1
|
Ma JX, Li HJ, Jin C, Wang H, Tang LX, Si J, Cui BK. Assembly and comparative analysis of the complete mitochondrial genome of Daedaleopsissinensis (Polyporaceae, Basidiomycota), contributing to understanding fungal evolution and ecological functions. IMA Fungus 2025; 16:e141288. [PMID: 40052081 PMCID: PMC11882022 DOI: 10.3897/imafungus.16.141288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/02/2025] [Indexed: 03/09/2025] Open
Abstract
Daedaleopsissinensis is a crucial wood-decaying fungus with significant lignocellulose-degrading ability, which plays a vital role in the material cycle and energy flow of forest ecosystems. However, the mitochondrial genome of D.sinensis has not yet been revealed. In the present study, the complete mitochondrial genome of D.sinensis was assembled and compared with related species. The mitochondrial genome spans 69,155 bp and has a GC content of 25.0%. It comprises 15 protein-coding genes (PCGs), 26 transfer RNA genes, two ribosomal RNA genes and one DNA polymerase gene (dpo). Herein, we characterised and analysed the codon preferences, variation and evolution of PCGs, repeats, intron dynamics, as well as RNA editing events in the D.sinensis mitochondrial genome. Further, a phylogenetic analysis of D.sinensis and the other 86 Basidiomycota species was performed using mitochondrial genome data. The results revealed that four species, D.confragosa, D.sinensis, D.nitida and Fomesfomentarius, were grouped in a closely-related cluster with high support values, indicating that a close phylogenetic relationship existed between Daedaleopsis and Fomes. This study reported on the initial assembly and annotation of the mitochondrial genome of D.sinensis, which greatly improved the knowledge of the fungus. These results contribute to the limited understanding of the mitochondrial repository of wood-decaying fungi, thereby laying the foundation for subsequent research on fungal evolution and ecological functions.
Collapse
Affiliation(s)
- Jin-Xin Ma
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, ChinaBeijing Forestry UniversityBeijingChina
| | - Hai-Jiao Li
- National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, ChinaNational Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and PreventionBeijingChina
| | - Can Jin
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, ChinaBeijing Forestry UniversityBeijingChina
| | - Hao Wang
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, ChinaBeijing Forestry UniversityBeijingChina
| | - Lu-Xin Tang
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, ChinaBeijing Forestry UniversityBeijingChina
| | - Jing Si
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, ChinaBeijing Forestry UniversityBeijingChina
| | - Bao-Kai Cui
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, ChinaBeijing Forestry UniversityBeijingChina
| |
Collapse
|
2
|
Gao W, Chen S, Li Q. The first complete mitochondrial genome of Phellinus pomaceus var. prunastri (Pers.) Pat. 1926 (Hymenochaetales: Hymenochaetaceae) and phylogenetic analysis. Mitochondrial DNA B Resour 2024; 9:1674-1678. [PMID: 39664029 PMCID: PMC11632937 DOI: 10.1080/23802359.2024.2438275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/29/2024] [Indexed: 12/13/2024] Open
Abstract
Phellinus pomaceus var. prunastri (Pers.) Pat. 1926 is a famous medicinal fungus that has attracted considerable interest in biotechnology because of its diverse biologically active ingredients. Here, we provide the full mitochondrial genome sequence of P. pomaceus, which spans 122,850 bp and has a GC content of 26.04%. The genome comprises 15 essential protein-coding genes, 26 distinct ORFs, 24 intronic ORFs, 25 tRNAs, and 2 rRNA genes. Bayesian inference (BI) was employed for phylogenetic analysis, revealing the evolutionary relationships among 17 Basidiomycota fungi. The results strongly supported distinct clades and indicated that P. pomaceus is closely related to Fomitiporia mediterranea.
Collapse
Affiliation(s)
- Wei Gao
- Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, Sichuan, China
| | - Shuyi Chen
- School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Qiang Li
- School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Mi Z, Su J, Yu L, Zhang T. Comparative mitochondrial genomics of Thelebolaceae in Antarctica: insights into their extremophilic adaptations and evolutionary dynamics. IMA Fungus 2024; 15:33. [PMID: 39478621 PMCID: PMC11523780 DOI: 10.1186/s43008-024-00164-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 10/08/2024] [Indexed: 11/03/2024] Open
Abstract
Species of Antarctomyces and Thelebolus (Thelebolaceae), primarily found in Antarctic environments, exhibit psychrophilic adaptations, yet their mitochondrial genomes have not been extensively studied. Furthermore, few studies have compared the mitochondrial genomes of psychrophilic, psychrotrophic, and mesophilic fungi. After successful sequencing and assembly, this study annotated the mitochondrial genomes of Antarctomyces psychrotrophicus CPCC 401038 and Thelebolus microsporus CPCC 401041. We also performed a comparative analysis with the previously characterized mitochondrial genomes of psychrotrophic and mesophilic fungi. The analysis revealed that nad4L was the most conserved gene across the mitochondrial genomes, characterized by its synonymous and non-synonymous substitution rates (Ks and Ka), genetic distance, and GC content and skew within the protein-coding genes (PCGs). Additionally, the mitochondrial genomes of psychrophilic and psychrotrophic fungi showed a higher proportion of protein-coding regions and a lower GC content compared to those of mesophilic fungi, underscoring the genetic basis of cold adaptation. Phylogenetic analyses based on these mitochondrial genes also confirmed the phylogenetic relationships of Thelebolaceae in the class Leotiomycetes. These findings advance our understanding of the phylogenetic relationships and evolutionary dynamics within the family Thelebolaceae, highlighting how different environmental temperatures influence fungal mitochondrial genomic structure and adaptation.
Collapse
Affiliation(s)
- Zechen Mi
- China Pharmaceutical Culture Collection, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Jing Su
- China Pharmaceutical Culture Collection, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Liyan Yu
- China Pharmaceutical Culture Collection, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, People's Republic of China.
| | - Tao Zhang
- China Pharmaceutical Culture Collection, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, People's Republic of China.
| |
Collapse
|
4
|
Chang X, Li X, Li Z, Hywel-Jones N, Li G, Chen M. Comparative Mitogenomics Analysis Revealed Evolutionary Divergence among Purpureocillium Species and Gene Arrangement and Intron Dynamics of Ophiocordycipitaceae. Microorganisms 2024; 12:2053. [PMID: 39458362 PMCID: PMC11509744 DOI: 10.3390/microorganisms12102053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
The species of Purpureocillium are cosmopolitan and multitrophic fungi that can infect a wide range of invertebrate hosts. This study reports the mitogenome of P. atypicola, a specialized spider pathogenic fungus. The 112,465 bp mitogenome encoded genes typically found in fungal mitogenomes, and a total of 52 introns inserted into seven genes. A comparison with three other Purpureocillium species revealed significant differences in length and intron number, primarily due to intron variation; however, there was no dynamic variation in the introns of the cox1 gene within the same species of the Purpureocillium genus. Different mitochondrial protein-coding genes showed variable degrees of genetic differentiation among these species, but they were all under purifying selection. Additionally, frequent intron loss or gain events were detected to have occurred during the evolution of the Ophiocordycipitaceae mitogenomes, yet the gene arrangement remains conserved. A phylogenetic analysis of the combined mitochondrial gene set gave identical and well-supported tree topologies. The estimated age of the crown of Ophiocordycipitaceae and Purpureocillium were around the Early Cretaceous period (127 Mya) and Late Cretaceous period (83 Mya), respectively. The results of this study advance our understanding of the genomics, evolution, and taxonomy of this important fungal group.
Collapse
Affiliation(s)
- Xiaoyun Chang
- Anhui Province Key Laboratory of Green Control for Major Forestry Pests, Anhui Agricultural University, Hefei 230036, China; (X.C.); (X.L.); (Z.L.)
| | - Xiang Li
- Anhui Province Key Laboratory of Green Control for Major Forestry Pests, Anhui Agricultural University, Hefei 230036, China; (X.C.); (X.L.); (Z.L.)
| | - Zengzhi Li
- Anhui Province Key Laboratory of Green Control for Major Forestry Pests, Anhui Agricultural University, Hefei 230036, China; (X.C.); (X.L.); (Z.L.)
- BioAsia Life Science Institute, Pinghu 314200, China;
| | | | - Guangshuo Li
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China;
| | - Mingjun Chen
- Anhui Province Key Laboratory of Green Control for Major Forestry Pests, Anhui Agricultural University, Hefei 230036, China; (X.C.); (X.L.); (Z.L.)
| |
Collapse
|
5
|
He M, Chen G. Characterization of the complete mitochondrial genome of the medical fungus Ganoderma resinaceum Boud., 1889 (Polyporales: Ganodermataceae). Mitochondrial DNA B Resour 2024; 9:1291-1297. [PMID: 39359381 PMCID: PMC11445931 DOI: 10.1080/23802359.2024.2410449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024] Open
Abstract
The medical mushroom Ganoderma resinaceum Boud., 1889, is of great interest in pharmacy due to its diverse functional active ingredients. However, the mitochondrial genome of G. resinaceum remains unexplored. Here, we present the complete mitochondrial genome of G. resinaceum, which spans 67,458 bp and has a GC content of 25.65%. This genome encompasses 15 core protein-coding genes, 8 independent ORFs, 15 intronic ORFs, 27 tRNAs, and 2 rRNA genes. Through phylogenetic analysis using Bayesian inference (BI), we elucidated the evolutionary relationships among 34 Basidiomycota fungi, revealing distinct clades and indicating a close relationship between G. resinaceum and G. subamboinense.
Collapse
Affiliation(s)
- Mingda He
- Chengdu Sport University, Chengdu, P. R. China
| | - Guangjiu Chen
- Luzhou Vocational and Technical College, Luzhou, P. R. China
| |
Collapse
|
6
|
He J, Qu H, Yu Y, Huang J. Characterization and phylogenetic analysis of the Talaromyces liani (kamyschko) Yilmaz, Frisvad & Samson, 2014 (Eurotiales: trichocomaceae) mitochondrial genome. Mitochondrial DNA B Resour 2024; 9:1201-1206. [PMID: 39286475 PMCID: PMC11404368 DOI: 10.1080/23802359.2024.2403409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/08/2024] [Indexed: 09/19/2024] Open
Abstract
The filamentous fungus Talaromyces liani (Kamyschko) Yilmaz, Frisvad & Samson, 2014, has attracted considerable interest in biotechnology due to its diverse industrial applications and physiological characteristics. However, the mitochondrial genome of T. liani remains uncharacterized. Here, we present the complete mitochondrial genome of T. liani, comprising 38,000 bp with a GC content of 24.61%. This genome includes 15 core protein-coding genes, 4 independent ORFs, 6 intronic ORFs, 26 tRNAs, and 2 rRNA genes. Phylogenetic analysis using Bayesian inference (BI) revealed the evolutionary relationships among 15 fungi from Eurotiales, strongly supporting distinct clades and indicating that T. liani most closely related to T. pinophilus.
Collapse
Affiliation(s)
- Jing He
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, Xichang, Sichuan, China
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Sichuan, China
| | - Huijuan Qu
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Youqiao Yu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Sichuan, China
| | - Jingwei Huang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Deng Y, Chen G, Bao X, He J, Li Q. Characterization of the complete mitochondrial genome of Mucor indicus Lendn. 1930 (Mucorales: Mucoraceae), isolated from the wine fermentation system. Mitochondrial DNA B Resour 2024; 9:845-849. [PMID: 38939449 PMCID: PMC11210418 DOI: 10.1080/23802359.2024.2371376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 06/18/2024] [Indexed: 06/29/2024] Open
Abstract
Mucor indicus Lendn. 1930 has been widely used in food fermentation; however, its mitochondrial genome characteristics are not well understood. In this study, the complete mitochondrial genome of M. indicus was obtained, which was 61,400 bp in length with a GC content of 33%. The M. indicus mitochondrial genome was found to contain 14 core protein-coding genes, four free-standing ORFs, 18 intronic ORFs, 26 tRNAs, and two rRNA genes. Phylogenetic trees were generated for 25 early-differentiated fungi using the Bayesian inference (BI) method, which demonstrated that M. indicus is closely related to Mucor piriformis. This study provides useful information for the classification and evolution of Mucor species or other early-differentiated fungi.
Collapse
Affiliation(s)
- Yue Deng
- Luzhou Vocational and Technical College, Luzhou, P. R. China
| | - Guangjiu Chen
- Luzhou Vocational and Technical College, Luzhou, P. R. China
| | - Xuedong Bao
- Luzhou Vocational and Technical College, Luzhou, P. R. China
| | - Jie He
- Luzhou Vocational and Technical College, Luzhou, P. R. China
| | - Qiang Li
- School of Food and Biological Engineering, Chengdu University, Chengdu, P. R. China
| |
Collapse
|
8
|
Deng Y, Chen G, Bao X, He J. Characterization and phylogenetic analysis of the complete mitochondrial genome of Saccharomycopsis fibuligera (lindner) Klocker 1907 (saccharomycetales: saccharomycopsidaceae). Mitochondrial DNA B Resour 2024; 9:743-747. [PMID: 38887218 PMCID: PMC11182061 DOI: 10.1080/23802359.2024.2364756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/31/2024] [Indexed: 06/20/2024] Open
Abstract
Saccharomycopsis fibuligera (Lindner) Klocker 1907 is frequently employed in the fermentation of metabolites such as citric acid, ethanol, mannitol, and pyruvate. Its heat tolerance and alcohol-producing capabilities during fermentation make it a desirable option for bread and wine production. To date, the mitochondrial genome of S. fibuligera has not been sequenced. In the present study, we obtained the full mitochondrial genome of S. fibuligera, which is 57,302 bp long and has a GC content of 24.40%. This genome contained 14 core protein-coding genes, 3 independent ORFs, 21 intronic ORFs, 25 tRNAs, and 2 rRNA genes. By utilizing the Bayesian inference phylogenetic method, we constructed phylogenetic trees for 24 Saccharomycotina fungi, which indicated that S. fibuligera is closely related to S. capsularis.
Collapse
Affiliation(s)
- Yue Deng
- Luzhou Vocational and Technical College, Luzhou, Sichuan, China
| | - Guangjiu Chen
- Luzhou Vocational and Technical College, Luzhou, Sichuan, China
| | - Xuedong Bao
- Luzhou Vocational and Technical College, Luzhou, Sichuan, China
| | - Jie He
- Luzhou Vocational and Technical College, Luzhou, Sichuan, China
| |
Collapse
|
9
|
Deng Y, Chen G, Bao X, He J, Li Q. Mitochondrial genomic characteristics and phylogenetic analysis of a brewing fungus, Rhizopus microsporus Tiegh. 1875 (Mucorales: Rhizopodaceae). Mitochondrial DNA B Resour 2024; 9:657-662. [PMID: 38774188 PMCID: PMC11107855 DOI: 10.1080/23802359.2024.2356133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/12/2024] [Indexed: 05/24/2024] Open
Abstract
Rhizopus microsporus Tiegh. 1875 is widely used in a variety of industries, such as brewing, wine making, baking, and medicine production, as it has the capability to break down proteins and generate surface-active agents. To date, the mitochondrial genome features of early evolved fungi from the Rhizopus genus have not been extensively studied. Our research obtained a full mitochondrial genome of R. microsporus species, which was 43,837 bp in size and had a GC content of 24.93%. This genome contained 14 core protein-coding genes, 3 independent ORFs, 7 intronic ORFs, 24 tRNAs, and 2 rRNA genes. Through the use of the BI phylogenetic inference method, we were able to create phylogenetic trees for 25 early differentiation fungi which strongly supported the major clades; this indicated that R. microsporus is most closely related to Rhizopus oryzae.
Collapse
Affiliation(s)
- Yue Deng
- Luzhou Vocational and Technical College, Luzhou, Sichuan, P. R. China
| | - Guangjiu Chen
- Luzhou Vocational and Technical College, Luzhou, Sichuan, P. R. China
| | - Xuedong Bao
- Luzhou Vocational and Technical College, Luzhou, Sichuan, P. R. China
| | - Jie He
- Luzhou Vocational and Technical College, Luzhou, Sichuan, P. R. China
| | - Qiang Li
- School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, P. R. China
| |
Collapse
|
10
|
Lei Y, Ding D, Duan J, Luo Y, Huang F, Kang Y, Chen Y, Li S. Soil Microbial Community Characteristics and Their Effect on Tea Quality under Different Fertilization Treatments in Two Tea Plantations. Genes (Basel) 2024; 15:610. [PMID: 38790239 PMCID: PMC11121415 DOI: 10.3390/genes15050610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Fertilization is an essential aspect of tea plantation management that supports a sustainable tea production and drastically influences soil microbial communities. However, few research studies have focused on the differences of microbial communities and the variation in tea quality in response to different fertilization treatments. In this work, the soil fertility, tea quality, and soil microbial communities were investigated in two domestic tea plantations following the application of chemical and organic fertilizers. We determined the content of mineral elements in the soil, including nitrogen, phosphorus, and potassium, and found that the supplementation of chemical fertilizer directly increased the content of mineral elements. However, the application of organic fertilizer significantly improved the accumulation of tea polyphenols and reduced the content of caffeine. Furthermore, amplicon sequencing results showed that the different ways of applying fertilizer have limited effect on the alpha diversity of the microbial community in the soil while the beta diversity was remarkably influenced. This work also suggests that the bacterial community structure and abundance were also relatively constant while the fungal community structure and abundance were dramatically influenced; for example, Chaetomiaceae at the family level, Hypocreaceae at the order level, Trichoderma at the genus level, and Fusarium oxysporum at the species level were predominantly enriched in the tea plantation applying organic fertilizer. Moreover, the bacterial and fungal biomarkers were also analyzed and it was found that Proteobacteria and Gammaproteobacteria (bacteria) and Tremellomycetes (fungi) were potentially characterized as biomarkers in the plantation under organic fertilization. These results provide a valuable basis for the application of organic fertilizer to improve the soil of tea plantations in the future.
Collapse
Affiliation(s)
- Yu Lei
- Tea Research Institute, Hunan Academy of Agricultural Science, Changsha 410125, China; (Y.L.); (D.D.); (J.D.); (Y.L.); (F.H.); (Y.K.); (Y.C.)
- National Medium and Small Leaf Tea Plant Germplasm Resource Repository (Changsha), Changsha 410125, China
- National Center for Tea Improvement, Hunan Branch/Hunan Tea Variety and Seedling Engineering Technology Research Center, Changsha 410125, China
| | - Ding Ding
- Tea Research Institute, Hunan Academy of Agricultural Science, Changsha 410125, China; (Y.L.); (D.D.); (J.D.); (Y.L.); (F.H.); (Y.K.); (Y.C.)
- National Medium and Small Leaf Tea Plant Germplasm Resource Repository (Changsha), Changsha 410125, China
- National Center for Tea Improvement, Hunan Branch/Hunan Tea Variety and Seedling Engineering Technology Research Center, Changsha 410125, China
| | - Jihua Duan
- Tea Research Institute, Hunan Academy of Agricultural Science, Changsha 410125, China; (Y.L.); (D.D.); (J.D.); (Y.L.); (F.H.); (Y.K.); (Y.C.)
- National Medium and Small Leaf Tea Plant Germplasm Resource Repository (Changsha), Changsha 410125, China
- National Center for Tea Improvement, Hunan Branch/Hunan Tea Variety and Seedling Engineering Technology Research Center, Changsha 410125, China
| | - Yi Luo
- Tea Research Institute, Hunan Academy of Agricultural Science, Changsha 410125, China; (Y.L.); (D.D.); (J.D.); (Y.L.); (F.H.); (Y.K.); (Y.C.)
- National Medium and Small Leaf Tea Plant Germplasm Resource Repository (Changsha), Changsha 410125, China
- National Center for Tea Improvement, Hunan Branch/Hunan Tea Variety and Seedling Engineering Technology Research Center, Changsha 410125, China
| | - Feiyi Huang
- Tea Research Institute, Hunan Academy of Agricultural Science, Changsha 410125, China; (Y.L.); (D.D.); (J.D.); (Y.L.); (F.H.); (Y.K.); (Y.C.)
- National Medium and Small Leaf Tea Plant Germplasm Resource Repository (Changsha), Changsha 410125, China
- National Center for Tea Improvement, Hunan Branch/Hunan Tea Variety and Seedling Engineering Technology Research Center, Changsha 410125, China
| | - Yankai Kang
- Tea Research Institute, Hunan Academy of Agricultural Science, Changsha 410125, China; (Y.L.); (D.D.); (J.D.); (Y.L.); (F.H.); (Y.K.); (Y.C.)
- National Medium and Small Leaf Tea Plant Germplasm Resource Repository (Changsha), Changsha 410125, China
- National Center for Tea Improvement, Hunan Branch/Hunan Tea Variety and Seedling Engineering Technology Research Center, Changsha 410125, China
| | - Yingyu Chen
- Tea Research Institute, Hunan Academy of Agricultural Science, Changsha 410125, China; (Y.L.); (D.D.); (J.D.); (Y.L.); (F.H.); (Y.K.); (Y.C.)
- National Medium and Small Leaf Tea Plant Germplasm Resource Repository (Changsha), Changsha 410125, China
- National Center for Tea Improvement, Hunan Branch/Hunan Tea Variety and Seedling Engineering Technology Research Center, Changsha 410125, China
| | - Saijun Li
- Tea Research Institute, Hunan Academy of Agricultural Science, Changsha 410125, China; (Y.L.); (D.D.); (J.D.); (Y.L.); (F.H.); (Y.K.); (Y.C.)
- National Medium and Small Leaf Tea Plant Germplasm Resource Repository (Changsha), Changsha 410125, China
- National Center for Tea Improvement, Hunan Branch/Hunan Tea Variety and Seedling Engineering Technology Research Center, Changsha 410125, China
| |
Collapse
|
11
|
Gao W, Chen X, He J, Sha A, Luo Y, Xiao W, Xiong Z, Li Q. Intraspecific and interspecific variations in the synonymous codon usage in mitochondrial genomes of 8 pleurotus strains. BMC Genomics 2024; 25:456. [PMID: 38730418 PMCID: PMC11084086 DOI: 10.1186/s12864-024-10374-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 05/03/2024] [Indexed: 05/12/2024] Open
Abstract
In this study, we investigated the codon bias of twelve mitochondrial core protein coding genes (PCGs) in eight Pleurotus strains, two of which are from the same species. The results revealed that the codons of all Pleurotus strains had a preference for ending in A/T. Furthermore, the correlation between codon base compositions and codon adaptation index (CAI), codon bias index (CBI) and frequency of optimal codons (FOP) indices was also detected, implying the influence of base composition on codon bias. The two P. ostreatus species were found to have differences in various base bias indicators. The average effective number of codons (ENC) of mitochondrial core PCGs of Pleurotus was found to be less than 35, indicating strong codon preference of mitochondrial core PCGs of Pleurotus. The neutrality plot analysis and PR2-Bias plot analysis further suggested that natural selection plays an important role in Pleurotus codon bias. Additionally, six to ten optimal codons (ΔRSCU > 0.08 and RSCU > 1) were identified in eight Pleurotus strains, with UGU and ACU being the most widely used optimal codons in Pleurotus. Finally, based on the combined mitochondrial sequence and RSCU value, the genetic relationship between different Pleurotus strains was deduced, showing large variations between them. This research has improved our understanding of synonymous codon usage characteristics and evolution of this important fungal group.
Collapse
Affiliation(s)
- Wei Gao
- Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, Sichuan, China
| | - Xiaodie Chen
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Jing He
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Ajia Sha
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Yingyong Luo
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Wenqi Xiao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Zhuang Xiong
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China.
- School of Food and Biological Engineering, Chengdu University, 2025 # Chengluo Avenue, Longquanyi District, Chengdu, Sichuan, 610106, China.
| |
Collapse
|
12
|
Himmelstrand K, Brandström Durling M, Karlsson M, Stenlid J, Olson Å. Multiple rearrangements and low inter- and intra-species mitogenome sequence variation in the Heterobasidion annosum s.l. species complex. Front Microbiol 2023; 14:1159811. [PMID: 37275157 PMCID: PMC10234125 DOI: 10.3389/fmicb.2023.1159811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/16/2023] [Indexed: 06/07/2023] Open
Abstract
Introduction Mitochondria are essential organelles in the eukaryotic cells and responsible for the energy production but are also involved in many other functions including virulence of some fungal species. Although the evolution of fungal mitogenomes have been studied at some taxonomic levels there are still many things to be learned from studies of closely related species. Methods In this study, we have analyzed 60 mitogenomes in the five species of the Heterobasidion annosum sensu lato complex that all are necrotrophic pathogens on conifers. Results and Discussion Compared to other fungal genera the genomic and genetic variation between and within species in the complex was low except for multiple rearrangements. Several translocations of large blocks with core genes have occurred between the five species and rearrangements were frequent in intergenic areas. Mitogenome lengths ranged between 108 878 to 116 176 bp, mostly as a result of intron variation. There was a high degree of homology of introns, homing endonuclease genes, and intergenic ORFs among the five Heterobasidion species. Three intergenic ORFs with unknown function (uORF6, uORF8 and uORF9) were found in all five species and was located in conserved synteny blocks. A 13 bp long GC-containing self-complementary palindrome was discovered in many places in the five species that were optional in presence/absence. The within species variation is very low, among 48 H. parviporum mitogenomes, there was only one single intron exchange, and SNP frequency was 0.28% and indel frequency 0.043%. The overall low variation in the Heterobasidion annosum sensu lato complex suggests a slow evolution of the mitogenome.
Collapse
Affiliation(s)
| | | | | | | | - Åke Olson
- Uppsala BioCenter, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
13
|
Li Q, Xiao W, Wu P, Zhang T, Xiang P, Wu Q, Zou L, Gui M. The first two mitochondrial genomes from Apiotrichum reveal mitochondrial evolution and different taxonomic assignment of Trichosporonales. IMA Fungus 2023; 14:7. [PMID: 37004131 PMCID: PMC10064765 DOI: 10.1186/s43008-023-00112-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 03/21/2023] [Indexed: 04/03/2023] Open
Abstract
Apiotrichum is a diverse anamorphic basidiomycetous yeast genus, and its mitogenome characterization has not been revealed. In this study, we assembled two Apiotrichum mitogenomes and compared them with mitogenomes from Agaricomycotina, Pucciniomycotina and Ustilaginomycotina. The mitogenomes of Apiotrichum gracile and A. gamsii comprised circular DNA molecules, with sizes of 34,648 bp and 38,096 bp, respectively. Intronic regions were found contributed the most to the size expansion of A. gamsii mitogenome. Comparative mitogenomic analysis revealed that 6.85-38.89% of nucleotides varied between tRNAs shared by the two Apiotrichum mitogenomes. The GC content of all core PCGs in A. gamsii was lower than that of A. gracile, with an average low value of 4.97%. The rps3 gene differentiated the most among Agaricomycotina, Pucciniomycotina and Ustilaginomycotina species, while nad4L gene was the most conserved in evolution. The Ka/Ks values for cob and rps3 genes were > 1, indicating the two genes may be subjected to positive selection in Agaricomycotina, Pucciniomycotina and Ustilaginomycotina. Frequent intron loss/gain events and potential intron transfer events have been detected in evolution of Agaricomycotina, Pucciniomycotina and Ustilaginomycotina. We further detected large-scale gene rearrangements between the 19 mitogenomes from Agaricomycotina, Pucciniomycotina and Ustilaginomycotina, and fifteen of the 17 mitochondrial genes shared by Apiotrichum varied in gene arrangements. Phylogenetic analyses based on maximum likelihood and Bayesian inference methods using a combined mitochondrial gene dataset revealed different taxonomic assignment of two Apiotrichum species, wherein A. gamsii had a more closely relationship with Trichosporon asahii. This study served as the first report on mitogenomes from the genus Apiotrichum, which promotes the understanding of evolution, genomics, and phylogeny of Apiotrichum.
Collapse
Affiliation(s)
- Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Wenqi Xiao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Peng Wu
- Yunnan Plateau Characteristic Agricultural Industry Research Institute, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Ting Zhang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Peng Xiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Qian Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China.
- School of Food and Biological Engineering, Chengdu University, 2025 # Chengluo Avenue, Chengdu, 610106, Sichuan, China.
| | - Mingying Gui
- Yunnan Plateau Characteristic Agricultural Industry Research Institute, Yunnan Agricultural University, Kunming, Yunnan, China.
- School of Food and Biological Engineering, Chengdu University, 2025 # Chengluo Avenue, Chengdu, 610106, Sichuan, China.
| |
Collapse
|
14
|
Li Q, Luo Y, Sha A, Xiao W, Xiong Z, Chen X, He J, Peng L, Zou L. Analysis of synonymous codon usage patterns in mitochondrial genomes of nine Amanita species. Front Microbiol 2023; 14:1134228. [PMID: 36970689 PMCID: PMC10030801 DOI: 10.3389/fmicb.2023.1134228] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/14/2023] [Indexed: 03/10/2023] Open
Abstract
IntroductionCodon basis is a common and complex natural phenomenon observed in many kinds of organisms.MethodsIn the present study, we analyzed the base bias of 12 mitochondrial core protein-coding genes (PCGs) shared by nine Amanita species.ResultsThe results showed that the codons of all Amanita species tended to end in A/T, demonstrating the preference of mitochondrial codons of Amanita species for a preference for this codon. In addition, we detected the correlation between codon base composition and the codon adaptation index (CAI), codon bias index (CBI), and frequency of optimal codons (FOP) indices, indicating the influence of base composition on codon bias. The average effective number of codons (ENC) of mitochondrial core PCGs of Amanita is 30.81, which is <35, demonstrating the strong codon preference of mitochondrial core PCGs of Amanita. The neutrality plot analysis and PR2-Bias plot analysis further demonstrated that natural selection plays an important role in Amanita codon bias. In addition, we obtained 5–10 optimal codons (ΔRSCU > 0.08 and RSCU > 1) in nine Amanita species, and GCA and AUU were the most widely used optimal codons. Based on the combined mitochondrial sequence and RSCU value, we deduced the genetic relationship between different Amanita species and found large variations between them.DiscussionThis study promoted the understanding of synonymous codon usage characteristics and evolution of this important fungal group.
Collapse
|
15
|
Wu P, Xiao W, Luo Y, Xiong Z, Chen X, He J, Sha A, Gui M, Li Q. Comprehensive analysis of codon bias in 13 Ganoderma mitochondrial genomes. Front Microbiol 2023; 14:1170790. [PMID: 37213503 PMCID: PMC10192751 DOI: 10.3389/fmicb.2023.1170790] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/12/2023] [Indexed: 05/23/2023] Open
Abstract
Introduction Codon usage bias is a prevalent phenomenon observed across various species and genes. However, the specific attributes of codon usage in the mitochondrial genome of Ganoderma species remain unknown. Methods In this study, we investigated the codon bias of 12 mitochondrial core protein-coding genes (PCGs) in 9 Ganoderma species, including 13 Ganoderma strains. Results The codons of all Ganoderma strains showed a preference for ending in A/T. Additionally, correlations between codon base composition and the codon adaptation index (CAI), codon bias index (CBI) and frequency of optimal codons (FOP) were identified, demonstrating the impact of base composition on codon bias. Various base bias indicators were found to vary between or within Ganoderma strains, including GC3s, the CAI, the CBI, and the FOP. The results also revealed that the mitochondrial core PCGs of Ganoderma have an average effective number of codons (ENC) lower than 35, indicating strong bias toward certain codons. Evidence from neutrality plot and PR2-bias plot analysis indicates that natural selection is a major factor affecting codon bias in Ganoderma. Additionally, 11 to 22 optimal codons (ΔRSCU>0.08 and RSCU>1) were identified in 13 Ganoderma strains, with GCA, AUC, and UUC being the most widely used optimal codons in Ganoderma. By analyzing the combined mitochondrial sequences and relative synonymous codon usage (RSCU) values, the genetic relationships between or within Ganoderma strains were determined, indicating variations between them. Nevertheless, RSCU-based analysis illustrated the intra- and interspecies relationships of certain Ganoderma species. Discussion This study deepens our insight into the synonymous codon usage characteristics, genetics, and evolution of this important fungal group.
Collapse
Affiliation(s)
- Peng Wu
- Yunnan Plateau Characteristic Agricultural Industry Research Institute, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Wenqi Xiao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Yingyong Luo
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Zhuang Xiong
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Xiaodie Chen
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Jing He
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Ajia Sha
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Mingying Gui
- Yunnan Plateau Characteristic Agricultural Industry Research Institute, Yunnan Agricultural University, Kunming, Yunnan, China
- *Correspondence: Mingying Gui,
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
- Qiang Li,
| |
Collapse
|
16
|
Li Q, Li L, Zhang T, Xiang P, Wu Q, Tu W, Bao Z, Zou L, Chen C. The first two mitochondrial genomes for the genus Ramaria reveal mitochondrial genome evolution of Ramaria and phylogeny of Basidiomycota. IMA Fungus 2022; 13:16. [PMID: 36100951 PMCID: PMC9469536 DOI: 10.1186/s43008-022-00100-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 07/12/2022] [Indexed: 11/10/2022] Open
Abstract
In the present study, we assembled and analyzed the mitogenomes of two Ramaria species. The assembled mitogenomes of Ramaria cfr. rubripermanens and R. rubella were circularized, with sizes of 126,497 bp and 143,271 bp, respectively. Comparative mitogenome analysis showed that intron region contributed the most (contribution rate, 43.74%) to the size variations of Ramaria mitogenomes. The genetic contents, gene length, tRNAs, and codon usages of the two Ramaria mitogenomes varied greatly. In addition, the evolutionary rates of different core protein coding genes (PCGs) in Phallomycetidae mitogenomes varied. We detected large-scale gene rearrangements between Phallomycetidae mitogenomes, including gene displacement and tRNA doubling. A total of 4499 bp and 7746 bp aligned fragments were detected between the mitochondrial and nuclear genomes of R. cfr. rubripermanens and R. rubella, respectively, indicating possible gene transferring events. We further found frequent intron loss/gain and potential intron transfer events in Phallomycetidae mitogenomes during the evolution, and the mitogenomes of R. rubella contained a novel intron P44. Phylogenetic analyses using both Bayesian inference (BI) and Maximum Likelihood (ML) methods based on a combined mitochondrial gene dataset obtained an identical and well-supported phylogenetic tree for Basidiomycota, wherein R. cfr. rubripermanens and Turbinellus floccosus are sister species. This study served as the first report on mitogenomes from the genus Ramaria, which provides a basis for understanding the evolution, genetics, and taxonomy of this important fungal group.
Collapse
Affiliation(s)
- Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, People's Republic of China
| | - Lijiao Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, People's Republic of China
| | - Ting Zhang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, People's Republic of China
| | - Peng Xiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, People's Republic of China
| | - Qian Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, People's Republic of China
| | - Wenying Tu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, People's Republic of China
| | - Zhijie Bao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, People's Republic of China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, People's Republic of China.
| | - Cheng Chen
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture, 20 # Jingjusi Rd, Chengdu, 610066, Sichuan, People's Republic of China.
| |
Collapse
|
17
|
Li Q, Zhang T, Li L, Bao Z, Tu W, Xiang P, Wu Q, Li P, Cao M, Huang W. Comparative Mitogenomic Analysis Reveals Intraspecific, Interspecific Variations and Genetic Diversity of Medical Fungus Ganoderma. J Fungi (Basel) 2022; 8:781. [PMID: 35893149 PMCID: PMC9394262 DOI: 10.3390/jof8080781] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
Ganoderma species are widely distributed in the world with high diversity. Some species are considered to be pathogenic fungi while others are used as traditional medicine in Asia. In this study, we sequenced and assembled four Ganoderma complete mitogenomes, including G. subamboinense s118, G. lucidum s37, G. lingzhi s62, and G. lingzhi s74. The sizes of the four mitogenomes ranged from 50,603 to 73,416 bp. All Ganoderma specimens had a full set of core protein-coding genes (PCGs), and the rps3 gene of Ganoderma species was detected to be under positive or relaxed selection. We found that the non-conserved PCGs, which encode RNA polymerases, DNA polymerases, homing endonucleases, and unknown functional proteins, are dynamic within and between Ganoderma species. Introns were thought to be the main contributing factor in Ganoderma mitogenome size variation (p < 0.01). Frequent intron loss/gain events were detected within and between Ganoderma species. The mitogenome of G. lucidum s26 gained intron P637 in the cox3 gene compared with the other two G. lucidum mitogenomes. In addition, some rare introns in Ganoderma were detected in distinct Basidiomycetes, indicating potential gene transfer events. Comparative mitogenomic analysis revealed that gene arrangements also varied within and between Ganoderma mitogenomes. Using maximum likelihood and Bayesian inference methods with a combined mitochondrial gene dataset, phylogenetic analyses generated identical, well-supported tree topologies for 71 Agaricomycetes species. This study reveals intraspecific and interspecific variations of the Ganoderma mitogenomes, which promotes the understanding of the origin, evolution, and genetic diversity of Ganoderma species.
Collapse
Affiliation(s)
- Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (Q.L.); (T.Z.); (L.L.); (Z.B.); (W.T.); (P.X.); (Q.W.)
| | - Ting Zhang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (Q.L.); (T.Z.); (L.L.); (Z.B.); (W.T.); (P.X.); (Q.W.)
| | - Lijiao Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (Q.L.); (T.Z.); (L.L.); (Z.B.); (W.T.); (P.X.); (Q.W.)
| | - Zhijie Bao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (Q.L.); (T.Z.); (L.L.); (Z.B.); (W.T.); (P.X.); (Q.W.)
| | - Wenying Tu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (Q.L.); (T.Z.); (L.L.); (Z.B.); (W.T.); (P.X.); (Q.W.)
| | - Peng Xiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (Q.L.); (T.Z.); (L.L.); (Z.B.); (W.T.); (P.X.); (Q.W.)
| | - Qian Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (Q.L.); (T.Z.); (L.L.); (Z.B.); (W.T.); (P.X.); (Q.W.)
| | - Ping Li
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, 106 # Shizishan Rd., Chengdu 610061, China;
| | - Mei Cao
- Core Laboratory, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
| | - Wenli Huang
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, 106 # Shizishan Rd., Chengdu 610061, China;
| |
Collapse
|