsk, 80-214 Gdańsk, Poland
| | - Justyna Fercho
- Neurosurgery Department, Faculty of Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Kinga Jaguszewska
- Department of Gynecology, Obstetrics and Neonatology, Division of Gynecology and Obstetrics, Faculty of Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Mikołaj Frankiewicz
- Department of Urology, Faculty of Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Ewa Pawłowska
- Department of Oncology and Radiotherapy, Faculty of Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Radosław Targoński
- 1st Department of Cardiology, Faculty of Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Łukasz Szarpak
- Institute of Outcomes Research, Maria Sklodowska-Curie Medical Academy, 03-411 Warsaw, Poland
- Research Unit, Maria Sklodowska-Curie Bialystok Oncology Center, 15-027 Bialystok, Poland
- Henry JN Taub Department of Emergency Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Katarzyna Dądela
- Department of Pediatric Cardiology, University Children's Hospital, Faculty of Medicine, Jagiellonian University Medical College, 30-663 Krakow, Poland
| | - Robert Sabiniewicz
- Department of Pediatric Cardiology and Congenital Heart Defects, Faculty of Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Joanna Kwiatkowska
- Department of Pediatric Cardiology and Congenital Heart Defects, Faculty of Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| |
Collapse
|
13
|
Creation of Anatomically Correct and Optimized for 3D Printing Human Bones Models. APPLIED SYSTEM INNOVATION 2021. [DOI: 10.3390/asi4030067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Educational institutions in several countries state that the education sector should be modernized to ensure a contemporary, individualized, and more open learning process by introducing and developing advance digital solutions and learning tools. Visualization along with 3D printing have already found their implementation in different medical fields in Pauls Stradiņš Clinical University Hospital, and Rīga Stradiņš University, where models are being used for prosthetic manufacturing, surgery planning, simulation of procedures, and student education. The study aimed to develop a detailed methodology for the creation of anatomically correct and optimized models for 3D printing from radiological data using only free and widely available software. In this study, only free and cross-platform software from widely available internet sources has been used—“Meshmixer”, “3D Slicer”, and “Meshlab”. For 3D printing, the Ultimaker 5S 3D printer along with PLA material was used. In its turn, radiological data have been obtained from the “New Mexico Decedent Image Database”. In total, 28 models have been optimized and printed. The developed methodology can be used to create new models from scratch, which can be used will find implementation in different medical and scientific fields—simulation processes, anthropology, 3D printing, bioprinting, and education.
Collapse
|