1
|
Aparicio A, Guzman P, Morera M, Calvo Y, Obando M, Landaverde D, González I, Ramirez-Pena E. The First Population-Level Description of Women Diagnosed With Invasive Breast Cancer in Costa Rica From 2008 to 2012: A Cross-Sectional Study. Cancer Control 2023; 30:10732748231193550. [PMID: 37589443 PMCID: PMC10437208 DOI: 10.1177/10732748231193550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/28/2023] [Accepted: 07/19/2023] [Indexed: 08/18/2023] Open
Abstract
INTRODUCTION Breast cancer is the leading cause of cancer-related deaths among women worldwide. In Costa Rica, it ranks first in incidence and fourth in terms of mortality. However, there is a lack of comprehensive information on treatment patterns and outcomes for breast cancer patients in Costa Rica. METHODS This study utilized data from the National Tumor Registry, which was merged with the Costa Rica Social Security Fund (CCSS) to ensure comprehensive access to clinical information. The study is prospective and focused on patients diagnosed with breast cancer between January 2008 and December 2012. This combined dataset allowed for a more comprehensive analysis of patient characteristics, treatment patterns, and outcomes related to breast cancer in Costa Rica. RESULTS Among the 4775 patients diagnosed during this period, 3160 met the inclusion criteria for our study. The average age at diagnosis was 59.1 years, with 32.5% of patients being over the age of 65. Most of the patients (55.4%) identified themselves as homemakers, while 46.5% underwent core needle biopsy for diagnosis. Approximately 60% of women were diagnosed with early-stage disease (IA, IIA, and IIB), while 1.7% had metastatic disease, mainly affecting the bone. The mean interval between diagnosis and surgery was 72 days. Most patients (88.7%) received surgery as their initial treatment, and over half (54.4%) received some form of adjuvant therapy. Additionally, 85.6% of patients completed their prescribed treatment. CONCLUSION This study provides a comprehensive and detailed description of the characteristics and treatment patterns among breast cancer patients in Costa Rica. The findings contribute to our understanding of the disease in this population and can serve as a foundation for further research and improvement in breast cancer management and care.
Collapse
Affiliation(s)
| | - Percy Guzman
- Cancer Prevention Fellowship Program (CPFP), Division of Cancer Prevention (DCP), National Cancer Institute (NCI), Bethesda, MD, USA
- Health Assessment Research Branch (HARB), Health Delivery Research Program (HDRP), Division of Cancer Control and Population Sciences (DCCPS), Bethesda, MD, USA
| | - Melvin Morera
- Costa Rica Social Security Fund, San Jose, Costa Rica
| | - Yoleni Calvo
- Costa Rica Social Security Fund, San Jose, Costa Rica
| | | | | | | | - Esmeralda Ramirez-Pena
- Cancer Prevention Fellowship Program (CPFP), Division of Cancer Prevention (DCP), National Cancer Institute (NCI), Bethesda, MD, USA
- Surveillance Research Program (SRP), Division of Cancer Control and Population Sciences (DCCPS), National Cancer Institute (NCI), Bethesda, MD, USA
| |
Collapse
|
2
|
Filipowicz N, Drężek K, Horbacz M, Wojdak A, Szymanowski J, Rychlicka-Buniowska E, Juhas U, Duzowska K, Nowikiewicz T, Stańkowska W, Chojnowska K, Andreou M, Ławrynowicz U, Wójcik M, Davies H, Śrutek E, Bieńkowski M, Milian-Ciesielska K, Zdrenka M, Ambicka A, Przewoźnik M, Harazin-Lechowska A, Adamczyk A, Kowalski J, Bała D, Wiśniewski D, Tkaczyński K, Kamecki K, Drzewiecka M, Wroński P, Siekiera J, Ratnicka I, Jankau J, Wierzba K, Skokowski J, Połom K, Przydacz M, Bełch Ł, Chłosta P, Matuszewski M, Okoń K, Rostkowska O, Hellmann A, Sasim K, Remiszewski P, Sierżęga M, Hać S, Kobiela J, Kaska Ł, Jankowski M, Hodorowicz-Zaniewska D, Jaszczyński J, Zegarski W, Makarewicz W, Pęksa R, Szpor J, Ryś J, Szylberg Ł, Piotrowski A, Dumanski JP. Comprehensive cancer-oriented biobanking resource of human samples for studies of post-zygotic genetic variation involved in cancer predisposition. PLoS One 2022; 17:e0266111. [PMID: 35390022 PMCID: PMC8989288 DOI: 10.1371/journal.pone.0266111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 03/14/2022] [Indexed: 11/17/2022] Open
Abstract
The progress in translational cancer research relies on access to well-characterized samples from a representative number of patients and controls. The rationale behind our biobanking are explorations of post-zygotic pathogenic gene variants, especially in non-tumoral tissue, which might predispose to cancers. The targeted diagnoses are carcinomas of the breast (via mastectomy or breast conserving surgery), colon and rectum, prostate, and urinary bladder (via cystectomy or transurethral resection), exocrine pancreatic carcinoma as well as metastases of colorectal cancer to the liver. The choice was based on the high incidence of these cancers and/or frequent fatal outcome. We also collect age-matched normal controls. Our still ongoing collection originates from five clinical centers and after nearly 2-year cooperation reached 1711 patients and controls, yielding a total of 23226 independent samples, with an average of 74 donors and 1010 samples collected per month. The predominant diagnosis is breast carcinoma, with 933 donors, followed by colorectal carcinoma (383 donors), prostate carcinoma (221 donors), bladder carcinoma (81 donors), exocrine pancreatic carcinoma (15 donors) and metachronous colorectal cancer metastases to liver (14 donors). Forty percent of the total sample count originates from macroscopically healthy cancer-neighboring tissue, while contribution from tumors is 12%, which adds to the uniqueness of our collection for cancer predisposition studies. Moreover, we developed two program packages, enabling registration of patients, clinical data and samples at the participating hospitals as well as the central system of sample/data management at coordinating center. The approach used by us may serve as a model for dispersed biobanking from multiple satellite hospitals. Our biobanking resource ought to stimulate research into genetic mechanisms underlying the development of common cancers. It will allow all available "-omics" approaches on DNA-, RNA-, protein- and tissue levels to be applied. The collected samples can be made available to other research groups.
Collapse
Affiliation(s)
| | - Kinga Drężek
- 3P-Medicine Laboratory, Medical University of Gdańsk, Gdańsk, Poland
| | - Monika Horbacz
- 3P-Medicine Laboratory, Medical University of Gdańsk, Gdańsk, Poland
| | - Agata Wojdak
- 3P-Medicine Laboratory, Medical University of Gdańsk, Gdańsk, Poland
| | - Jakub Szymanowski
- 3P-Medicine Laboratory, Medical University of Gdańsk, Gdańsk, Poland
- Bioenit Jakub Szymanowski, Gdańsk, Poland
| | | | - Ulana Juhas
- 3P-Medicine Laboratory, Medical University of Gdańsk, Gdańsk, Poland
| | | | - Tomasz Nowikiewicz
- Department of Breast Cancer and Reconstructive Surgery, Oncology Center—Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland
- Surgical Oncology, Ludwik Rydygier’s Collegium Medicum, Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | | | | | - Maria Andreou
- 3P-Medicine Laboratory, Medical University of Gdańsk, Gdańsk, Poland
| | | | - Magdalena Wójcik
- 3P-Medicine Laboratory, Medical University of Gdańsk, Gdańsk, Poland
| | - Hanna Davies
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Ewa Śrutek
- Surgical Oncology, Ludwik Rydygier’s Collegium Medicum, Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
- Department of Tumor Pathology and Pathomorphology, Oncology Center—Prof Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland
| | - Michał Bieńkowski
- Department of Pathomorphology, Medical University of Gdańsk, Gdańsk, Poland
| | | | - Marek Zdrenka
- Department of Tumor Pathology and Pathomorphology, Oncology Center—Prof Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland
| | - Aleksandra Ambicka
- Department of Tumor Pathology, Maria Skłodowska-Curie National Research Institute of Oncology, Kraków, Poland
| | - Marcin Przewoźnik
- Department of Tumor Pathology, Maria Skłodowska-Curie National Research Institute of Oncology, Kraków, Poland
| | - Agnieszka Harazin-Lechowska
- Department of Tumor Pathology, Maria Skłodowska-Curie National Research Institute of Oncology, Kraków, Poland
| | - Agnieszka Adamczyk
- Department of Tumor Pathology, Maria Skłodowska-Curie National Research Institute of Oncology, Kraków, Poland
| | - Jacek Kowalski
- Department of Pathomorphology, Medical University of Gdańsk, Gdańsk, Poland
| | - Dariusz Bała
- Surgical Oncology, Ludwik Rydygier’s Collegium Medicum, Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
- Department of Surgical Oncology, Oncology Center—Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland
| | - Dorian Wiśniewski
- Department of Surgical Oncology, Oncology Center—Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland
| | - Karol Tkaczyński
- Department of Surgical Oncology, Oncology Center—Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland
| | - Krzysztof Kamecki
- Department of Urology, Oncology Center—Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland
| | - Marta Drzewiecka
- Department of Breast Cancer and Reconstructive Surgery, Oncology Center—Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland
| | - Paweł Wroński
- Department of Urology, Oncology Center—Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland
| | - Jerzy Siekiera
- Department of Urology, Oncology Center—Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland
| | - Izabela Ratnicka
- Department of Plastic Surgery, Medical University of Gdańsk, Gdańsk, Poland
| | - Jerzy Jankau
- Department of Plastic Surgery, Medical University of Gdańsk, Gdańsk, Poland
| | - Karol Wierzba
- Department of Internal Medicine, Connective Tissue Diseases and Geriatrics, Medical University of Gdańsk, Gdańsk, Poland
| | - Jarosław Skokowski
- Department of Surgical Oncology, Medical University of Gdańsk, Gdańsk, Poland
- Department of Medical Laboratory Diagnostics-Biobank, Medical University of Gdańsk, Gdańsk, Poland
| | - Karol Połom
- Department of Surgical Oncology, Medical University of Gdańsk, Gdańsk, Poland
| | - Mikołaj Przydacz
- Department of Urology, Jagiellonian University Medical College, Kraków, Poland
| | - Łukasz Bełch
- Department of Urology, Jagiellonian University Medical College, Kraków, Poland
| | - Piotr Chłosta
- Department of Urology, Jagiellonian University Medical College, Kraków, Poland
| | - Marcin Matuszewski
- Department and Clinic of Urology, Medical University of Gdańsk, Gdańsk, Poland
| | - Krzysztof Okoń
- Department of Pathomorphology, Jagiellonian University Medical College, Kraków, Poland
| | - Olga Rostkowska
- Department of General, Endocrine and Transplant Surgery, Medical University of Gdańsk, Gdańsk, Poland
| | - Andrzej Hellmann
- Department of General, Endocrine and Transplant Surgery, Medical University of Gdańsk, Gdańsk, Poland
| | - Karol Sasim
- Clinic of Urology and Oncological Urology, Specialist Hospital of Kościerzyna, Kościerzyna, Poland
| | - Piotr Remiszewski
- Department of General, Endocrine and Transplant Surgery, Medical University of Gdańsk, Gdańsk, Poland
| | - Marek Sierżęga
- Department of General, Oncological, and Gastrointestinal Surgery, Jagiellonian University Medical College, Kraków, Poland
| | - Stanisław Hać
- Department of General, Endocrine and Transplant Surgery, Medical University of Gdańsk, Gdańsk, Poland
| | - Jarosław Kobiela
- Department of General, Endocrine and Transplant Surgery, Medical University of Gdańsk, Gdańsk, Poland
| | - Łukasz Kaska
- Department of General, Endocrine and Transplant Surgery, Medical University of Gdańsk, Gdańsk, Poland
| | - Michał Jankowski
- Surgical Oncology, Ludwik Rydygier’s Collegium Medicum, Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
- Department of Surgical Oncology, Oncology Center—Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland
| | - Diana Hodorowicz-Zaniewska
- Department of General, Oncological, and Gastrointestinal Surgery, Jagiellonian University Medical College, Kraków, Poland
| | - Janusz Jaszczyński
- Department of Urology, Maria Skłodowska-Curie National Research Institute of Oncology, Kraków, Poland
| | - Wojciech Zegarski
- Surgical Oncology, Ludwik Rydygier’s Collegium Medicum, Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
- Department of Surgical Oncology, Oncology Center—Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland
| | - Wojciech Makarewicz
- Department of Surgical Oncology, Medical University of Gdańsk, Gdańsk, Poland
- Clinic of General and Oncological Surgery, Specialist Hospital of Kościerzyna, Kościerzyna, Poland
| | - Rafał Pęksa
- Department of Pathomorphology, Medical University of Gdańsk, Gdańsk, Poland
| | - Joanna Szpor
- Department of Pathomorphology, Jagiellonian University Medical College, Kraków, Poland
| | - Janusz Ryś
- Department of Tumor Pathology, Maria Skłodowska-Curie National Research Institute of Oncology, Kraków, Poland
| | - Łukasz Szylberg
- Department of Tumor Pathology and Pathomorphology, Oncology Center—Prof Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Arkadiusz Piotrowski
- 3P-Medicine Laboratory, Medical University of Gdańsk, Gdańsk, Poland
- Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, Gdańsk, Poland
| | - Jan P. Dumanski
- 3P-Medicine Laboratory, Medical University of Gdańsk, Gdańsk, Poland
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
3
|
Wang H, Yan B, Yue L, He M, Liu Y, Li H. The Diagnostic Value of 3D Power Doppler Ultrasound Combined With VOCAL in the Vascular Distribution of Breast Masses. Acad Radiol 2020; 27:198-203. [PMID: 31053481 DOI: 10.1016/j.acra.2019.02.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 01/08/2023]
Abstract
RATIONALE AND OBJECTIVES This study uses a three-dimensional energy Doppler technique combined with the Virtual Organ Computer-aided Analysis (VOCAL) method in order to determine the diagnostic threshold of blood flow index in breast tumors to provide a reference for evaluation and treatment options. MATERIALS AND METHODS We collected 322 solid lesions which had been operated. Each lesion met the definite pathological diagnosis; collected lesions included 262 cases of benign lesions and 60 cases of malignant lesions. All examinations were performed by using GE LOGIQ E9 with VOCAL software. Volume and four distinct vascular indices of gray mean (MG), power mean, ratio (R), and vascular flow index (VFI) were calculated by using the VOCAL software. Sampling and calculation were repeated three times and the mean value was calculated. RESULTS The average age and power of the malignant group were greater than those of the benign group, ie p < .01 which had significant differences. The gray mean of the malignant group was lower than that of the benign group, ie p > .05 which had no significant differences between benign and malignant groups. The ratio, vascular flow index and volume had significant differences, i.e. p < .01. The area under the receiver operating characteristic curve (AUC) were 0.864, 0.830, 0.800, 0.758, and 0.764 for age, power, ratio, vascular flow index, and volume, respectively. The research indicators were higher than 50% of the curve showing their diagnostic value. The cut-off points of age, power, ratio, vascular flow index, and volume were 37.5, 26.56, 0.031, 0.846, and 1.75, respectively. Their corresponding sensitivity were 93.3%, 75%, 81.7%, 68.3%, 63.3%, and the specificity were 68.7%, 81%, 70.2%, 75.6%, and 81.7%, respectively. Comparison of vascular indices combined with the Breast imaging reporting and data System (BI-RADS) score and simple BI-RADS method, the AUC of power + BI-RADS, ratio + BI-RADS, VFI + BI-RADS, and BI-RADS alone are 0.928, 0.903, 0.895, and 0.796, respectively, which were higher than 50% of the curve. Sensitivity was 81.7%, 80%, 88.3%, 86.7%, and specificity was 88.5%, 85.5%, 77.1%, 69.5%, respectively. The power + BI-RADS method has the highest AUC among these three methods. CONCLUSIONS Quantitative measurement of blood flow and blood vessel distribution in breast tumors by three-dimensional power Doppler ultrasound combined with the VOCAL method is more accurate and sensitive than the traditional two-dimensional ultrasound. And this method has potential promising applications in many current active research areas, such as the studies of random distribution of intratumoral blood vessels or the normalization of tumor blood vessels. Three-dimensional power Doppler ultrasound combined with the VOCAL method provides a new approach to achieving accurate judgments and the method evaluates the curative effect in breast cancer patients.
Collapse
|