1
|
Chai L, Xue S, Tang D, Liu J, Sun N, Liu X. TLF: Triple learning framework for intracranial aneurysms segmentation from unreliable labeled CTA scans. Comput Med Imaging Graph 2024; 116:102421. [PMID: 39084165 DOI: 10.1016/j.compmedimag.2024.102421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/21/2024] [Accepted: 07/21/2024] [Indexed: 08/02/2024]
Abstract
Intracranial aneurysm (IA) is a prevalent disease that poses a significant threat to human health. The use of computed tomography angiography (CTA) as a diagnostic tool for IAs remains time-consuming and challenging. Deep neural networks (DNNs) have made significant advancements in the field of medical image segmentation. Nevertheless, training large-scale DNNs demands substantial quantities of high-quality labeled data, making the annotation of numerous brain CTA scans a challenging endeavor. To address these challenges and effectively develop a robust IAs segmentation model from a large amount of unlabeled training data, we propose a triple learning framework (TLF). The framework primarily consists of three learning paradigms: pseudo-supervised learning, contrastive learning, and confident learning. This paper introduces an enhanced mean teacher model and voxel-selective strategy to conduct pseudo-supervised learning on unreliable labeled training data. Concurrently, we construct the positive and negative training pairs within the high-level semantic feature space to improve the overall learning efficiency of the TLF through contrastive learning. In addition, a multi-scale confident learning is proposed to correct unreliable labels, which enables the acquisition of broader local structural information instead of relying on individual voxels. To evaluate the effectiveness of our method, we conducted extensive experiments on a self-built database of hundreds of cases of brain CTA scans with IAs. Experimental results demonstrate that our method can effectively learn a robust CTA scan-based IAs segmentation model using unreliable labeled data, outperforming state-of-the-art methods in terms of segmentation accuracy. Codes are released at https://github.com/XueShuangqian/TLF.
Collapse
Affiliation(s)
- Lei Chai
- Engineering Research Center of Wideband Wireless Communication Technology, Ministry of Education, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
| | - Shuangqian Xue
- Engineering Research Center of Wideband Wireless Communication Technology, Ministry of Education, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
| | - Daodao Tang
- Engineering Research Center of Wideband Wireless Communication Technology, Ministry of Education, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
| | - Jixin Liu
- Engineering Research Center of Wideband Wireless Communication Technology, Ministry of Education, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
| | - Ning Sun
- Engineering Research Center of Wideband Wireless Communication Technology, Ministry of Education, Nanjing University of Posts and Telecommunications, Nanjing 210003, China.
| | - Xiujuan Liu
- Department of Radiology, Zhuhai People's Hospital(Zhuhai Clinical Medical College of Jinan University), Zhuhai 519000, China
| |
Collapse
|
2
|
Zhou Z, Jin Y, Ye H, Zhang X, Liu J, Zhang W. Classification, detection, and segmentation performance of image-based AI in intracranial aneurysm: a systematic review. BMC Med Imaging 2024; 24:164. [PMID: 38956538 PMCID: PMC11218239 DOI: 10.1186/s12880-024-01347-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND The detection and management of intracranial aneurysms (IAs) are vital to prevent life-threatening complications like subarachnoid hemorrhage (SAH). Artificial Intelligence (AI) can analyze medical images, like CTA or MRA, spotting nuances possibly overlooked by humans. Early detection facilitates timely interventions and improved outcomes. Moreover, AI algorithms offer quantitative data on aneurysm attributes, aiding in long-term monitoring and assessing rupture risks. METHODS We screened four databases (PubMed, Web of Science, IEEE and Scopus) for studies using artificial intelligence algorithms to identify IA. Based on algorithmic methodologies, we categorized them into classification, segmentation, detection and combined, and then their merits and shortcomings are compared. Subsequently, we elucidate potential challenges that contemporary algorithms might encounter within real-world clinical diagnostic contexts. Then we outline prospective research trajectories and underscore key concerns in this evolving field. RESULTS Forty-seven studies of IA recognition based on AI were included based on search and screening criteria. The retrospective results represent that current studies can identify IA in different modal images and predict their risk of rupture and blockage. In clinical diagnosis, AI can effectively improve the diagnostic accuracy of IA and reduce missed detection and false positives. CONCLUSIONS The AI algorithm can detect unobtrusive IA more accurately in communicating arteries and cavernous sinus arteries to avoid further expansion. In addition, analyzing aneurysm rupture and blockage before and after surgery can help doctors plan treatment and reduce the uncertainties in the treatment process.
Collapse
Affiliation(s)
- Zhiyue Zhou
- School of Medicine, Southern University of Science and Technology, Southern University of Science and Technology, Shenzhen, China
| | - Yuxuan Jin
- School of Medicine, Southern University of Science and Technology, Southern University of Science and Technology, Shenzhen, China
| | - Haili Ye
- Research Institute of Trustworthy Autonomous Systems and Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Xiaoqing Zhang
- Research Institute of Trustworthy Autonomous Systems and Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China.
| | - Jiang Liu
- Research Institute of Trustworthy Autonomous Systems and Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China.
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China.
| | - Wenyong Zhang
- School of Medicine, Southern University of Science and Technology, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
3
|
Domadia SG, Thakkar FN, Ardeshana MA. Segmenting brain glioblastoma using dense-attentive 3D DAF 2. Phys Med 2024; 119:103304. [PMID: 38340694 DOI: 10.1016/j.ejmp.2024.103304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/18/2023] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Precise delineation of brain glioblastoma or tumor through segmentation is pivotal in the diagnosis, formulating treatment strategies, and evaluating therapeutic progress in patients. Precisely identifying brain glioblastoma within multimodal MRI scans poses a significant challenge in the field of medical image analysis as different intensity profiles are observed across the sub-regions, reflecting diverse tumor biological properties. For segmenting glioblastoma areas, convolutional neural networks have displayed astounding performance in recent years. This paper introduces an innovative methodology for brain glioblastoma segmentation by combining the Dense-Attention 3D U-Net network with a fusion strategy and the focal tversky loss function. By fusing information from multiple resolution segmentation maps, our model enhances its ability to discern intricate tumor boundaries. Incorporating the focal tversky loss function, we effectively emphasize critical regions and mitigate class imbalance. Recursive Convolution Block 2 is proposed after fusion to ensure efficient utilization of all accessible features while maintaining rapid convergence. The network's effectiveness is assessed using diverse datasets BraTS 2020 and BraTS 2021. Results show comparable dice similarity coefficient compared to other methods with increased efficiency and segmentation performance. Additionally, the architecture achieved an average dice similarity coefficient of 82.4% and an average hausdorff distance (HD95) of 10.426, which demonstrated consistent performance improvement compared to baseline models like U-Net, Attention U-Net, V-Net and Res U-Net and indicating the effectiveness of proposed architecture.
Collapse
|
4
|
Buongiorno R, Del Corso G, Germanese D, Colligiani L, Python L, Romei C, Colantonio S. Enhancing COVID-19 CT Image Segmentation: A Comparative Study of Attention and Recurrence in UNet Models. J Imaging 2023; 9:283. [PMID: 38132701 PMCID: PMC10744014 DOI: 10.3390/jimaging9120283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/09/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
Imaging plays a key role in the clinical management of Coronavirus disease 2019 (COVID-19) as the imaging findings reflect the pathological process in the lungs. The visual analysis of High-Resolution Computed Tomography of the chest allows for the differentiation of parenchymal abnormalities of COVID-19, which are crucial to be detected and quantified in order to obtain an accurate disease stratification and prognosis. However, visual assessment and quantification represent a time-consuming task for radiologists. In this regard, tools for semi-automatic segmentation, such as those based on Convolutional Neural Networks, can facilitate the detection of pathological lesions by delineating their contour. In this work, we compared four state-of-the-art Convolutional Neural Networks based on the encoder-decoder paradigm for the binary segmentation of COVID-19 infections after training and testing them on 90 HRCT volumetric scans of patients diagnosed with COVID-19 collected from the database of the Pisa University Hospital. More precisely, we started from a basic model, the well-known UNet, then we added an attention mechanism to obtain an Attention-UNet, and finally we employed a recurrence paradigm to create a Recurrent-Residual UNet (R2-UNet). In the latter case, we also added attention gates to the decoding path of an R2-UNet, thus designing an R2-Attention UNet so as to make the feature representation and accumulation more effective. We compared them to gain understanding of both the cognitive mechanism that can lead a neural model to the best performance for this task and the good compromise between the amount of data, time, and computational resources required. We set up a five-fold cross-validation and assessed the strengths and limitations of these models by evaluating the performances in terms of Dice score, Precision, and Recall defined both on 2D images and on the entire 3D volume. From the results of the analysis, it can be concluded that Attention-UNet outperforms the other models by achieving the best performance of 81.93%, in terms of 2D Dice score, on the test set. Additionally, we conducted statistical analysis to assess the performance differences among the models. Our findings suggest that integrating the recurrence mechanism within the UNet architecture leads to a decline in the model's effectiveness for our particular application.
Collapse
Affiliation(s)
- Rossana Buongiorno
- Institute of Information Science and Technologies, National Research Council of Italy (ISTI-CNR), 56124 Pisa, PI, Italy; (G.D.C.); (S.C.)
| | - Giulio Del Corso
- Institute of Information Science and Technologies, National Research Council of Italy (ISTI-CNR), 56124 Pisa, PI, Italy; (G.D.C.); (S.C.)
| | - Danila Germanese
- Institute of Information Science and Technologies, National Research Council of Italy (ISTI-CNR), 56124 Pisa, PI, Italy; (G.D.C.); (S.C.)
| | - Leonardo Colligiani
- Department of Translational Research, Academic Radiology, University of Pisa, 56124 Pisa, PI, Italy;
| | - Lorenzo Python
- 2nd Radiology Unit, Pisa University Hospital, 56124 Pisa, PI, Italy; (L.P.)
| | - Chiara Romei
- 2nd Radiology Unit, Pisa University Hospital, 56124 Pisa, PI, Italy; (L.P.)
| | - Sara Colantonio
- Institute of Information Science and Technologies, National Research Council of Italy (ISTI-CNR), 56124 Pisa, PI, Italy; (G.D.C.); (S.C.)
| |
Collapse
|
5
|
Nafees Ahmed S, Prakasam P. A systematic review on intracranial aneurysm and hemorrhage detection using machine learning and deep learning techniques. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 183:1-16. [PMID: 37499766 DOI: 10.1016/j.pbiomolbio.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/05/2023] [Accepted: 07/15/2023] [Indexed: 07/29/2023]
Abstract
The risk of discovering an intracranial aneurysm during the initial screening and follow-up screening are reported as around 11%, and 7% respectively (Zuurbie et al., 2023) to these mass effects, unruptured aneurysms frequently generate symptoms, however, the real hazard occurs when an aneurysm ruptures and results in a cerebral hemorrhage known as a subarachnoid hemorrhage. The objective is to study the multiple kinds of hemorrhage and aneurysm detection problems and develop machine and deep learning models to recognise them. Due to its early stage, subarachnoid hemorrhage, the most typical symptom after aneurysm rupture, is an important medical condition. It frequently results in severe neurological emergencies or even death. Although most aneurysms are asymptomatic and won't burst, because of their unpredictable growth, even small aneurysms are susceptible. A timely diagnosis is essential to prevent early mortality because a large percentage of hemorrhage cases present can be fatal. Physiological/imaging markers and the degree of the subarachnoid hemorrhage can be used as indicators for potential early treatments in hemorrhage. The hemodynamic pathomechanisms and microcellular environment should remain a priority for academics and medical professionals. There is still disagreement about how and when to care for aneurysms that have not ruptured despite studies reporting on the risk of rupture and outcomes. We are optimistic that with the progress in our understanding of the pathophysiology of hemorrhages and aneurysms and the advancement of artificial intelligence has made it feasible to conduct analyses with a high degree of precision, effectiveness and reliability.
Collapse
Affiliation(s)
- S Nafees Ahmed
- School of Electronics Engineering, Vellore Institute of Technology, Vellore, India.
| | - P Prakasam
- School of Electronics Engineering, Vellore Institute of Technology, Vellore, India.
| |
Collapse
|
6
|
Wang J, Ma X, Cao L, Leng Y, Li Z, Cheng Z, Cao Y, Huang X, Zheng J. DB-DCAFN: dual-branch deformable cross-attention fusion network for bacterial segmentation. Vis Comput Ind Biomed Art 2023; 6:13. [PMID: 37402101 DOI: 10.1186/s42492-023-00141-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/18/2023] [Indexed: 07/05/2023] Open
Abstract
Sputum smear tests are critical for the diagnosis of respiratory diseases. Automatic segmentation of bacteria from sputum smear images is important for improving diagnostic efficiency. However, this remains a challenging task owing to the high interclass similarity among different categories of bacteria and the low contrast of the bacterial edges. To explore more levels of global pattern features to promote the distinguishing ability of bacterial categories and maintain sufficient local fine-grained features to ensure accurate localization of ambiguous bacteria simultaneously, we propose a novel dual-branch deformable cross-attention fusion network (DB-DCAFN) for accurate bacterial segmentation. Specifically, we first designed a dual-branch encoder consisting of multiple convolution and transformer blocks in parallel to simultaneously extract multilevel local and global features. We then designed a sparse and deformable cross-attention module to capture the semantic dependencies between local and global features, which can bridge the semantic gap and fuse features effectively. Furthermore, we designed a feature assignment fusion module to enhance meaningful features using an adaptive feature weighting strategy to obtain more accurate segmentation. We conducted extensive experiments to evaluate the effectiveness of DB-DCAFN on a clinical dataset comprising three bacterial categories: Acinetobacter baumannii, Klebsiella pneumoniae, and Pseudomonas aeruginosa. The experimental results demonstrate that the proposed DB-DCAFN outperforms other state-of-the-art methods and is effective at segmenting bacteria from sputum smear images.
Collapse
Affiliation(s)
- Jingkun Wang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Xinyu Ma
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Long Cao
- Department of Infectious Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Yilin Leng
- Institute of Biomedical Engineering, School of Communication and Information Engineering, Shanghai University, Shanghai, 200444, China
| | - Zeyi Li
- College of Computer and Information, Hohai University, Nanjing, 210098, China
| | - Zihan Cheng
- School of Electronic and Information Engineering, Changchun University of Science and Technology, Changchun, 130022, China
| | - Yuzhu Cao
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
- Jinan Guoke Medical Technology Development Co., Ltd, Jinan, 250101, China
| | - Xiaoping Huang
- Department of Infectious Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| | - Jian Zheng
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China.
- Jinan Guoke Medical Technology Development Co., Ltd, Jinan, 250101, China.
| |
Collapse
|
7
|
Yuan W, Peng Y, Guo Y, Ren Y, Xue Q. Correction: DCAU-Net: dense convolutional attention U-Net for segmentation of intracranial aneurysm images. Vis Comput Ind Biomed Art 2022; 5:12. [PMID: 35526175 PMCID: PMC9081071 DOI: 10.1186/s42492-022-00110-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Wenwen Yuan
- College of Computer Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Yanjun Peng
- College of Computer Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China.
| | - Yanfei Guo
- College of Computer Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Yande Ren
- The Department of Radiology, the Afliated Hospital of Qingdao University, Qingdao, 266000, China.
| | - Qianwen Xue
- Qingdao Maternal & Child Health and Family Planning Service Center, Qingdao, 266034, China
| |
Collapse
|