1
|
Zhu F, Zheng W, Gong Y, Zhang J, Yu Y, Zhang J, Liu M, Guan F, Lei J. Trichinella spiralis Infection Inhibits the Efficacy of RBD Protein of SARS-CoV-2 Vaccination via Regulating Humoral and Cellular Immunity. Vaccines (Basel) 2024; 12:729. [PMID: 39066367 PMCID: PMC11281533 DOI: 10.3390/vaccines12070729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/23/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Vaccines are the most effective and feasible way to control pathogen infection. Helminths have been reported to jeopardize the protective immunity mounted by several vaccines. However, there are no experimental data about the effect of helminth infection on the effectiveness of COVID-19 vaccines. Here, a mouse model of trichinosis, a common zoonotic disease worldwide, was used to investigate effects of Trichinella spiralis infection on the RBD protein vaccine of SARS-CoV-2 and the related immunological mechanism, as well as the impact of albendazole (ALB) deworming on the inhibitory effect of the parasite on the vaccination. The results indicated that both the enteric and muscular stages of T. spiralis infection inhibited the vaccine efficacy, evidenced by decreased levels of IgG, IgM, sIgA, and reduced serum neutralizing antibodies, along with suppressed splenic germinal center (GC) B cells in the vaccinated mice. Pre-exposure to trichinosis promoted Th2 and/or Treg immune responses in the immunized mice. Furthermore, ALB treatment could partially reverse the inhibitory effect of T. spiralis infection on the efficiency of the vaccination, accompanied by a restored proportion of splenic GC B cells. Therefore, given the widespread prevalence of helminth infections worldwide, deworming therapy needs to be considered when implementing COVID-19 vaccination strategies.
Collapse
Affiliation(s)
- Feifan Zhu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan 430030, China; (F.Z.); (W.Z.); (Y.G.); (J.Z.)
| | - Wenwen Zheng
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan 430030, China; (F.Z.); (W.Z.); (Y.G.); (J.Z.)
| | - Yiyan Gong
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan 430030, China; (F.Z.); (W.Z.); (Y.G.); (J.Z.)
| | - Jinyuan Zhang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan 430030, China; (F.Z.); (W.Z.); (Y.G.); (J.Z.)
| | - Yihan Yu
- Department of Pulmonary Medicine, Hubei Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Wuhan 430015, China; (Y.Y.); (J.Z.); (M.L.)
| | - Jixian Zhang
- Department of Pulmonary Medicine, Hubei Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Wuhan 430015, China; (Y.Y.); (J.Z.); (M.L.)
| | - Mengjun Liu
- Department of Pulmonary Medicine, Hubei Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Wuhan 430015, China; (Y.Y.); (J.Z.); (M.L.)
| | - Fei Guan
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan 430030, China; (F.Z.); (W.Z.); (Y.G.); (J.Z.)
| | - Jiahui Lei
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan 430030, China; (F.Z.); (W.Z.); (Y.G.); (J.Z.)
| |
Collapse
|
2
|
Yang S, Duan L, Wang C, Zhang C, Hou S, Wang H, Song J, Zhang T, Li Z, Wang M, Tang J, Zheng Q, Wang H, Wang Q, Zhao W. Correction: Activation and induction of antigen-specific T follicular helper cells play a critical role in recombinant SARS-CoV-2 RBD vaccine-induced humoral responses. MOLECULAR BIOMEDICINE 2023; 4:50. [PMID: 38109019 PMCID: PMC10728380 DOI: 10.1186/s43556-023-00152-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023] Open
Affiliation(s)
- Songhao Yang
- School of Basic Medical Science, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China
- Key Laboratory of Hydatid Disease, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China
- Center of Scientific Technology, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China
| | - Liangwei Duan
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Chan Wang
- School of Basic Medical Science, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China
- Key Laboratory of Hydatid Disease, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China
| | - Cuiying Zhang
- School of Basic Medical Science, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China
- Key Laboratory of Hydatid Disease, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China
| | - Siyu Hou
- School of Basic Medical Science, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China
- Key Laboratory of Hydatid Disease, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China
| | - Hao Wang
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Jiahui Song
- Key Laboratory of Hydatid Disease, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China
- Center of Scientific Technology, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China
| | - Tingting Zhang
- School of Basic Medical Science, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China
- Key Laboratory of Hydatid Disease, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China
| | - Zihua Li
- School of Basic Medical Science, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China
- Key Laboratory of Hydatid Disease, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China
| | - Mingxia Wang
- School of Basic Medical Science, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China
- Key Laboratory of Hydatid Disease, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China
| | - Jing Tang
- School of Basic Medical Science, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China
- Key Laboratory of Hydatid Disease, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China
| | - Qianqian Zheng
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Hui Wang
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Qi Wang
- School of Basic Medical Science, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China.
| | - Wei Zhao
- School of Basic Medical Science, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China.
- Key Laboratory of Hydatid Disease, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China.
- Center of Scientific Technology, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China.
| |
Collapse
|