1
|
Almukhtar A, Batcup C, Bowman M, Winter Beatty J, Leff D, Demirel P, Judah G, Porat T. Interventions to achieve environmentally sustainable operating theatres: an umbrella systematic review using the behaviour change wheel. Int J Surg 2024; 110:7245-7267. [PMID: 39093843 PMCID: PMC11573083 DOI: 10.1097/js9.0000000000001951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/07/2024] [Indexed: 08/04/2024]
Abstract
INTRODUCTION The healthcare sector is a major contributor to the climate crisis and operating theatres (OTs) are one of the highest sources of emissions. To inform emissions reduction, this study aimed to (i) compare the outcomes of interventions targeting sustainable behaviours in OTs using the Triple Bottom Line framework, (ii) categorise the intervention strategies using the five Rs (reduce, recycle, reuse, refuse, and renew) of circular economy, and (iii) examine intervention functions (IFs) using the Behaviour Change Wheel (BCW). METHODS Medline, Embase, PsychInfo, Scopus, and Web of Science databases were searched until June 2023 using the concepts: sustainability and surgery. The review was conducted in line with the Cochrane and Joanna Briggs Institution's recommendations and was registered on PROSPERO. The results were reported in line with Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) (Supplemental Digital Content 1, http://links.lww.com/JS9/D210 ) guidelines. RESULTS Sixteen reviews encompassing 43 life-cycle analyses, 30 interventions, 5 IFs, and 9 BCW policy categories were included. 28/30 (93%) interventions successfully led to sustainability improvements; however, the environmental outcomes were not suitable for meaningful comparisons due to their using different metrics and dependence on local factors. The 'reduce' strategy was the most prolific and commonly achieved through 'education' and/or 'environmental restructuring'. However, single-session educational interventions were ineffective. Improving recycling relied on 'environmental restructuring'. More intensive strategies such as 'reuse' require multiple intervention functions to achieve, either through a sustainability committee or through an intervention package. CONCLUSION Policymakers must examine interventions within the local context. Comparing the outcomes of different interventions is difficult and could potentially be misleading, highlighting the need for a tool integrating diverse outcomes and contextual factors. 'Reduce' strategy guarantees environmental and financial savings, and can be achieved through 'Education' and/or 'environmental restructuring'.
Collapse
Affiliation(s)
- Aws Almukhtar
- Department of General Surgery, Imperial College Healthcare NHS Trust, St Mary’s Hospital
- Department of Surgery and Cancer, Imperial College London, St Mary’s Hospital, 10th Floor Queen Elizabeth Queen Mother Building
| | - Carys Batcup
- Dyson School of Design Engineering, Imperial College London
| | - Miranda Bowman
- Department of Breast Surgery, Imperial College Healthcare NHS Trust, Charing Cross Hospital, London, UK
| | - Jasmine Winter Beatty
- Department of Surgery and Cancer, Imperial College London, St Mary’s Hospital, 10th Floor Queen Elizabeth Queen Mother Building
| | - Daniel Leff
- Department of Surgery and Cancer, Imperial College London, St Mary’s Hospital, 10th Floor Queen Elizabeth Queen Mother Building
- Department of Breast Surgery, Imperial College Healthcare NHS Trust, Charing Cross Hospital, London, UK
| | - Pelin Demirel
- Dyson School of Design Engineering, Imperial College London
| | - Gaby Judah
- Department of Surgery and Cancer, Imperial College London, St Mary’s Hospital, 10th Floor Queen Elizabeth Queen Mother Building
| | - Talya Porat
- Dyson School of Design Engineering, Imperial College London
| |
Collapse
|
2
|
Woolen S, Hanneman K. Radiology's Role in the Climate Crisis: Why It Matters- AJR Podcast Series on Sustainability, Episode 1. AJR Am J Roentgenol 2024; 223:e2431682. [PMID: 38958265 DOI: 10.2214/ajr.24.31682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Affiliation(s)
- Sean Woolen
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 505 Parnassus Ave, San Francisco, CA 94143
| | - Kate Hanneman
- Department of Medical Imaging, University Medical Imaging Toronto, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
3
|
Rawashdeh M, Ali MA, McEntee M, El-Sayed M, Saade C, Kashabash D, England A. Green radiography: Exploring perceptions, practices, and barriers to sustainability. Radiography (Lond) 2024; 30 Suppl 1:62-73. [PMID: 38981301 DOI: 10.1016/j.radi.2024.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/12/2024] [Accepted: 06/24/2024] [Indexed: 07/11/2024]
Abstract
INTRODUCTION Previous research has delved into the attitudes and behaviors of diverse professions regarding environmental sustainability. However, there needs to be more research specifically targeting radiographers. This study aims to survey radiographers' perceptions, practices, and barriers to change concerning environmental sustainability in radiology. METHODS Institutional ethical approval was obtained (IRB-COHS-FAC-110-2024) and data collection was conducted using Google Forms (Google Inc., Mountain View, CA). The survey targeted 104 practicing radiographers across several countries. Questions were structured around five domains to gather insights into demographics, training in global warming and climate change, perceptions of sustainability and climate change, sustainability barriers, and current radiology practices on sustainability. Data analysis utilized descriptive and d inferential statistics. RESULTS One hundred and four radiographers completed the study. Females had a significantly higher attendance rate in environmental protection campaigns (P = 0.01). The majority of respondents (68%) believe in climate change's knowledge and impact on the natural world. Our survey findings demonstrate that 74% of respondents believe there's a need to improve sustainability practices. The most commonly used strategies to decrease energy consumption and emissions were low-energy lighting (60%), real-time power monitoring tools (41%), and energy-efficient heating systems (32%). A significant concern regarding sustainability emerges among respondents: time (50%) and lack of leadership (48%) are prevalent concerns among the identified barriers. CONCLUSION Participants are recognising the importance of environmental sustainability in radiology, but lack of leadership, support, authority, and facility limitations hinder their adoption. IMPACT ON PRACTICE Radiology must prioritize environmental sustainability by providing resources and training for radiographers and collaborating with healthcare professionals, policymakers, and environmental experts to develop comprehensive strategies for a sustainable healthcare system.
Collapse
Affiliation(s)
- M Rawashdeh
- Medical Imaging Sciences, College of Health Sciences, Gulf Medical University, Ajman, United Arab Emirates; Faculty of Health Sciences, Jordan University of Sciences and Technology, Irbid, Jordan.
| | - M A Ali
- Medical Imaging Sciences, College of Health Sciences, Gulf Medical University, Ajman, United Arab Emirates
| | - M McEntee
- The Discipline of Medical Imaging and Radiation Therapy, School of Medicine, University College Cork, Cork, Ireland; Institute of Regional Health Research, University of Southern Denmark, Denmark
| | - M El-Sayed
- Faculty of Applied Health Sciences Technology, Galala University, Suez, 43511, Egypt
| | - C Saade
- The Discipline of Medical Imaging and Radiation Therapy, School of Medicine, University College Cork, Cork, Ireland
| | - D Kashabash
- Medical Imaging Sciences, College of Health Sciences, Gulf Medical University, Ajman, United Arab Emirates
| | - A England
- The Discipline of Medical Imaging and Radiation Therapy, School of Medicine, University College Cork, Cork, Ireland
| |
Collapse
|
4
|
Ohene-Botwe B, Amedu C, Antwi WK, Abdul-Razak W, Kyei KA, Arkoh S, Mudadi LS, Mushosho EY, Bwanga O, Chinene B, Nyawani P, Mutandiro LC, Piersson AD. Promoting sustainability activities in clinical radiography practice and education in resource-limited countries: A discussion paper. Radiography (Lond) 2024; 30 Suppl 1:56-61. [PMID: 38905726 DOI: 10.1016/j.radi.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/23/2024]
Abstract
OBJECTIVE Urgent global action is required to combat climate change, with radiographers poised to play a significant role in reducing healthcare's environmental impact. This paper explores radiography-related activities and factors in resource-limited departments contributing to the carbon footprint and proposes strategies for mitigation. The rationale is to discuss the literature regarding these contributing factors and to raise awareness about how to promote sustainability activities in clinical radiography practice and education in resource-limited countries. KEY FINDINGS The radiography-related activities and factors contributing to the carbon footprint in resource-limited countries include the use of old equipment and energy inefficiency, insufficient clean energy to power equipment, long-distance commuting for radiological examinations, high film usage and waste, inadequate training and research on sustainable practices, as well as limited policies to drive support for sustainability. Addressing these issues requires a multifaceted approach. Firstly, financial assistance and partnerships are needed to adopt eco-friendly technologies and clean energy sources to power equipment, thus tackling issues related to old equipment and energy inefficiency. Transitioning to digital radiography can mitigate the environmental impact of high film usage and waste, while collaboration between governments, healthcare organisations, and international stakeholders can improve access to radiological services, reducing long-distance commuting. Additionally, promoting education programmes and research efforts in sustainability will empower radiographers with the knowledge to practice sustainably, complemented by clear policies such as green imaging practices to guide and incentivise the adoption of sustainable practices. These integrated solutions can significantly reduce the carbon footprint of radiography activities in resource-limited settings while enhancing healthcare delivery. CONCLUSION Radiography-related activities and factors in resource-limited departments contributing to the carbon footprint are multifaceted but can be addressed through concerted efforts. IMPLICATIONS FOR PRACTICE Addressing the challenges posed by old equipment, energy inefficiency, high film usage, and inadequate training through collaborative efforts and robust policy implementation is essential for promoting sustainable radiography practices in resource-limited countries. Radiographers in these countries need to be aware of these factors contributing to the carbon footprint and begin to work with the relevant stakeholders to mitigate them. Furthermore, there is a need for them to engage in education programmes and research efforts in sustainability to empower them with the right knowledge and understanding to practice sustainably.
Collapse
Affiliation(s)
- B Ohene-Botwe
- Department of Midwifery & Radiography, School of Health & Psychological Sciences, City, University of London, Northampton Square, London EC1V 0HB, United Kingdom.
| | - C Amedu
- Department of Midwifery & Radiography, School of Health & Psychological Sciences, City, University of London, Northampton Square, London EC1V 0HB, United Kingdom.
| | - W K Antwi
- Department of Radiography, School of Biomedical & Allied Health Sciences, University of Ghana, Ghana.
| | - W Abdul-Razak
- Department of Medical Imaging, Fatima College of Health Sciences, AI Ain, United Arab Emirates.
| | - K A Kyei
- Department of Radiography, School of Biomedical & Allied Health Sciences, University of Ghana, Ghana.
| | - S Arkoh
- Department of Radiology, York and Scarborough Teaching Hospitals NHS Trust, United Kingdom.
| | - L-S Mudadi
- Royal Papworth Hospital, NHS Foundation Trust, Cambridge, United Kingdom.
| | - E Y Mushosho
- Harare Institute of Technology, School of Allied Health Sciences, Harare, Zimbabwe.
| | - O Bwanga
- Radiology Department, Midlands University Hospital Tullamore, Ireland.
| | - B Chinene
- Harare Institute of Technology, School of Allied Health Sciences, Harare, Zimbabwe.
| | - P Nyawani
- Harare Institute of Technology, School of Allied Health Sciences, Harare, Zimbabwe.
| | - L C Mutandiro
- Harare Institute of Technology, School of Allied Health Sciences, Harare, Zimbabwe.
| | - A D Piersson
- Department of Imaging Technology & Sonography, University of Cape Coast, Central Region, Ghana.
| |
Collapse
|
5
|
Roletto A, Catania D, Rainford L, Savio A, Zanardo M, Bonfitto GR, Zanoni S. Sustainable radiology departments: A European survey to explore radiographers' perceptions of environmental and energy sustainability issues. Radiography (Lond) 2024; 30 Suppl 1:81-90. [PMID: 38996669 DOI: 10.1016/j.radi.2024.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/20/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024]
Abstract
INTRODUCTION The environmental impact of radiology and radiotherapy activities is influenced by the energy consumption of equipment, the life cycle of consumables, waste generation, and CO2 emissions caused by staff travel. This study aims to investigate radiographers' perception and knowledge of environmental sustainability issues. METHODS An online survey was created and distributed to European radiographers and therapeutic radiographers. The survey questions (n = 43) include demographic data; questions on their perceptions and actions regarding environmental sustainability in healthcare, energy consumption, emissions from staff travel, waste generation from radiological procedures; the role of radiographers in addressing sustainability issues within their departments. RESULTS A total of 253 responses were collected from 27 European countries. About their perception on sustainability issues, most participants considered environmental sustainability in healthcare as very important. According to 63.6% (n = 161) of respondents, the energy consumption of radiological equipment is the major source of environmental footprints from radiology activities. Additionally, 44.7% (n = 113) believe that conducting diagnostic examinations remotely could reduce environmental footprints from staff commuting About their actions at workplace, over 70% (n = 192) reported turning off devices after use. Attention to waste recycling is high, but limited to paper, plastic and glass. Contrast agents recycling procedures are implemented by 13% (n = 33). The absence or unawareness of environmental sustainability procedures in the workplace was reported by 66% (n = 167). Radiographers could play an active role in environmental sustainability programs for 243 (96.1%) participants. CONCLUSION This study provides a comprehensive overview of European radiographers' knowledge and perceptions concerning environmental sustainability issues. While radiographers recognize the importance of a green radiology department, significant gaps remain in their understanding of eco-friendly initiatives in radiology units' activities. IMPLICATION FOR PRACTICE Enhancing radiographers' skills with sustainability expertise could promote a greener culture within radiology departments.
Collapse
Affiliation(s)
- A Roletto
- Department of Mechanical and Industrial Engineering, Università degli Studi di Brescia, Via Branze 38, 25123, Brescia, Italy.
| | - D Catania
- Radiography and Diagnostic Imaging, School of Medicine, University College Dublin, Ireland.
| | - L Rainford
- Radiography and Diagnostic Imaging, School of Medicine, University College Dublin, Ireland.
| | - A Savio
- Department of Mechanical and Industrial Engineering, Università degli Studi di Brescia, Via Branze 38, 25123, Brescia, Italy.
| | - M Zanardo
- Radiology Unit, IRCCS Policlinico San Donato, Via Morandi 30, 20097, San Donato Milanese, Italy.
| | - G R Bonfitto
- Department of Information Engineering, Università degli Studi di Brescia, Via Branze 38, 25123, Brescia, Italy.
| | - S Zanoni
- Department of Civil, Environmental, Architectural Engineering and Mathematics, Università degli Studi di Brescia, Via Branze 43, 25123, Brescia, Italy.
| |
Collapse
|
6
|
Roscioli R, Wyllie T, Neophytou K, Dent L, Lowen D, Tan D, Dunne B, Hodgson R. How we can reduce the environmental impact of our operating theatres: a narrative review. ANZ J Surg 2024; 94:1000-1010. [PMID: 37985608 DOI: 10.1111/ans.18770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/03/2023] [Accepted: 10/29/2023] [Indexed: 11/22/2023]
Abstract
Climate change is projected to become the leading cause of adverse health outcomes globally, and the healthcare system is a key contributor. Surgical theatres are three to six times more pollutant than other hospital areas, and produce anywhere from a fifth to a third of total hospital waste. Hospitals are increasingly expected to make operating theatres more sustainable, however guidelines to improve environmental sustainability are lacking, and previous research takes a narrow approach to operative sustainability. This paper presents a narrative review that, following a 'review of reviews' approach, aims to summarize the key recommendations to improve the environmental sustainability of surgical theatres. Key domains of discussion identified across the literature included minimisation of volatile anaesthetics, reduction of operating theatre power consumption, optimisation of surgical approach, re-use and re-processing of surgical instruments, waste management, and research, education and leadership. Implementation of individual items in these domains has seen significant reductions in the environmental impact of operative practice. This comprehensive summary of recommendations lays the framework from which providers can assess the sustainability of their practice and for the development of encompassing guidelines to build an environmentally sustainable surgical service.
Collapse
Affiliation(s)
- Robert Roscioli
- Department of Surgery, University of Melbourne, Epping, Victoria, Australia
| | - Tracey Wyllie
- Division of Surgery, Northern Health, Epping, Victoria, Australia
| | | | - Lana Dent
- Division of Surgery, Northern Health, Epping, Victoria, Australia
| | - Darren Lowen
- Department of Anaesthesia & Perioperative Medicine, Northern Health, Epping, Victoria, Australia
- Department of Critical Care, University of Melbourne, Parkville, Victoria, Australia
| | - David Tan
- Department of Anaesthesia & Perioperative Medicine, Northern Health, Epping, Victoria, Australia
| | - Ben Dunne
- Department of Surgery, Royal Melbourne Hospital, Parkville, Victoria, Australia
- Department of Surgery, Peter Macallum Cancer Centre, Parkville, Victoria, Australia
- Department of Surgery, University of Melbourne, Parkville, Victoria, Australia
| | - Russell Hodgson
- Department of Surgery, University of Melbourne, Epping, Victoria, Australia
- Division of Surgery, Northern Health, Epping, Victoria, Australia
| |
Collapse
|
7
|
Ghotra SS, Champendal M, Flaction L, Ribeiro RT, Sá Dos Reis C. Approaches to reduce medical imaging departments' environmental impact: A scoping review. Radiography (Lond) 2024; 30 Suppl 1:108-116. [PMID: 39146889 DOI: 10.1016/j.radi.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/17/2024]
Abstract
INTRODUCTION Global warming stands as a paramount public health issue of our time, and it is fundamental to explore approaches to green medical imaging departments/(MID). This study aims to map the existing actions in the literature that promote sustainable development in MID towards the promotion of environmental impact reduction. METHODS Following the JBI methodology and the Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR), this literature search was conducted on MEDLINE, Embase and CINAHL to encompass studies published after 2013. Combinations of keywords and relevant terms related to environmental sustainability, recycling, medical waste, and greening radiology were applied for this review. Three independent reviewers screened abstracts, titles, and eligible full-text. Disagreement was solved through consensus. RESULTS 38 out of 4630 articles met all inclusion criteria, and four additional articles were identified and added through reference search. A third of the studies included were published after 2022, and most were conducted in developed countries (36/41). Articles focused on computed tomography (9/41), magnetic resonance imaging (6/41), interventional radiology (4/41), conventional radiography (4/41), ultrasound (2/41), mixed modalities (10/41), or not applicable to an imaging modality (6/41). Four principal categories were identified to decrease ecological footprint: energy consumption, waste management, justification and environmental pollution. CONCLUSION To minimise the environmental impact of MIDs raising awareness and promoting education is fundamental. Examinations must be justified adequately, energy consumption must be reduced, and waste management practices need to be implemented. Further studies are required to prioritise the most effective strategies, supporting decision-making among stakeholders. IMPLICATIONS FOR PRACTICE Several strategies are already possible to implement to reduce the environmental impact of MIDs and improve the healthcare outcomes for patients.
Collapse
Affiliation(s)
- S S Ghotra
- School of Health Sciences (HESAV), University of Applied Sciences and Arts Western Switzerland (HES-SO), Lausanne, 1011, Switzerland; Department of Radiology, Hospital of Yverdon-les-Bains (eHnv), 1400, Yverdon-les-Bains, Switzerland.
| | - M Champendal
- School of Health Sciences (HESAV), University of Applied Sciences and Arts Western Switzerland (HES-SO), Lausanne, 1011, Switzerland.
| | - L Flaction
- School of Health Sciences (HESAV), University of Applied Sciences and Arts Western Switzerland (HES-SO), Lausanne, 1011, Switzerland.
| | - R T Ribeiro
- School of Health Sciences (HESAV), University of Applied Sciences and Arts Western Switzerland (HES-SO), Lausanne, 1011, Switzerland.
| | - C Sá Dos Reis
- School of Health Sciences (HESAV), University of Applied Sciences and Arts Western Switzerland (HES-SO), Lausanne, 1011, Switzerland.
| |
Collapse
|
8
|
Kim HHR, Leschied JR, Lall N, Otero HJ, Kadom N. That's GROSS! Practical steps towards sustainability in pediatric radiology. Pediatr Radiol 2024; 54:1036-1039. [PMID: 38374438 DOI: 10.1007/s00247-024-05878-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/26/2024] [Accepted: 02/06/2024] [Indexed: 02/21/2024]
Affiliation(s)
- Helen H R Kim
- Department of Radiology, Seattle Children's Hospital, University of Washington School of Medicine, 4800 Sand Point Way NE, MA.7.220, Seattle, WA, 98105, USA.
| | - Jessica R Leschied
- Department of Radiology, Monroe Carell Jr. Children's Hospital, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Neil Lall
- Department of Radiology and Imaging Sciences, Children's Healthcare of Atlanta, Emory University, Atlanta, GA, USA
| | - Hansel J Otero
- Department of Radiology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Nadja Kadom
- Department of Radiology and Imaging Sciences, Children's Healthcare of Atlanta, Emory University, Atlanta, GA, USA
| |
Collapse
|
9
|
Lojo-Lendoiro S, Rovira À, Morales Santos Á. Green radiology: How to develop sustainable radiology. RADIOLOGIA 2024; 66:248-259. [PMID: 38908886 DOI: 10.1016/j.rxeng.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/22/2023] [Indexed: 06/24/2024]
Abstract
The phenomenon of global warming due to the increased emission of greenhouse gases makes it necessary to raise public awareness about the importance of promoting sustainable practices. The field of radiology is not an exception, as it consumes a large amount of energy and resources to operate equipment and generate images. Green radiology is a sustainable, innovative, and responsible approach in radiology practice that focuses on minimizing the negative environmental effects of the technologies and procedures used in radiology. Its primary goal is to reduce the carbon, water and ecological footprint in our services based on four strategic pillars: decreasing energy, water, and helium usage; properly recycling and/or disposing of waste and residues (including contrast media); minimizing the environmental impact of ionizing radiation; and promoting eco-friendly radiology practices.
Collapse
Affiliation(s)
- S Lojo-Lendoiro
- Servicio de Radiodiagnóstico, Hospital Álvaro Cunqueiro, Vigo, Pontevedra, Spain.
| | - À Rovira
- Sección de Neurorradiología, Servicio de Radiodiagnóstico, Hospital Universitario Vall d'Hebron, Barcelona, Spain
| | - Á Morales Santos
- Servicio de Radiodiagnóstico, Hospital Universitario Donostia, San Sebastián, Spain
| |
Collapse
|
10
|
McKee H, Brown MJ, Kim HHR, Doo FX, Panet H, Rockall AG, Omary RA, Hanneman K. Planetary Health and Radiology: Why We Should Care and What We Can Do. Radiology 2024; 311:e240219. [PMID: 38652030 DOI: 10.1148/radiol.240219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Climate change adversely affects the well-being of humans and the entire planet. A planetary health framework recognizes that sustaining a healthy planet is essential to achieving individual, community, and global health. Radiology contributes to the climate crisis by generating greenhouse gas (GHG) emissions during the production and use of medical imaging equipment and supplies. To promote planetary health, strategies that mitigate and adapt to climate change in radiology are needed. Mitigation strategies to reduce GHG emissions include switching to renewable energy sources, refurbishing rather than replacing imaging scanners, and powering down unused scanners. Radiology departments must also build resiliency to the now unavoidable impacts of the climate crisis. Adaptation strategies include education, upgrading building infrastructure, and developing departmental sustainability dashboards to track progress in achieving sustainability goals. Shifting practices to catalyze these necessary changes in radiology requires a coordinated approach. This includes partnering with key stakeholders, providing effective communication, and prioritizing high-impact interventions. This article reviews the intersection of planetary health and radiology. Its goals are to emphasize why we should care about sustainability, showcase actions we can take to mitigate our impact, and prepare us to adapt to the effects of climate change. © RSNA, 2024 Supplemental material is available for this article. See also the article by Ibrahim et al in this issue. See also the article by Lenkinski and Rofsky in this issue.
Collapse
Affiliation(s)
- Hayley McKee
- From the Temerty Faculty of Medicine (H.M.) and Department of Medical Imaging (H.M., H.P., K.H.), University of Toronto, Toronto, Ontario, Canada; Department of Radiology, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada (M.J.B.); Department of Radiology, Seattle Children's Hospital, University of Washington School of Medicine, Seattle, Wash (H.H.R.K.); University of Maryland Medical Intelligent Imaging (UM2ii) Center, Department of Radiology and Nuclear Medicine, University of Maryland Medical Center, Baltimore, Md (F.X.D.); Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, England (A.G.R.); Department of Radiology, Imperial College Healthcare NHS Trust, London, England (A.G.R.); Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tenn (R.A.O.); Joint Department of Medical Imaging, University Medical Imaging Toronto, Toronto, Ontario, Canada (K.H.); and Toronto General Hospital Research Institute, University Health Network, University of Toronto, 1 PMB-298, 585 University Ave, Toronto, ON, Canada M5G 2N2 (K.H.)
| | - Maura J Brown
- From the Temerty Faculty of Medicine (H.M.) and Department of Medical Imaging (H.M., H.P., K.H.), University of Toronto, Toronto, Ontario, Canada; Department of Radiology, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada (M.J.B.); Department of Radiology, Seattle Children's Hospital, University of Washington School of Medicine, Seattle, Wash (H.H.R.K.); University of Maryland Medical Intelligent Imaging (UM2ii) Center, Department of Radiology and Nuclear Medicine, University of Maryland Medical Center, Baltimore, Md (F.X.D.); Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, England (A.G.R.); Department of Radiology, Imperial College Healthcare NHS Trust, London, England (A.G.R.); Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tenn (R.A.O.); Joint Department of Medical Imaging, University Medical Imaging Toronto, Toronto, Ontario, Canada (K.H.); and Toronto General Hospital Research Institute, University Health Network, University of Toronto, 1 PMB-298, 585 University Ave, Toronto, ON, Canada M5G 2N2 (K.H.)
| | - Helen H R Kim
- From the Temerty Faculty of Medicine (H.M.) and Department of Medical Imaging (H.M., H.P., K.H.), University of Toronto, Toronto, Ontario, Canada; Department of Radiology, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada (M.J.B.); Department of Radiology, Seattle Children's Hospital, University of Washington School of Medicine, Seattle, Wash (H.H.R.K.); University of Maryland Medical Intelligent Imaging (UM2ii) Center, Department of Radiology and Nuclear Medicine, University of Maryland Medical Center, Baltimore, Md (F.X.D.); Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, England (A.G.R.); Department of Radiology, Imperial College Healthcare NHS Trust, London, England (A.G.R.); Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tenn (R.A.O.); Joint Department of Medical Imaging, University Medical Imaging Toronto, Toronto, Ontario, Canada (K.H.); and Toronto General Hospital Research Institute, University Health Network, University of Toronto, 1 PMB-298, 585 University Ave, Toronto, ON, Canada M5G 2N2 (K.H.)
| | - Florence X Doo
- From the Temerty Faculty of Medicine (H.M.) and Department of Medical Imaging (H.M., H.P., K.H.), University of Toronto, Toronto, Ontario, Canada; Department of Radiology, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada (M.J.B.); Department of Radiology, Seattle Children's Hospital, University of Washington School of Medicine, Seattle, Wash (H.H.R.K.); University of Maryland Medical Intelligent Imaging (UM2ii) Center, Department of Radiology and Nuclear Medicine, University of Maryland Medical Center, Baltimore, Md (F.X.D.); Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, England (A.G.R.); Department of Radiology, Imperial College Healthcare NHS Trust, London, England (A.G.R.); Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tenn (R.A.O.); Joint Department of Medical Imaging, University Medical Imaging Toronto, Toronto, Ontario, Canada (K.H.); and Toronto General Hospital Research Institute, University Health Network, University of Toronto, 1 PMB-298, 585 University Ave, Toronto, ON, Canada M5G 2N2 (K.H.)
| | - Hayley Panet
- From the Temerty Faculty of Medicine (H.M.) and Department of Medical Imaging (H.M., H.P., K.H.), University of Toronto, Toronto, Ontario, Canada; Department of Radiology, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada (M.J.B.); Department of Radiology, Seattle Children's Hospital, University of Washington School of Medicine, Seattle, Wash (H.H.R.K.); University of Maryland Medical Intelligent Imaging (UM2ii) Center, Department of Radiology and Nuclear Medicine, University of Maryland Medical Center, Baltimore, Md (F.X.D.); Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, England (A.G.R.); Department of Radiology, Imperial College Healthcare NHS Trust, London, England (A.G.R.); Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tenn (R.A.O.); Joint Department of Medical Imaging, University Medical Imaging Toronto, Toronto, Ontario, Canada (K.H.); and Toronto General Hospital Research Institute, University Health Network, University of Toronto, 1 PMB-298, 585 University Ave, Toronto, ON, Canada M5G 2N2 (K.H.)
| | - Andrea G Rockall
- From the Temerty Faculty of Medicine (H.M.) and Department of Medical Imaging (H.M., H.P., K.H.), University of Toronto, Toronto, Ontario, Canada; Department of Radiology, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada (M.J.B.); Department of Radiology, Seattle Children's Hospital, University of Washington School of Medicine, Seattle, Wash (H.H.R.K.); University of Maryland Medical Intelligent Imaging (UM2ii) Center, Department of Radiology and Nuclear Medicine, University of Maryland Medical Center, Baltimore, Md (F.X.D.); Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, England (A.G.R.); Department of Radiology, Imperial College Healthcare NHS Trust, London, England (A.G.R.); Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tenn (R.A.O.); Joint Department of Medical Imaging, University Medical Imaging Toronto, Toronto, Ontario, Canada (K.H.); and Toronto General Hospital Research Institute, University Health Network, University of Toronto, 1 PMB-298, 585 University Ave, Toronto, ON, Canada M5G 2N2 (K.H.)
| | - Reed A Omary
- From the Temerty Faculty of Medicine (H.M.) and Department of Medical Imaging (H.M., H.P., K.H.), University of Toronto, Toronto, Ontario, Canada; Department of Radiology, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada (M.J.B.); Department of Radiology, Seattle Children's Hospital, University of Washington School of Medicine, Seattle, Wash (H.H.R.K.); University of Maryland Medical Intelligent Imaging (UM2ii) Center, Department of Radiology and Nuclear Medicine, University of Maryland Medical Center, Baltimore, Md (F.X.D.); Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, England (A.G.R.); Department of Radiology, Imperial College Healthcare NHS Trust, London, England (A.G.R.); Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tenn (R.A.O.); Joint Department of Medical Imaging, University Medical Imaging Toronto, Toronto, Ontario, Canada (K.H.); and Toronto General Hospital Research Institute, University Health Network, University of Toronto, 1 PMB-298, 585 University Ave, Toronto, ON, Canada M5G 2N2 (K.H.)
| | - Kate Hanneman
- From the Temerty Faculty of Medicine (H.M.) and Department of Medical Imaging (H.M., H.P., K.H.), University of Toronto, Toronto, Ontario, Canada; Department of Radiology, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada (M.J.B.); Department of Radiology, Seattle Children's Hospital, University of Washington School of Medicine, Seattle, Wash (H.H.R.K.); University of Maryland Medical Intelligent Imaging (UM2ii) Center, Department of Radiology and Nuclear Medicine, University of Maryland Medical Center, Baltimore, Md (F.X.D.); Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, England (A.G.R.); Department of Radiology, Imperial College Healthcare NHS Trust, London, England (A.G.R.); Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tenn (R.A.O.); Joint Department of Medical Imaging, University Medical Imaging Toronto, Toronto, Ontario, Canada (K.H.); and Toronto General Hospital Research Institute, University Health Network, University of Toronto, 1 PMB-298, 585 University Ave, Toronto, ON, Canada M5G 2N2 (K.H.)
| |
Collapse
|
11
|
Rovira À, Ben Salem D, Geraldo AF, Cappelle S, Del Poggio A, Cocozza S, Saatci I, Zlatareva D, Lojo S, Quattrocchi CC, Morales Á, Yousry T. Go Green in Neuroradiology: towards reducing the environmental impact of its practice. Neuroradiology 2024; 66:463-476. [PMID: 38353699 DOI: 10.1007/s00234-024-03305-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/03/2024] [Indexed: 02/23/2024]
Abstract
Raising public awareness about the relevance of supporting sustainable practices is required owing to the phenomena of global warming caused by the rising production of greenhouse gases. The healthcare sector generates a relevant proportion of the total carbon emissions in developed countries, and radiology is estimated to be a major contributor to this carbon footprint. Neuroradiology markedly contributes to this negative environmental effect, as this radiological subspecialty generates a high proportion of diagnostic and interventional imaging procedures, the majority of them requiring high energy-intensive equipment. Therefore, neuroradiologists and neuroradiological departments are especially responsible for implementing decisions and initiatives able to reduce the unfavourable environmental effects of their activities, by focusing on four strategic pillars-reducing energy, water, and helium use; properly recycling and/or disposing of waste and residues (including contrast media); encouraging environmentally friendly behaviour; and reducing the effects of ionizing radiation on the environment. The purpose of this article is to alert neuroradiologists about their environmental responsibilities and to analyse the most productive strategic axes, goals, and lines of action that contribute to reducing the environmental impact associated with their professional activities.
Collapse
Affiliation(s)
- Àlex Rovira
- Section of Neuroradiology, Department of Radiology (IDI), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain.
| | | | - Ana Filipa Geraldo
- Diagnostic Neuroradiology Unit, Department of Radiology, Centro Hospitalar Vila Nova de Gaia/Espinho (CHVNG/E), Porto, Portugal
| | - Sarah Cappelle
- Department of Radiology, University Hospitals Leuven, Louvain, Belgium
| | - Anna Del Poggio
- Department of Neuroradiology and CERMAC, San Raffaele Hospital, Milan, Italy
| | - Sirio Cocozza
- Department of Advanced Biomedical Sciences, University of Naples, "Federico II", Naples, Italy
| | - Isil Saatci
- Section of Neurointervention, Neuroradiology, Private Koru Hospitals, Ankara, Turkey
| | - Dora Zlatareva
- Department of Radiology, Medical University Sofia, Sofia, Bulgaria
| | - Sara Lojo
- Department of Radiology, Hospital Álvaro Cunqueiro, Vigo, Spain
| | - Carlo Cosimo Quattrocchi
- Centre for Medical Sciences CISMed, University of Trento, Trento, Italy
- Radiology, Multizonal Unit of Rovereto and Arco, APSS Provincia Autonoma Di Trento, Trento, Italy
| | - Ángel Morales
- Department of Radiology, Hospital Universitario Donostia, San Sebastián, Spain
| | - Tarek Yousry
- Lysholm Department of Neuroradiology, UCLH National Hospital for Neurology and Neurosurgery, Neuroradiological Academic Unit, UCL Institute of Neurology, London, UK
| |
Collapse
|
12
|
Anneveldt KJ, Nijholt IM, Schutte JM, Hehenkamp WJK, Veersema S, Huirne JAF, Boomsma MF. Waste analysis and energy use estimation during MR-HIFU treatment: first steps towards calculating total environmental impact. Insights Imaging 2024; 15:83. [PMID: 38517607 PMCID: PMC10959896 DOI: 10.1186/s13244-024-01655-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 02/15/2024] [Indexed: 03/24/2024] Open
Abstract
OBJECTIVES To assess the environmental impact of the non-invasive Magnetic Resonance image-guided High-Intensity Focused Ultrasound (MR-HIFU) treatment of uterine fibroids, we aimed to perform a full Life Cycle Assessment (LCA). However, as a full LCA was not feasible at this time, we evaluated the CO2 (carbon dioxide) emission from the MRI scanner, MR-HIFU device, and the medication used, and analyzed solid waste produced during treatment. METHODS Our functional unit was one uterine fibroid MR-HIFU treatment. The moment the patient entered the day care-unit until she left, defined our boundaries of investigation. We retrospectively collected data from 25 treatments to assess the CO2 emission based on the energy used by the MRI scanner and MR-HIFU device and the amount and type of medication administered. Solid waste was prospectively collected from five treatments. RESULTS During an MR-HIFU treatment, the MRI scanner and MR-HIFU device produced 33.2 ± 8.7 kg of CO2 emission and medication administered 0.13 ± 0.04 kg. A uterine fibroid MR-HIFU treatment produced 1.2 kg (range 1.1-1.4) of solid waste. CONCLUSIONS Environmental impact should ideally be analyzed for all (new) medical treatments. By assessing part of the CO2 emission and solid waste produced, we have taken the first steps towards analyzing the total environmental impact of the MR-HIFU treatment of uterine fibroids. These data can contribute to future studies comparing the results of MR-HIFU LCAs with LCAs of other uterine fibroid therapies. CRITICAL RELEVANCE STATEMENT In addition to (cost-) effectiveness, the environmental impact of new treatments should be assessed. We took the first steps towards analyzing the total environmental impact of uterine fibroid MR-HIFU. KEY POINTS • Life Cycle Assessments (LCAs) should be performed for all (new) medical treatments. • We took the first steps towards analyzing the environmental impact of uterine fibroid MR-HIFU. • Energy used by the MRI scanner and MR-HIFU device corresponded to 33.2 ± 8.7 kg of CO2 emission.
Collapse
Affiliation(s)
- Kimberley J Anneveldt
- Department of Radiology, Isala Hospital, Dokter Van Heesweg 2, Zwolle, 8025 AB, The Netherlands.
- Department of Reproductive Medicine and Gynecology, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, The Netherlands.
| | - Ingrid M Nijholt
- Department of Radiology, Isala Hospital, Dokter Van Heesweg 2, Zwolle, 8025 AB, The Netherlands
- Image Sciences Institute, Division of Imaging & Oncology, University Medical Centre Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, The Netherlands
| | - Joke M Schutte
- Department of Gynecology, Isala Hospital, Dokter Van Heesweg 2, 8025 AB, Zwolle, The Netherlands
| | - Wouter J K Hehenkamp
- Department of Obstetrics and Gynecology, Amsterdam University Medical Centre, Location AMC, Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands
| | - Sebastiaan Veersema
- Department of Reproductive Medicine and Gynecology, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, The Netherlands
| | - Judith A F Huirne
- Department of Obstetrics and Gynecology and Amsterdam Research Institute Reproduction and Development, Amsterdam University Medical Centre, Location AMC, Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands
| | - Martijn F Boomsma
- Department of Radiology, Isala Hospital, Dokter Van Heesweg 2, Zwolle, 8025 AB, The Netherlands
- Image Sciences Institute, Division of Imaging & Oncology, University Medical Centre Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, The Netherlands
| |
Collapse
|
13
|
Clements W. Implementation of lasting changes to sustainability in Interventional Radiology is a top-down governance challenge. CVIR Endovasc 2023; 6:22. [PMID: 37004624 PMCID: PMC10067772 DOI: 10.1186/s42155-023-00371-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/24/2023] [Indexed: 04/04/2023] Open
Affiliation(s)
- Warren Clements
- Department of Radiology, Alfred Health, 55 Commercial Road, Melbourne, VIC, 3004, Australia.
- Department of Surgery, Central Clinical School, Monash University, Melbourne, Australia.
- National Trauma Research Institute, Melbourne, Australia.
| |
Collapse
|
14
|
de Reeder A, Hendriks P, Plug-van der Plas H, Zweers D, van Overbeeke PSM, Gravendeel J, Kruimer JWH, van der Meer RW, Burgmans MC. Sustainability within interventional radiology: opportunities and hurdles. CVIR Endovasc 2023; 6:16. [PMID: 36939973 PMCID: PMC10027964 DOI: 10.1186/s42155-023-00362-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/09/2023] [Indexed: 03/21/2023] Open
Abstract
BACKGROUND Healthcare is a highly polluting industry and attention to the need for making this sector more sustainable is growing. The interventional radiology (IR) department is a relatively unique department in the hospital because of its synergetic use of both imaging equipment and medical instruments. As a result, the interventional radiology department causes a significant environmental burden in terms of energy usage, waste and water pollution. The aim of this study was to explore the current state of sustainability within IR by conducting a survey and interviews among IR specialists in the Netherlands. RESULTS The main findings of this study were that there is a high awareness for the need of sustainability within IR, but that there is still limited action. Previous studies point towards the various opportunities in the field of energy, waste and water pollution, yet our study unveils these opportunities are often not implemented because of (1) sustainability not being a priority, (2) a dependency on employees, and (3) factors that simply cannot be changed by an individual IR department or hospital. Generally, our study indicates that there is a willingness to become more sustainable, but that the current system involves a wide range barriers that hinder true change. Furthermore, it seems that no one is currently taking the lead and a leading role from higher management, government, healthcare authorities or professional societies is lacking. CONCLUSIONS Despite the hurdles found in our study, IR departments can implement several improvements. An important factor is that sustainability should not lead to lower convenience for employees, which can be ensured by a sufficiently designed waste infrastructure and behavioral nudges. Furthermore, there lies an opportunity in more collaboration between IR departments in knowledge sharing and open innovation.
Collapse
Affiliation(s)
- Anouk de Reeder
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Business-Society Management, Rotterdam School of Management, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Pim Hendriks
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Dirk Zweers
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Philine S M van Overbeeke
- Department of Business-Society Management, Rotterdam School of Management, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | | | | | | | - Mark C Burgmans
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|