1
|
Hasan MR, Mughees M, Shaikh S, Choudhary F, Nizam A, Rizwan A, Ansari O, Iqbal Y, Pilloton R, Wajid S, Narang J. From Biosensors to Robotics: Pioneering Advances in Breast Cancer Management. SENSORS (BASEL, SWITZERLAND) 2024; 24:6149. [PMID: 39338894 PMCID: PMC11435941 DOI: 10.3390/s24186149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024]
Abstract
Breast cancer stands as the most prevalent form of cancer amongst females, constituting more than one-third of all cancer cases affecting women. It causes aberrant cell development, which can assault or spread to other sections of the body, perhaps leading to the patient's death. Based on research findings, timely detection can diminish the likelihood of mortality and enhance the quality of healthcare provided for the illness. However, current technologies can only identify cancer at an advanced stage. Consequently, there is a substantial demand for rapid and productive approaches to detecting breast cancer. Researchers are actively pursuing precise and timely methods for the diagnosis of breast cancer, aiming to achieve enhanced accuracy and early detection. Biosensor technology can allow for the speedy and accurate diagnosis of cancer-related cells, as well as a more sensitive and specialized technique for generating them. Additionally, numerous treatments for breast cancer are depicted such as herbal therapy, nanomaterial-based drug delivery, miRNA targeting, CRISPR technology, immunotherapy, and precision medicine. Early detection and efficient therapy are necessary to manage such a severe illness properly.
Collapse
Affiliation(s)
- Mohd. Rahil Hasan
- Department of Biotechnology, Jamia Hamdard, New Delhi 110062, India; (M.R.H.); (M.M.); (S.S.); (F.C.); (A.N.); (A.R.); (O.A.); (Y.I.)
| | - Mohd Mughees
- Department of Biotechnology, Jamia Hamdard, New Delhi 110062, India; (M.R.H.); (M.M.); (S.S.); (F.C.); (A.N.); (A.R.); (O.A.); (Y.I.)
| | - Shifa Shaikh
- Department of Biotechnology, Jamia Hamdard, New Delhi 110062, India; (M.R.H.); (M.M.); (S.S.); (F.C.); (A.N.); (A.R.); (O.A.); (Y.I.)
| | - Furqan Choudhary
- Department of Biotechnology, Jamia Hamdard, New Delhi 110062, India; (M.R.H.); (M.M.); (S.S.); (F.C.); (A.N.); (A.R.); (O.A.); (Y.I.)
| | - Anam Nizam
- Department of Biotechnology, Jamia Hamdard, New Delhi 110062, India; (M.R.H.); (M.M.); (S.S.); (F.C.); (A.N.); (A.R.); (O.A.); (Y.I.)
| | - Amber Rizwan
- Department of Biotechnology, Jamia Hamdard, New Delhi 110062, India; (M.R.H.); (M.M.); (S.S.); (F.C.); (A.N.); (A.R.); (O.A.); (Y.I.)
| | - Onaiza Ansari
- Department of Biotechnology, Jamia Hamdard, New Delhi 110062, India; (M.R.H.); (M.M.); (S.S.); (F.C.); (A.N.); (A.R.); (O.A.); (Y.I.)
| | - Yusra Iqbal
- Department of Biotechnology, Jamia Hamdard, New Delhi 110062, India; (M.R.H.); (M.M.); (S.S.); (F.C.); (A.N.); (A.R.); (O.A.); (Y.I.)
| | - Roberto Pilloton
- CNR-IC, Area della Ricerca di RM1, Via Salaria km 29.3, Monterotondo, I-00015 Rome, Italy
| | - Saima Wajid
- Department of Biotechnology, Jamia Hamdard, New Delhi 110062, India; (M.R.H.); (M.M.); (S.S.); (F.C.); (A.N.); (A.R.); (O.A.); (Y.I.)
| | - Jagriti Narang
- Department of Biotechnology, Jamia Hamdard, New Delhi 110062, India; (M.R.H.); (M.M.); (S.S.); (F.C.); (A.N.); (A.R.); (O.A.); (Y.I.)
| |
Collapse
|
2
|
Le MT, Nguyen HT, Nguyen XH, Do XH, Mai BT, Ngoc Nguyen HT, Trang Than UT, Nguyen TH. Regulation and therapeutic potentials of microRNAs to non-small cell lung cancer. Heliyon 2023; 9:e22080. [PMID: 38058618 PMCID: PMC10696070 DOI: 10.1016/j.heliyon.2023.e22080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 12/08/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is the most common type of lung cancer, accounting for 80%-85% of total cases and leading to millions of deaths worldwide. Drug resistance is the primary cause of treatment failure in NSCLC, which urges scientists to develop advanced approaches for NSCLC treatment. Among novel approaches, the miRNA-based method has emerged as a potential approach as it allows researchers to modulate target gene expression. Subsequently, cell behaviors are altered, which leads to the death and the depletion of cancer cells. It has been reported that miRNAs possess the capacity to regulate multiple genes that are involved in various signaling pathways, including the phosphoinositide 3-kinase, receptor tyrosine kinase/rat sarcoma virus/mitogen-activated protein kinase, wingless/integrated, retinoblastoma, p53, transforming growth factor β, and nuclear factor-kappa B pathways. Dysregulation of these signaling pathways in NSCLC results in abnormal cell proliferation, tissue invasion, and drug resistance while inhibiting apoptosis. Thus, understanding the roles of miRNAs in regulating these signaling pathways may enable the development of novel NSCLC treatment therapies. However, a comprehensive review of potential miRNAs in NSCLC treatment has been lacking. Therefore, this review aims to fill the gap by summarizing the up-to-date information on miRNAs regarding their targets, impact on cancer-associated pathways, and prospective outcomes in treating NSCLC. We also discuss current technologies for delivering miRNAs to the target cells, including virus-based, non-viral, and emerging extracellular vesicle-based delivery systems. This knowledge will support future studies to develop an innovative miRNA-based therapy and select a suitable carrier to treat NSCLC effectively.
Collapse
Affiliation(s)
- Mai Thi Le
- Vinmec Hi-tech Center, Vinmec Healthcare System, Hanoi, 100000, Viet Nam
- Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi, 100000, Viet Nam
| | - Huyen-Thu Nguyen
- Vinmec Hi-tech Center, Vinmec Healthcare System, Hanoi, 100000, Viet Nam
| | - Xuan-Hung Nguyen
- Vinmec Hi-tech Center, Vinmec Healthcare System, Hanoi, 100000, Viet Nam
- College of Health Sciences, Vin University, Hanoi, 100000, Viet Nam
- Vinmec-VinUni Institute of Immunology, Vinmec Healthcare System, Hanoi, 100000, Viet Nam
| | - Xuan-Hai Do
- Department of Gastroenterology, 108 Military Central Hospital, Hanoi, Viet Nam
| | - Binh Thanh Mai
- Department of Practical and Experimental Surgery, Vietnam Military Medical University, 160 Phung Hung Street, Phuc La, Ha Dong, Hanoi, Viet Nam
| | - Ha Thi Ngoc Nguyen
- Vinmec Hi-tech Center, Vinmec Healthcare System, Hanoi, 100000, Viet Nam
| | - Uyen Thi Trang Than
- Vinmec Hi-tech Center, Vinmec Healthcare System, Hanoi, 100000, Viet Nam
- Vinmec-VinUni Institute of Immunology, Vinmec Healthcare System, Hanoi, 100000, Viet Nam
| | - Thanh-Hong Nguyen
- Vinmec Hi-tech Center, Vinmec Healthcare System, Hanoi, 100000, Viet Nam
| |
Collapse
|
3
|
Sabbaghian A, Mussack V, Kirchner B, Bui MLU, Kalani MR, Pfaffl MW, Golalipour M. A panel of blood-derived miRNAs with a stable expression pattern as a potential pan-cancer detection signature. Front Mol Biosci 2022; 9:1030749. [PMID: 36589227 PMCID: PMC9798419 DOI: 10.3389/fmolb.2022.1030749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction: MicroRNAs have a significant role in the regulation of the transcriptome. Several miRNAs have been proposed as potential biomarkers in different malignancies. However, contradictory results have been reported on the capability of miRNA biomarkers in cancer detection. The human biological clock involves molecular mechanisms that regulate several genes over time. Therefore, the sampling time becomes one of the significant factors in gene expression studies. Method: In the present study, we have tried to find miRNAs with minimum fluctuation in expression levels at different time points that could be more accurate candidates as diagnostic biomarkers. The small RNA-seq raw data of ten healthy individuals across nine-time points were analyzed to identify miRNAs with stable expression. Results: We have found five oscillation patterns. The stable miRNAs were investigated in 779 small-RNA-seq datasets of eleven cancer types. All miRNAs with the highest differential expression were selected for further analysis. The selected miRNAs were explored for functional pathways. The predominantly enriched pathways were miRNA in cancer and the P53-signaling pathway. Finally, we have found seven miRNAs, including miR-142-3p, miR-199a-5p, miR-223-5p, let-7d-5p, miR-148b-3p, miR-340-5p, and miR-421. These miRNAs showed minimum fluctuation in healthy blood and were dysregulated in the blood of eleven cancer types. Conclusion: We have found a signature of seven stable miRNAs which dysregulate in several cancer types and may serve as potential pan-cancer biomarkers.
Collapse
Affiliation(s)
- Amir Sabbaghian
- Department of Molecular Medicine, Advanced Technologies Faculty, Golestan University of Medical Science, Gorgan, Iran
| | - Veronika Mussack
- Department of Animal Physiology and Immunology, TUM School of Life Sciences, Technical University of Munich, Munich, Germany
| | - Benedikt Kirchner
- Department of Animal Physiology and Immunology, TUM School of Life Sciences, Technical University of Munich, Munich, Germany
| | - Maria L. U. Bui
- Department of Animal Physiology and Immunology, TUM School of Life Sciences, Technical University of Munich, Munich, Germany
| | - Mohammad Reza Kalani
- Department of Molecular Medicine, Advanced Technologies Faculty, Golestan University of Medical Science, Gorgan, Iran
| | - Michael W. Pfaffl
- Department of Animal Physiology and Immunology, TUM School of Life Sciences, Technical University of Munich, Munich, Germany
| | - Masoud Golalipour
- Department of Molecular Medicine, Advanced Technologies Faculty, Golestan University of Medical Science, Gorgan, Iran
- Cellular and Molecular Research Center, Golestan University of Medical Science, Gorgan, Iran
| |
Collapse
|
4
|
Sohail AM, Khawar MB, Afzal A, Hassan A, Shahzaman S, Ali A. Multifaceted roles of extracellular RNAs in different diseases. Mil Med Res 2022; 9:43. [PMID: 35948986 PMCID: PMC9367134 DOI: 10.1186/s40779-022-00405-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 07/26/2022] [Indexed: 11/10/2022] Open
Abstract
Extracellular RNAs (exRNAs) are novel circulating factors that can be used as biomarkers in various diseases. Their unique and diverse kinds, as well as their role as biomarkers, make them significant biomarkers. There has been immense work carried out since the discovery of exRNAs in circulation and other biological fluids to catalog and determine whether exRNAs may be utilized as indicators for health and illness. In this review, we aim to understand the current state of exRNAs in relation to various diseases and their potential as biomarkers. We will also review current issues and challenges faced in using exRNAs, with clinical and lab trials, that can be used as viable markers for different diseases.
Collapse
Affiliation(s)
- Abdullah Muhammad Sohail
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Sciences, University of Central Punjab, Lahore, Pakistan
| | - Muhammad Babar Khawar
- Applied Molecular Biology and Biomedicine Lab, Department of Zoology, University of Narowal, Narowal, Pakistan.
| | - Ali Afzal
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Sciences, University of Central Punjab, Lahore, Pakistan
| | - Ali Hassan
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Sciences, University of Central Punjab, Lahore, Pakistan
| | - Sara Shahzaman
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Sciences, University of Central Punjab, Lahore, Pakistan
| | - Ahmed Ali
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Sciences, University of Central Punjab, Lahore, Pakistan
| |
Collapse
|
5
|
The p38 MAPK Components and Modulators as Biomarkers and Molecular Targets in Cancer. Int J Mol Sci 2021; 23:ijms23010370. [PMID: 35008796 PMCID: PMC8745478 DOI: 10.3390/ijms23010370] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/27/2021] [Accepted: 12/27/2021] [Indexed: 02/07/2023] Open
Abstract
The mitogen-activated protein kinase (MAPK) family is an important bridge in the transduction of extracellular and intracellular signals in different responses at the cellular level. Within this MAPK family, the p38 kinases can be found altered in various diseases, including cancer, where these kinases play a fundamental role, sometimes with antagonistic mechanisms of action, depending on several factors. In fact, this family has an immense number of functionalities, many of them yet to be discovered in terms of regulation and action in different types of cancer, being directly involved in the response to cancer therapies. To date, three main groups of MAPKs have been identified in mammals: the extracellular signal-regulated kinases (ERK), Jun N-terminal kinase (JNK), and the different isoforms of p38 (α, β, γ, δ). In this review, we highlight the mechanism of action of these kinases, taking into account their extensive regulation at the cellular level through various modifications and modulations, including a wide variety of microRNAs. We also analyze the importance of the different isoforms expressed in the different tissues and their possible role as biomarkers and molecular targets. In addition, we include the latest preclinical and clinical trials with different p38-related drugs that are ongoing with hopeful expectations in the present/future of developing precision medicine in cancer.
Collapse
|
6
|
MiR-1307: A comprehensive review of its role in various cancer. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Role of p53-miRNAs circuitry in immune surveillance and cancer development: A potential avenue for therapeutic intervention. Semin Cell Dev Biol 2021; 124:15-25. [PMID: 33875349 DOI: 10.1016/j.semcdb.2021.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/07/2021] [Accepted: 04/02/2021] [Indexed: 12/16/2022]
Abstract
The genome's guardian, p53, is a master regulatory transcription factor that occupies sequence-specific response elements in many genes and modulates their expression. The target genes transcribe both coding RNA and non-coding RNA involved in regulating several biological processes such as cell division, differentiation, and cell death. Besides, p53 also regulates tumor immunology via regulating the molecules related to the immune response either directly or via regulating other molecules, including microRNAs (miRNAs). At the post-transcriptional level, the regulations of genes by miRNAs have been an emerging mechanism. Interestingly, p53 and various miRNAs cross-talk at different regulation levels. The cross-talk between p53 and miRNAs creates loops, turns, and networks that can influence cell metabolism, cell fate, cellular homeostasis, and tumor formation. Further, p53-miRNAs circuit has also been insinuated in the regulation of immune surveillance machinery. There are several examples of p53-miRNAs circuitry where p53 regulates immunomodulatory miRNA expression, such as miR-34a and miR-17-92. Similarly, a reverse process occurs in which miRNAs such as miR-125b and miR-let-7 regulate the expression of p53. Thus, the p53-miRNAs circuitry connects the immunomodulatory pathways and may shift the pro-inflammatory balance towards the pro-tumorigenic condition. In this review, we discuss the influence of p53-miRNAs circuitry in modulating the immune response in cancer development. We assume that thorough studies on the p53-miRNAs circuitry in various cancers may prove useful in developing effective new cancer therapeutics for successfully combating this disease.
Collapse
|
8
|
Asl ER, Amini M, Najafi S, Mansoori B, Mokhtarzadeh A, Mohammadi A, Lotfinejad P, Bagheri M, Shirjang S, Lotfi Z, Rasmi Y, Baradaran B. Interplay between MAPK/ERK signaling pathway and MicroRNAs: A crucial mechanism regulating cancer cell metabolism and tumor progression. Life Sci 2021; 278:119499. [PMID: 33865878 DOI: 10.1016/j.lfs.2021.119499] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/29/2021] [Accepted: 04/07/2021] [Indexed: 02/06/2023]
Abstract
Mitogen-activated protein kinase (MAPK) signal transduction, as a highly conserved signaling pathway, is reported to be involved in various biological events, including metabolic reprogramming, cell proliferation, survival, and differentiation. Mutations in key molecules involved in MAPK/ERK signaling and dysregulation of this pathway are very common events in various human malignancies, which make the MAPK signaling a crucial signaling pathway participating in the regulation of glucose uptake by malignant cells and tumorigenesis. MicroRNAs (miRNAs), as small non-coding RNAs, are critical regulators of gene expression that play key roles in cancer initiation and progression. On the other hand, these small RNAs mutually regulate the MAPK signaling which is often overexpressed in the case of cancer progression; suggesting that crosstalk between miRNAs and this signaling pathway plays a pivotal role in the development of human cancers. Some miRNAs such as miR-20b, miR-34c-3p, miR-152, miR-181a, and miR-302b through inhibiting MAPK signaling, and miR-193a-3p, miR-330-3p, and miR-592 by activating this signaling pathway, play imperative roles in tumorigenesis. Therefore, in this review, we aimed to focus on the interplay between miRNAs and MAPK signaling in the various steps of tumorigenesis, including metabolic regulation, cell proliferation, apoptosis, metastasis, angiogenesis, and drug resistance.
Collapse
Affiliation(s)
- Elmira Roshani Asl
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Souzan Najafi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.; Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark.; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Mohammadi
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Parisa Lotfinejad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences
| | - Mehdi Bagheri
- Department of Biology, Khorasan Razavi Science and Research Branch, Islamic Azad University, Neyshabur, Iran
| | - Solmaz Shirjang
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ziba Lotfi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yousef Rasmi
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.; Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran..
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran..
| |
Collapse
|
9
|
Rishabh K, Khadilkar S, Kumar A, Kalra I, Kumar AP, Kunnumakkara AB. MicroRNAs as Modulators of Oral Tumorigenesis-A Focused Review. Int J Mol Sci 2021; 22:ijms22052561. [PMID: 33806361 PMCID: PMC7961687 DOI: 10.3390/ijms22052561] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 12/23/2022] Open
Abstract
Oral cancers constitute the majority of head and neck tumors, with a relatively high incidence and poor survival rate in developing countries. While the five-year survival rates of the oral cancer patients have increased to 65%, the overall survival for advanced stages has been at 27% for the past ten years, emphasizing the necessity for further understanding the etiology of the disease, diagnosis, and formulating possible novel treatment regimens. MicroRNAs (miRNAs), a family of small non-coding RNA, have emerged as master modulators of gene expression in various cellular and biological process. Aberrant expression of these dynamic molecules has been associated with many human diseases, including oral cancers. The deregulated miRNAs have been shown to control various oncogenic processes, including sustaining proliferative signaling, evading growth suppressors, resisting cell death activating invasion and metastasis, and inducing angiogenesis. Hence, the aberrant expression of miRNAs associated with oral cancers, makes them potential candidates for the investigation of functional markers, which will aid in the differential diagnosis, prognosis, and development of novel therapeutic regimens. This review presents a holistic insight into our understanding of the role of miRNAs in regulating various hallmarks of oral tumorigenesis.
Collapse
Affiliation(s)
- Kumar Rishabh
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam 781039, India; (K.R.); (S.K.); (A.K.); (I.K.)
| | - Soham Khadilkar
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam 781039, India; (K.R.); (S.K.); (A.K.); (I.K.)
| | - Aviral Kumar
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam 781039, India; (K.R.); (S.K.); (A.K.); (I.K.)
| | - Ishu Kalra
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam 781039, India; (K.R.); (S.K.); (A.K.); (I.K.)
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
- National University Cancer Institute, National University Health System, Singapore 119074, Singapore
- Correspondence: authors: (A.P.K.); (A.B.K.)
| | - Ajaikumar B. Kunnumakkara
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam 781039, India; (K.R.); (S.K.); (A.K.); (I.K.)
- Correspondence: authors: (A.P.K.); (A.B.K.)
| |
Collapse
|
10
|
Zhou Y, Yuan Y, Li L, Wang X, Quan Y, Liu C, Yu M, Hu X, Meng X, Zhou Z, Zhang CY, Chen X, Liu M, Wang C. HER2-intronic miR-4728-5p facilitates HER2 expression and accelerates cell proliferation and migration by targeting EBP1 in breast cancer. PLoS One 2021; 16:e0245832. [PMID: 33529238 PMCID: PMC7853520 DOI: 10.1371/journal.pone.0245832] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 01/09/2021] [Indexed: 11/18/2022] Open
Abstract
HER2 amplification greatly contributes to the tumorigenesis of multiple cancers. Intronic miR-4728-5p is transcribed along with its host gene HER2. However, little is known about the role of miR-4728-5p in cancer. This study aims to elucidate the potential role of miR-4728-5p and the underlying mechanism in breast cancer. Kaplan-Meier analysis showed that higher expression of HER2 led to worse survival outcomes in breast cancer patients. The TCGA dataset revealed that compared to normal breast tissues, HER2 and miR-4728-5p levels were significantly upregulated in breast cancer tissues with a positive correlation. In functional assays, miR-4728-5p was confirmed to promote the proliferation and migration in breast cancer cell BT474. EBP1 was identified as a direct target of miR-4728-5p via bioinformatics and luciferase reporter assays. miR-4728-5p was further demonstrated to increase HER2 expression and promote cell proliferation and migration by directly inhibiting EBP1 in breast cancer. Taken together, the HER2-intronic miR-4728-5p/EBP1/HER2 feedback loop plays an important role in promoting breast cancer cell proliferation and migration. Our study provides novel insights for targeted therapies of breast cancer.
Collapse
Affiliation(s)
- Yu Zhou
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Yuan Yuan
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Liuyi Li
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Xueliang Wang
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Yimin Quan
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Chunyu Liu
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Mengchao Yu
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Xiuting Hu
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Xiangfeng Meng
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Zhen Zhou
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Chen-Yu Zhang
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Xi Chen
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Minghui Liu
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
- * E-mail: (CW); (LM)
| | - Chen Wang
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
- * E-mail: (CW); (LM)
| |
Collapse
|
11
|
Hashemi A, Gorji-Bahri G. MicroRNA: Promising Roles in Cancer Therapy. Curr Pharm Biotechnol 2020; 21:1186-1203. [PMID: 32310047 DOI: 10.2174/1389201021666200420101613] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/17/2020] [Accepted: 03/31/2020] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNA) are small non-coding RNAs that act as one of the main regulators of gene expression. They are involved in maintaining a proper balance of diverse processes, including differentiation, proliferation, and cell death in normal cells. Cancer biology can also be affected by these molecules by modulating the expression of oncogenes or tumor suppressor genes. Thus, miRNA based anticancer therapy is currently being developed either alone or in combination with chemotherapy agents used in cancer management, aiming at promoting tumor regression and increasing cure rate. Access to large quantities of RNA agents can facilitate RNA research and development. In addition to currently used in vitro methods, fermentation-based approaches have recently been developed, which can cost-effectively produce biological RNA agents with proper folding needed for the development of RNA-based therapeutics. Nevertheless, a major challenge in translating preclinical studies to clinical for miRNA-based cancer therapy is the efficient delivery of these agents to target cells. Targeting miRNAs/anti-miRNAs using antibodies and/or peptides can minimize cellular and systemic toxicity. Here, we provide a brief review of miRNA in the following aspects: biogenesis and mechanism of action of miRNAs, the role of miRNAs in cancer as tumor suppressors or oncogenes, the potential of using miRNAs as novel and promising therapeutics, miRNA-mediated chemo-sensitization, and currently utilized methods for the in vitro and in vivo production of RNA agents. Finally, an update on the viral and non-viral delivery systems is addressed.
Collapse
Affiliation(s)
- Atieh Hashemi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gilar Gorji-Bahri
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Yao S, Yin Y, Jin G, Li D, Li M, Hu Y, Feng Y, Liu Y, Bian Z, Wang X, Mao Y, Zhang J, Wu Z, Huang Z. Exosome-mediated delivery of miR-204-5p inhibits tumor growth and chemoresistance. Cancer Med 2020; 9:5989-5998. [PMID: 32618144 PMCID: PMC7433811 DOI: 10.1002/cam4.3248] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/15/2020] [Accepted: 06/02/2020] [Indexed: 12/15/2022] Open
Abstract
Background Nano‐sized extracellular vesicles secreted by cells play key roles in intercellular crosstalk, and appear to be an excellent biocompatible material as therapeutic cargoes in vivo. Previously, we have demonstrated that miR‐204‐5p is a key tumor suppressor that could inhibit tumor growth, metastasis and chemoresistance. Methods A HEK293T cell line stably expressing miR‐204‐5p (293T‐miR‐204) was constructed by lentivirus transduction. Fluorescence real‐time quantitative PCR (qPCR) was applied to measure the expression of miR‐204‐5p. CCK‐8 and colony formation assays were used to evaluate the in vitro anticancer effects, and the flow cytometry was used to detect apoptosis. The in vivo therapeutic effects of exosomal miR‐204‐5p were evaluated using a xenograft mouse model. Western blots were used to detect the protein levels of CD63, Flotillin‐2, RAB22A and Bcl2. The protein levels of RAB22A and Bcl2 in tumor tissues were measured by immunohistochemistry staining. Results MiR‐204‐5p was clearly upregulated in CRC cells after coculturing with 293T‐miR‐204 cell‐derived conditioned medium (CM) or exosomes. CCK‐8 and colony formation assays showed that the cell proliferation ability of CRC cells was clearly inhibited by 293T‐miR‐204 cell‐derived CM or exosomes. The inhibitory effects of exosomal miR‐204‐5p on cell proliferation were further confirmed in other types of cancers. Exosomal miR‐204‐5p could induce apoptosis and increase the sensitivity of cancer cells to the chemotherapeutic drug—5‐fluorourcil. In addition, exosomal miR‐204‐5p inhibited the tumor growth in mice. Western blot assay and IHC staining showed that the protein levels of miR‐204‐5p targets were clearly decreased in cancer cells or xenograft tissues treated with exosomal miR‐204‐5p. Conclusions In this study, we confirmed that exosomal miR‐204‐5p could efficiently inhibit cancer cell proliferation, induce apoptosis and increase chemosensitivity by specifically suppressing the target genes of miR‐204‐5p in human cancer cells.
Collapse
Affiliation(s)
- Surui Yao
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China.,Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Yuan Yin
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China.,Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Guoying Jin
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China.,Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Dan Li
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Min Li
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China.,Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Yaling Hu
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China.,Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Yuyang Feng
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China.,Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Yuhang Liu
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China.,Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Zehua Bian
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China.,Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Xue Wang
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China.,Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Yong Mao
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Jia Zhang
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China.,Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Zhimeng Wu
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Zhaohui Huang
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China.,Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|