1
|
Elegbede JA, Lateef A, Gueguim-Kana EB, Beukes LS, Matyumza N. Multi-functional xylanase from Aspergillus sydowii: biosynthesis of nanoconjugates, optimization by Taguchi approach and biodeinking potential. Prep Biochem Biotechnol 2024; 54:622-636. [PMID: 37772603 DOI: 10.1080/10826068.2023.2261037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
The search for effective production of xylanase which is an important industrial enzyme led to the present study that explored xylanase production by Aspergillus sydowii SF through Taguchi optimization that incorporated nanoconjugates in submerged fermentation. Calcium and zinc oxide nanoconjugates biosynthesized by xylanase were characterized via UV-Vis spectroscopy, Fourier transform infrared spectroscopy, and Transmission electron microscopy (TEM). The xylanase-mediated calcium oxide and zinc oxide nanoconjugates with λmax of 374 and 316 nm, respectively, and were 5.32-17.69 nm in size. Xylanase production was improved by 2.90-10.58 folds (64.24-234.15 U/mL) through Taguchi optimization cum nanoconjugates, and ANOVA showed that nanoconjugates contributed 13.62-65.97% to improved production. The xylanase had up to 88.38% deinking activity, with 49.60-84.64% removal of blue color. The remarkable xylanase production, its use to biosynthesize nanoconjugates and biodeinking potentials contribute to the development of versatile biocatalysts with applications in biotechnology, nanotechnology, and sustainable paper production. To the best of our knowledge, this represents the first report of xylanase for biosynthesis of calcium oxide and zinc oxide nanoparticles, as well as nanosupplementation to induce xylanase production, which can open new vista in bioprocess optimization.
Collapse
Affiliation(s)
- J A Elegbede
- Laboratory of Industrial Microbiology and Nanobiotechnology, Department of Pure and Applied Biology, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - A Lateef
- Laboratory of Industrial Microbiology and Nanobiotechnology, Department of Pure and Applied Biology, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
- Nanotechnology Research Group (NANO+), Laboratory of Industrial Microbiology and Nanobiotechnology, Department of Pure and Applied Biology, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - E B Gueguim-Kana
- Department of Microbiology, School of Life Sciences, University of KwaZulu-Natal, Scottsville, PieterMaritzburg, South Africa
| | - L S Beukes
- Department of Microbiology, School of Life Sciences, University of KwaZulu-Natal, Scottsville, PieterMaritzburg, South Africa
| | - N Matyumza
- Microscopy and Microanalysis Unit, School of Life Sciences, University of KwaZulu-Natal, Scottsville, PieterMaritzburg, South Africa
| |
Collapse
|
2
|
Yu J, Li C, Li X, Liu K, Liu Z, Ni W, Zhou P, Wang L, Hu S. Isolation and functional analysis of acid-producing bacteria from bovine rumen. PeerJ 2023; 11:e16294. [PMID: 37868061 PMCID: PMC10590097 DOI: 10.7717/peerj.16294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/22/2023] [Indexed: 10/24/2023] Open
Abstract
Ruminants such as cattle rely mainly on microbes in the rumen to digest cellulose and hemicellulose from forage, and the digestion products are mainly absorbed and utilized by the host in the form of short chain fatty acids (SCFAs). This study aimed to isolate acid-producing strains from the cattle rumen and investigate their functions. A total of 980 strains of acid-producing bacteria were isolated from cattle rumen contents using a medium supplemented with bromocresol green. Combined with the test of acid production ability and 16S rRNA amplicon sequencing technology, five strains were selected based on their ability to produce relatively high levels of acid, including Bacillus pumillus, Enterococcus hirae, Enterococcus faecium, and Bacillus subtilis. Sheep were treated by gavage with a mixed bacterial suspension. The results showed that mixed bacteria significantly increased the body weight gain and feed conversion rate of sheep. To investigate the function of acid-producing bacteria in sheep, we used 16S rDNA sequencing technology to analyze the rumen microbes of sheep. We found that mixed bacteria changed the composition and abundance of sheep rumen bacteria. Among them, the abundance of Bacteroidota, Actinobacteriota, Acidobacteriota, and Proteobacteria was significantly increased, and the abundance of Firmicutes was significantly decreased, indicating that the changes in gut microbiota changed the function of the sheep rumen. The acid-producing bacteria isolated in this study can effectively promote the growth of ruminants, such as cattle and sheep, and can be used as additives to improve breeding efficiency, which lays a foundation for subsequent research on probiotics.
Collapse
Affiliation(s)
- Jinming Yu
- College of Life Science, Shihezi University, Shihezi, Xinjiang, China
| | - Cunyuan Li
- College of Life Science, Shihezi University, Shihezi, Xinjiang, China
| | - Xiaoyue Li
- College of Life Science, Shihezi University, Shihezi, Xinjiang, China
| | - Kaiping Liu
- College of Life Science, Shihezi University, Shihezi, Xinjiang, China
| | - Zhuang Liu
- College of Life Science, Shihezi University, Shihezi, Xinjiang, China
| | - Wei Ni
- College of Life Science, Shihezi University, Shihezi, Xinjiang, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, Xinjiang, China
| | - Ping Zhou
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, Xinjiang, China
| | - Limin Wang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, Xinjiang, China
| | - Shengwei Hu
- College of Life Science, Shihezi University, Shihezi, Xinjiang, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, Xinjiang, China
| |
Collapse
|
3
|
Dheeraj, Srivastava A, Mishra A. Mitigation of cashew apple fruits astringency. ENVIRONMENTAL SUSTAINABILITY (SINGAPORE) 2023; 6:1-11. [PMID: 37363088 PMCID: PMC10230130 DOI: 10.1007/s42398-023-00276-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 04/16/2023] [Accepted: 04/30/2023] [Indexed: 06/28/2023]
Abstract
The cashew apple is a tropical pseudo fruit, with high fiber content, high nutritional value, and therapeutic compositional profile. Consuming cashew apples can help with several health-related problems, such as obesity, stomach ulcers, and gastritis. It has even demonstrated anti-tumor and anti-carcinogenic effects, and its antioxidants can help with wound-healing. Despite such benefits, the cashew apple is frequently considered as waste generated by cashew nut industries, since its commercial applications are restricted by the astringency and poor storability. This astringency is primarily due to the presence of tannins; and a lack of proper, efficient, and economical astringency reduction strategy is accountable for major waste generation. This review compiles pieces of information on the causes of astringency, as well as tannin reduction methods, such as clarification, thermal treatments, microfiltration, and fermentation. These methods aim to either just reduce tannin content or to valorize this by-product in a less-astringent better product. Both routes will eventually help with the better utilization of said organic food waste, which is critical for sustainable development.
Collapse
Affiliation(s)
- Dheeraj
- Department of Food Processing and Technology, School of Vocational Studies and Applied Sciences, Gautam Buddha University, 201312 Greater Noida, India
| | - Ananya Srivastava
- Department of Food Processing and Technology, School of Vocational Studies and Applied Sciences, Gautam Buddha University, 201312 Greater Noida, India
| | - Anuradha Mishra
- Department of Food Science and Technology, M.M.I.C.T. and B.M., H.M. MMDU (Deemed to be University), Mullana, Haryana Ambala, India
| |
Collapse
|
4
|
Recent advances and perspectives on production of value-added organic acids through metabolic engineering. Biotechnol Adv 2023; 62:108076. [PMID: 36509246 DOI: 10.1016/j.biotechadv.2022.108076] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/06/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
Organic acids are important consumable materials with a wide range of applications in the food, biopolymer and chemical industries. The global consumer organic acids market is estimated to increase to $36.86 billion by 2026. Conventionally, organic acids are produced from the chemical catalysis process with petrochemicals as raw materials, which posts severe environmental concerns and conflicts with our sustainable development goals. Most of the commonly used organic acids can be produced from various organisms. As a state-of-the-art technology, large-scale fermentative production of important organic acids with genetically-modified microbes has become an alternative to the chemical route to meet the market demand. Despite the fact that bio-based organic acid production from renewable cheap feedstock provides a viable solution, low productivity has impeded their industrial-scale application. With our deeper understanding of strain genetics, physiology and the availability of strain engineering tools, new technologies including synthetic biology, various metabolic engineering strategies, omics-based system biology tools, and high throughput screening methods are gradually established to bridge our knowledge gap. And they were further applied to modify the cellular reaction networks of potential microbial hosts and improve the strain performance, which facilitated the commercialization of consumable organic acids. Here we present the recent advances of metabolic engineering strategies to improve the production of important organic acids including fumaric acid, citric acid, itaconic acid, adipic acid, muconic acid, and we also discuss the current challenges and future perspectives on how we can develop a cost-efficient, green and sustainable process to produce these important chemicals from low-cost feedstocks.
Collapse
|
5
|
Sayın Börekçi B, Kaya M, Göksungur Y, Kaban G. Citric acid production by a novel autochthonous Candida zeylanoides isolate: optimization of process parameters. Biotechnol Lett 2022; 44:803-812. [PMID: 35639290 DOI: 10.1007/s10529-022-03260-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/02/2022] [Indexed: 11/28/2022]
Abstract
In this study, citric acid (CA) production by autochthonous Candida zeylanoides 7.12 was investigated and optimized. Response surface methodology (RSM) was used for the analysis of simultaneous effects of the chosen factors and 2 experiment designs were applied. In the first experimental design, the effects of initial pH value (5.5, 6.0 and 6.5), fermentation time (4, 5 and 6 days) and initial glucose concentration (125, 150 and 175 g/L) on CA production were investigated. Initial pH value was adjusted periodically with NaOH. Results of the statistical analysis showed that the model was found to be not applicable sufficiently to the chosen data. A second experimental design was employed at the same levels of glucose concentration and fermentation time by disabling the pH factor. pH level was kept at 6.5 with CaCO3. Results of the statistical analysis showed that the fit of the model was good and the lack of fit was not significant (P > 0.05). The highest CA concentration of 11.36 g/L was obtained after 6 days of fermentation with an initial glucose concentration of 125 g/L. The results indicated that initial glucose concentration and fermentation time were important parameters for CA production by C. zeylanoides 7.12 and this strain could be used for future studies.
Collapse
Affiliation(s)
- Bilge Sayın Börekçi
- Department of Gastronomy and Culinary Arts, School of Tourism and Hotel Management, Ardahan University, 75000, Ardahan, Turkey.
| | - Mükerrem Kaya
- Department of Food Engineering, Faculty of Agriculture, Atatürk University, 25240, Erzurum, Turkey
| | - Yekta Göksungur
- Department of Food Engineering, Faculty of Engineering, Ege University, 35040, İzmir, Turkey
| | - Güzin Kaban
- Department of Food Engineering, Faculty of Agriculture, Atatürk University, 25240, Erzurum, Turkey
| |
Collapse
|