1
|
Lavis P, Garabet A, Cardozo AK, Bondue B. The fibroblast activation protein alpha as a biomarker of pulmonary fibrosis. Front Med (Lausanne) 2024; 11:1393778. [PMID: 39364020 PMCID: PMC11446883 DOI: 10.3389/fmed.2024.1393778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 08/30/2024] [Indexed: 10/05/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a rare, chronic, and progressive interstitial lung disease with an average survival of approximately 3 years. The evolution of IPF is unpredictable, with some patients presenting a relatively stable condition with limited progression over time, whereas others deteriorate rapidly. In addition to IPF, other interstitial lung diseases can lead to pulmonary fibrosis, and up to a third have a progressive phenotype with the same prognosis as IPF. Clinical, biological, and radiological risk factors of progression were identified, but no specific biomarkers of fibrogenesis are currently available. A recent interest in the fibroblast activation protein alpha (FAPα) has emerged. FAPα is a transmembrane serine protease with extracellular activity. It can also be found in a soluble form, also named anti-plasmin cleaving enzyme (APCE). FAPα is specifically expressed by activated fibroblasts, and quinoline-based specific inhibitors (FAPI) were developed, allowing us to visualize its distribution in vivo by imaging techniques. In this review, we discuss the use of FAPα as a useful biomarker for the progression of lung fibrosis, by both its assessment in human fluids and/or its detection by imaging techniques and immunohistochemistry.
Collapse
Affiliation(s)
- Philomène Lavis
- Department of Pathology, Hôpital universitaire de Bruxelles, Université libre de Bruxelles, Brussels, Belgium
- IRIBHM, Université libre de Bruxelles, Brussels, Belgium
| | - Ani Garabet
- Inflammation and Cell Death Signalling Group, Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, Brussels, Belgium
| | - Alessandra Kupper Cardozo
- Inflammation and Cell Death Signalling Group, Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, Brussels, Belgium
| | - Benjamin Bondue
- IRIBHM, Université libre de Bruxelles, Brussels, Belgium
- Department of Pneumology, Hôpital universitaire de Bruxelles, Université libre de Bruxelles, Brussels, Belgium
- European Reference Network for Rare Pulmonary Diseases (ERN-LUNG), Frankfurt, Germany
| |
Collapse
|
2
|
Lavis P, Pingitore J, Doumont G, Garabet A, Van Simaeys G, Lacroix S, Passon N, Van Heymbeek C, De Maeseneire C, Allard J, Collin A, Huaux F, Decaestecker C, Salmon I, Goldman S, Cardozo AK, Bondue B. Usefulness of FAPα assessment in bronchoalveolar lavage as a marker of fibrogenesis: results of a preclinical study and first report in patients with idiopathic pulmonary fibrosis. Respir Res 2023; 24:254. [PMID: 37880678 PMCID: PMC10601150 DOI: 10.1186/s12931-023-02556-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/05/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND Fibroblast activation protein-α (FAPα) is a marker of activated fibroblasts that can be selectively targeted by an inhibitor (FAPI) and visualised by PET/CT imaging. We evaluated whether the measurement of FAPα in bronchoalveolar lavage fluids (BALF) and the uptake of FAPI by PET/CT could be used as biomarkers of fibrogenesis. METHODS The dynamics of lung uptake of 18F-labeled FAPI ([18F]FAPI-74) was assessed in the bleomycin mouse model at various time points and using different concentrations of bleomycin by PET/CT. FAPα was measured in BALFs from these bleomycin-treated and control mice. FAPα levels were also assessed in BALFs from controls and patients with idiopathic pulmonary fibrosis (IPF). RESULTS Bleomycin-treated mice presented a significantly higher uptake of [18F]FAPI-74 during lung fibrinogenesis (days 10 and 16 after instillation) compared to control mice. No significant difference was observed at initial inflammatory phase (3 days) and when fibrosis was already established (28 days). [18F]FAPI-74 tracer was unable to show a dose-response to bleomycin treatment. On the other hand, BALF FAPα levels were steeply higher in bleomycin-treated mice at day 10 and a significant dose-response effect was observed. Moreover, FAPα levels were strongly correlated with lung fibrosis as measured by the modified Aschroft histological analysis, hydroxyproline and the percentage of weight loss. Importantly, higher levels of FAPα were observed in IPF patients where the disease was progressing as compared to stable patients and controls. Moreover, patients with FAPα BALF levels higher than 192.5 pg/mL presented a higher risk of progression, transplantation or death compared to patients with lower levels. CONCLUSIONS Our preclinical data highlight a specific increase of [18F]FAPI-74 lung uptake during the fibrotic phase of the bleomycin murine model. The measurement of FAPα in BALF appears to be a promising marker of the fibrotic activity in preclinical models of lung fibrosis and in IPF patients. Further studies are required to confirm the role of FAPα in BALF as biomarker of IPF activity and assess the relationship between FAPα levels in BALF and [18F]FAPI-74 uptake on PET/CT in patients with fibrotic lung disease.
Collapse
Affiliation(s)
- Philomène Lavis
- Department of Pathology, Hôpital universitaire de Bruxelles (Hôpital Erasme), Université libre de Bruxelles, Brussels, Belgium
- I.R.I.B.H.M, Université libre de Bruxelles, Brussels, Belgium
| | - Julien Pingitore
- Department of Pneumology, Hôpital universitaire de Bruxelles (Hôpital Erasme), Université libre de Bruxelles, Brussels, Belgium
| | - Gilles Doumont
- Center for Microscopy and Molecular Imaging, Université libre de Bruxelles, Brussels, Belgium
| | - Ani Garabet
- Inflammation and Cell Death Signalling group, Experimental Gastroenterology Laboratory and Endotools, Université libre de Bruxelles, Brussels, Belgium
| | - Gaetan Van Simaeys
- Center for Microscopy and Molecular Imaging, Université libre de Bruxelles, Brussels, Belgium
- Department of Nuclear Medicine, Hôpital universitaire de Bruxelles (Hôpital Erasme), Université libre de Bruxelles, Brussels, Belgium
| | - Simon Lacroix
- Center for Microscopy and Molecular Imaging, Université libre de Bruxelles, Brussels, Belgium
- Department of Nuclear Medicine, Hôpital universitaire de Bruxelles (Hôpital Erasme), Université libre de Bruxelles, Brussels, Belgium
| | - Nicolas Passon
- Center for Microscopy and Molecular Imaging, Université libre de Bruxelles, Brussels, Belgium
| | - Christophe Van Heymbeek
- Center for Microscopy and Molecular Imaging, Université libre de Bruxelles, Brussels, Belgium
| | - Coraline De Maeseneire
- Center for Microscopy and Molecular Imaging, Université libre de Bruxelles, Brussels, Belgium
| | - Justine Allard
- Center for Microscopy and Molecular Imaging, Université libre de Bruxelles, Brussels, Belgium
| | - Amandine Collin
- Center for Microscopy and Molecular Imaging, Université libre de Bruxelles, Brussels, Belgium
| | - François Huaux
- Louvain Centre for Toxicology and Applied Pharmacology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Christine Decaestecker
- Center for Microscopy and Molecular Imaging, Université libre de Bruxelles, Brussels, Belgium
- Laboratory of Image Synthesis and Analysis, Université libre de Bruxelles, Brussels, Belgium
| | - Isabelle Salmon
- Department of Pathology, Hôpital universitaire de Bruxelles (Hôpital Erasme), Université libre de Bruxelles, Brussels, Belgium
- Center for Microscopy and Molecular Imaging, Université libre de Bruxelles, Brussels, Belgium
- Centre Universitaire inter Régional d'expertise en Anatomie Pathologique Hospitalière, Jumet, Belgium
| | - Serge Goldman
- Center for Microscopy and Molecular Imaging, Université libre de Bruxelles, Brussels, Belgium
- Department of Nuclear Medicine, Hôpital universitaire de Bruxelles (Hôpital Erasme), Université libre de Bruxelles, Brussels, Belgium
| | - Alessandra Kupper Cardozo
- Inflammation and Cell Death Signalling group, Experimental Gastroenterology Laboratory and Endotools, Université libre de Bruxelles, Brussels, Belgium
| | - Benjamin Bondue
- I.R.I.B.H.M, Université libre de Bruxelles, Brussels, Belgium.
- Department of Pneumology, Hôpital universitaire de Bruxelles (Hôpital Erasme), Université libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
3
|
Choi K, Park JS, Kwon YS, Park SH, Kim HJ, Noh H, Won KS, Song BI, Kim HW. Development of lung cancer risk prediction models based on F-18 FDG PET images. Ann Nucl Med 2023; 37:572-582. [PMID: 37458983 DOI: 10.1007/s12149-023-01858-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/09/2023] [Indexed: 09/21/2023]
Abstract
OBJECTIVE We aimed to evaluate whether the degree of F-18 fluorodeoxyglucose (FDG) uptake in the lungs is associated with an increased risk of lung cancer and to develop lung cancer risk prediction models using metabolic parameters on F-18 FDG positron emission tomography (PET). METHODS We retrospectively included 795 healthy individuals who underwent F-18 FDG PET/CT scans for a health check-up. Individuals who developed lung cancer within 5 years of the PET/CT scan were classified into the lung cancer group (n = 136); those who did not were classified into the control group (n = 659). The healthy individuals were then randomly assigned to either the training (n = 585) or validation sets (n = 210). Clinical factors including age, sex, body mass index (BMI), and smoking history were collected. The standardized uptake value ratio (SUVR) and metabolic heterogeneity (MH) index were obtained for the bilateral lungs. Logistic regression models including clinical factors, SUVR, and MH index were generated to quantify the probability of lung cancer development using a training set. The prediction models were validated using a validation set. RESULTS The lung SUVR and lung MH index in the lung cancer group were significantly higher than in the control group (p < 0.001 and p < 0.001, respectively). In the combined prediction model 1, age, sex, BMI, smoking history, and lung SUVR were significantly associated with lung cancer development (age: OR 1.07, p < 0.001; male: OR 2.08, p = 0.015; BMI: OR 0.93, p = 0.057; current or past smoker: OR 5.60, p < 0.001; lung SUVR: OR 1.13, p < 0.001). In the combined prediction model 2, age, sex, BMI, smoking history, and lung MH index showed a significant association with lung cancer development (age: OR 1.06, p < 0.001; male: OR 1.87, p = 0.045; BMI: OR 0.93, p = 0.010; current or past smoker: OR 4.78, p < 0.001; lung MH index: OR 1.33, p < 0.001). In the validation data, combined prediction models 1 and 2 exhibited very good discrimination [area under the receiver operator curve (AUC): 0.867 and 0.901, respectively]. CONCLUSIONS The metabolic parameters on F-18 FDG PET are related to an increased risk of lung cancer. Metabolic parameters can be used as biomarkers to provide information independent of the clinical parameters, related to lung cancer risk.
Collapse
Affiliation(s)
- Kaeum Choi
- Department of Nuclear Medicine, Keimyung University Dongsan Hospital, 1035 Dalgubeol-daero, Sindang-dong, Dalseo-gu, Daegu, Republic of Korea
| | - Jae Seok Park
- Department of Internal Medicine, Keimyung University Dongsan Hospital, Daegu, Republic of Korea
| | - Yong Shik Kwon
- Department of Internal Medicine, Keimyung University Dongsan Hospital, Daegu, Republic of Korea
| | - Sun Hyo Park
- Department of Internal Medicine, Keimyung University Dongsan Hospital, Daegu, Republic of Korea
| | - Hyun Jung Kim
- Department of Internal Medicine, Keimyung University Dongsan Hospital, Daegu, Republic of Korea
| | - Hyunju Noh
- Department of Nursing, Cheju Halla University, Cheju, Republic of Korea
| | - Kyoung Sook Won
- Department of Nuclear Medicine, Keimyung University Dongsan Hospital, 1035 Dalgubeol-daero, Sindang-dong, Dalseo-gu, Daegu, Republic of Korea
| | - Bong-Il Song
- Department of Nuclear Medicine, Keimyung University Dongsan Hospital, 1035 Dalgubeol-daero, Sindang-dong, Dalseo-gu, Daegu, Republic of Korea
| | - Hae Won Kim
- Department of Nuclear Medicine, Keimyung University Dongsan Hospital, 1035 Dalgubeol-daero, Sindang-dong, Dalseo-gu, Daegu, Republic of Korea.
| |
Collapse
|
4
|
Isser S, Maurer A, Reischl G, Schaller M, Gonzalez-Menendez I, Quintanilla-Martinez L, Gawaz M, Pichler BJ, Beziere N. Radiolabeled GPVI-Fc for PET Imaging of Multiple Extracellular Matrix Fibers: A New Look into Pulmonary Fibrosis Progression. J Nucl Med 2023; 64:940-945. [PMID: 36702555 PMCID: PMC10241016 DOI: 10.2967/jnumed.122.264552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 01/09/2023] [Accepted: 01/09/2023] [Indexed: 01/28/2023] Open
Abstract
Invariably fatal and with a particularly fast progression, pulmonary fibrosis (PF) is currently devoid of curative treatment options. Routine clinical diagnosis relies on breathing tests and visualizing the changes in lung structure by CT, but anatomic information is often not sufficient to identify early signs of progressive PF. For more efficient diagnosis, additional imaging techniques were investigated in combination with CT, such as 18F-FDG PET, although with limited success because of lack of disease specificity. Therefore, novel molecular targets enabling specific diagnosis are investigated, in particular for molecular imaging techniques. Methods: In this study, we used a 64Cu-radiolabeled platelet glycoprotein VI fusion protein (64Cu-GPVI-Fc) targeting extracellular matrix (ECM) fibers as a PET tracer to observe longitudinal ECM remodeling in a bleomycin-induced PF mouse model. Results: 64Cu-GPVI-Fc showed significant uptake in fibrotic lungs, matching histology results. Contrary to 18F-FDG PET measurements, 64Cu-GPVI-Fc uptake was linked entirely to the fibrotic activity of tissue and not was susceptible to inflammation. Conclusion: Our study highlights 64Cu-GPVI-Fc as a specific tracer for ECM remodeling in PF, with clear therapy-monitoring and clinical translation potential.
Collapse
Affiliation(s)
- Simon Isser
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Andreas Maurer
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University of Tübingen, Tübingen, Germany
- Cluster of Excellence EXC 2180, "Image Guided and Functionally Instructed Tumor Therapies," Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Gerald Reischl
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University of Tübingen, Tübingen, Germany
- Cluster of Excellence EXC 2180, "Image Guided and Functionally Instructed Tumor Therapies," Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Martin Schaller
- Department of Dermatology, University Medical Center, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Irene Gonzalez-Menendez
- Cluster of Excellence EXC 2180, "Image Guided and Functionally Instructed Tumor Therapies," Eberhard Karls University of Tübingen, Tübingen, Germany
- Institute of Pathology and Neuropathology, Comprehensive Cancer Center, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Leticia Quintanilla-Martinez
- Cluster of Excellence EXC 2180, "Image Guided and Functionally Instructed Tumor Therapies," Eberhard Karls University of Tübingen, Tübingen, Germany
- Institute of Pathology and Neuropathology, Comprehensive Cancer Center, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Meinrad Gawaz
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University of Tübingen, Tübingen, Germany; and
| | - Bernd J Pichler
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University of Tübingen, Tübingen, Germany
- Cluster of Excellence EXC 2180, "Image Guided and Functionally Instructed Tumor Therapies," Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Nicolas Beziere
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University of Tübingen, Tübingen, Germany;
- Cluster of Excellence EXC 2124, "Controlling Microbes to Fight Infections," Eberhard Karls University of Tübingen, Tübingen, Germany
| |
Collapse
|
5
|
Broens B, Duitman JW, Zwezerijnen GJC, Nossent EJ, van der Laken CJ, Voskuyl AE. Novel tracers for molecular imaging of interstitial lung disease: A state of the art review. Autoimmun Rev 2022; 21:103202. [PMID: 36150433 DOI: 10.1016/j.autrev.2022.103202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/16/2022] [Indexed: 12/14/2022]
Abstract
Interstitial lung disease is an overarching term for a wide range of disorders characterized by inflammation and/or fibrosis in the lungs. Most prevalent forms, among others, include idiopathic pulmonary fibrosis (IPF) and connective tissue disease associated interstitial lung disease (CTD-ILD). Currently, only disease modifying treatment options are available for IPF and progressive fibrotic CTD-ILD, leading to reduction or stabilization in the rate of lung function decline at best. Management of these patients would greatly advance if we identify new strategies to improve (1) early detection of ILD, (2) predicting ILD progression, (3) predicting response to therapy and (4) understanding pathophysiology. Over the last years, positron emission tomography (PET) and single photon emission computed tomography (SPECT) have emerged as promising molecular imaging techniques to improve ILD management. Both are non-invasive diagnostic tools to assess molecular characteristics of an individual patient with the potential to apply personalized treatment. In this review, we encompass the currently available pre-clinical and clinical studies on molecular imaging with PET and SPECT in IPF and CTD-ILD. We provide recommendations for potential future clinical applications of these tracers and directions for future research.
Collapse
Affiliation(s)
- Bo Broens
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Rheumatology and Clinical Immunology, De Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Infection & Immunity, Inflammatory diseases, Amsterdam, the Netherlands.
| | - Jan-Willem Duitman
- Amsterdam Infection & Immunity, Inflammatory diseases, Amsterdam, the Netherlands; Amsterdam UMC location University of Amsterdam, Department of Pulmonary Medicine, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam UMC location University of Amsterdam, Experimental Immunology (EXIM), Meibergdreef 9, Amsterdam, the Netherlands.
| | - Gerben J C Zwezerijnen
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, De Boelelaan 1117, Amsterdam, the Netherlands.
| | - Esther J Nossent
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Pulmonary Medicine, De Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences Research Institute, Amsterdam, the Netherlands..
| | - Conny J van der Laken
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Rheumatology and Clinical Immunology, De Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Infection & Immunity, Inflammatory diseases, Amsterdam, the Netherlands.
| | - Alexandre E Voskuyl
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Rheumatology and Clinical Immunology, De Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Infection & Immunity, Inflammatory diseases, Amsterdam, the Netherlands.
| |
Collapse
|
6
|
Yoon HY, Lee SH, Ha S, Ryu JS, Song JW. The Value of 18F-FDG PET/CT in Evaluating Disease Severity and Prognosis in Idiopathic Pulmonary Fibrosis Patients. J Korean Med Sci 2021; 36:e257. [PMID: 34697928 PMCID: PMC8546311 DOI: 10.3346/jkms.2021.36.e257] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/30/2021] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Several parameters are useful for assessing disease severity in idiopathic pulmonary fibrosis (IPF); however, the role of 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) is not well-defined. We aimed to evaluate the value of 18F-FDG PET/CT for assessing disease severity and prognosis in IPF patients. METHODS Clinical data of 89 IPF patients (mean age: 68.1 years, male: 94%) who underwent 18F-FDG PET/CT for evaluation of lung nodules or cancer staging were retrospectively reviewed. Mean and maximal standardized uptake values (SUVmean, SUVmax, respectively) were measured in the fibrotic area. Adjusted SUV, including SUV ratio (SUVR, defined as SUVmax-to-liver SUVmean ratio), tissue fraction-corrected SUVmean (SUVmeanTF), and SUVR (SUVRTF), and tissue-to-blood ratio (SUVmax/SUVmean venous; TBRblood) were obtained. Death was defined as the primary outcome, and associations between other clinical parameters (lung function, exercise capacity, C-reactive protein [CRP] level) were also investigated. RESULTS All SUV parameters were inversely correlated with the forced vital capacity, diffusing capacity for carbon monoxide, and positively correlated with CRP level and the gender-age-physiology index. The SUVmean, SUVmax, and SUVmeanTF were associated with changes in lung function at six months. The SUVR (hazard ratio [HR], 1.738; 95% confidence interval [CI], 1.011-2.991), SUVRTF (HR, 1.441; 95% CI, 1.000-2.098), and TBRblood (HR, 1.377; 95% CI, 1.038-1.827) were significant predictors for mortality in patients with IPF in the univariate analysis, but not in the multivariate analysis. CONCLUSION 18F-FDG PET/CT may provide additional information on the disease severity and prognosis in IPF patients, and the SUVR may be superior to other SUV parameters.
Collapse
Affiliation(s)
- Hee-Young Yoon
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Suk Hyun Lee
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
- Division of Nuclear Medicine, Department of Radiology, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Sejin Ha
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jin-Sook Ryu
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jin Woo Song
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| |
Collapse
|
7
|
18F-FDG PET/CT predicts acute exacerbation in idiopathic pulmonary fibrosis after thoracic surgery. BMC Pulm Med 2021; 21:294. [PMID: 34530787 PMCID: PMC8447514 DOI: 10.1186/s12890-021-01659-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 09/01/2021] [Indexed: 11/29/2022] Open
Abstract
Background Acute exacerbation (AE) is the most lethal postoperative complication in idiopathic pulmonary fibrosis (IPF); however, prediction before surgery is difficult. We investigated the role of 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) in predicting postoperative AE in IPF. Method Clinical data of 48 IPF patients who underwent 18F-FDG PET/CT before thoracic surgery were retrospectively analyzed. Mean and maximal standardized uptake values (SUVmean and SUVmax, respectively) were measured in the fibrotic area. Additionally, adjusted values-SUV ratio (SUVR, defined as SUVmax-to-liver SUVmean ratio), tissue fraction-corrected SUVmean (SUVmeanTF), and SUVR (SUVRTF)-were calculated. Results The mean age of the subjects was 67.8 years and 91.7% were male. After thoracic surgery, 21 (43.8%) patients experienced postoperative complications including prolonged air leakage (29.2%), death (14.6%), and AE (12.5%) within 30 days. Patients who experienced AE showed higher SUVmax, SUVR, SUVmeanTF, and SUVRTF than those who did not, but other clinical parameters were not different between patients with and without AE. The SUV parameters did not differ for other complications. The SUVR (odds ratio [OR] 29.262; P = 0.030), SUVmeanTF (OR 3.709; P = 0.041) and SUVRTF (OR 20.592; P = 0.017) were significant predicting factors for postoperative AE following a multivariate logistic regression analysis. On receiver operating characteristics curve analysis, SUVRTF had the largest area under the curve (0.806, P = 0.007) for predicting postoperative AE among SUV parameters. Conclusions Our findings suggest that 18F-FDG PET/CT may be useful in predicting postoperative AE in IPF patients and among SUVs, SUVRTF is the best parameter for predicting postoperative AE in IPF patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12890-021-01659-4.
Collapse
|