1
|
Shen X, Guan L, Zhang J, Xue Y, Si L, Zhao Z. Study in the iron uptake mechanism of Pasteurella multocida. Vet Res 2025; 56:41. [PMID: 39948631 PMCID: PMC11827447 DOI: 10.1186/s13567-025-01469-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/28/2024] [Indexed: 02/16/2025] Open
Abstract
Pasteurella multocida infects a wide range of animals, causing hemorrhagic septicemia or infectious pneumonia. Iron is an essential nutrient for growth, colonization, and proliferation of P. multocida during infection of the host, and competition for iron ions in the host is a critical link in the pathogenesis of this pathogen. In recent years, there has been significant progress in the study of the iron uptake system of P. multocida, including its occurrence and regulatory mechanisms. In order to provide a systematic theoretical basis for the study of the molecular pathogenesis of the P. multocida iron uptake system, and generate new ideas for the investigation and development of molecular-targeted drugs and subunit vaccines against P. multocida, the mechanisms of iron uptake by transferrin receptors, heme receptors, and siderophores, and the mechanism of expression and regulation of the P. multocida iron uptake system are all described.
Collapse
Affiliation(s)
- Xiangxiang Shen
- Key Lab of Animal Bacterial Infectious Disease Prevention and Control Technology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China
| | - Lijun Guan
- Key Lab of Animal Bacterial Infectious Disease Prevention and Control Technology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China
| | - Junfeng Zhang
- Key-Disciplines Lab of Safety of Environment and Animal Product, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China
| | - Yun Xue
- Key-Disciplines Lab of Safety of Environment and Animal Product, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China
| | - Lifang Si
- Key Lab of Animal Bacterial Infectious Disease Prevention and Control Technology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China
| | - Zhanqin Zhao
- Key Lab of Animal Bacterial Infectious Disease Prevention and Control Technology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China.
- Key-Disciplines Lab of Safety of Environment and Animal Product, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China.
| |
Collapse
|
2
|
Li K, Zhang Y, Luo T, Li C, Yu H, Wang W, Zhang H, Chen H, Xia C, Gao C. Development of a Triplex qPCR Assay Based on the TaqMan Probe for the Detection of Haemophilus parasuis, Streptococcus suis Serotype 2 and Pasteurella multocida. Microorganisms 2024; 12:2017. [PMID: 39458326 PMCID: PMC11509477 DOI: 10.3390/microorganisms12102017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/29/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
Porcine respiratory disease is a significant economic problem for the global swine industry. Haemophilus parasuis (H. parasuis), Streptococcus suis (S. suis), and Pasteurella multocida (P. multocida) are three important pathogenic bacteria of the swine respiratory tract. Notably, the three pathogens not only frequently manifest as mixed infections, but their striking clinical similarities also present difficulties for pig populations in terms of disease prevention and treatment. Thus, we developed a triplex real-time quantitative polymerase chain reaction (qPCR) assay based on a TaqMan probe for the detection of H. parasuis, S. suis serotype 2, and P. multocida. Primers and probes were designed to target the conserved regions of the H. parasuis OmpP2 gene, the S. suis serotype 2 gdh gene, and the P. multocida Kmt1 gene. By optimizing the reaction system and conditions, a triplex qPCR method for simultaneous detection of H. parasuis, S. suis serotype 2, and P. multocida was successfully established. The amplification efficiencies of the standard curves for all three pathogens were found to be highly similar, with values of 102.105% for H. parasuis, 105.297% for S. suis serotype 2, and 104.829% for P. multocida, and all R2 values achieving 0.999. The specificity analysis results showed that the triplex qPCR method had a strong specificity. The sensitivity test results indicated that the limit of detection can reach 50 copies/μL for all three pathogens. Both intra- and inter-assay coefficients of variation for repeatability were below 1%. This triplex qPCR method was shown to have good specificity, sensitivity, and reproducibility. Finally, the triplex qPCR method established in this study was compared with the nested PCR as recommended by the Chinese national standard (GB/T34750-2017) for H. parasuis, the PCR as recommended by the Chinese national standard (GB/T 19915.9-2005) for S. suis serotype 2, and the PCR as recommended by the Chinese agricultural industry standard (NY/T 564-2016) for P. multocida by detecting the same clinical samples. Both methods are reasonably consistent, while the triplex qPCR assay was more sensitive. In summary, triplex qPCR serves not only as a rapid and accurate detection and early prevention method for these pathogens but also constitutes a robust tool for microbial quality control in specific pathogen-free pigs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Changyou Xia
- State Key Laboratory for Animal Disease Control and Prevention, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (K.L.); (Y.Z.); (T.L.); (C.L.); (H.Y.); (W.W.); (H.Z.); (H.C.)
| | - Caixia Gao
- State Key Laboratory for Animal Disease Control and Prevention, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (K.L.); (Y.Z.); (T.L.); (C.L.); (H.Y.); (W.W.); (H.Z.); (H.C.)
| |
Collapse
|
3
|
Zhang D, Lin L, Yang J, Lv Q, Wang M, Hua L, Zhang K, Chen H, Wu B, Peng Z. Pseudorabies virus infection increases the permeability of the mammalian respiratory barrier to facilitate Pasteurella multocida infection. mSphere 2024; 9:e0029724. [PMID: 39041808 PMCID: PMC11351098 DOI: 10.1128/msphere.00297-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/18/2024] [Indexed: 07/24/2024] Open
Abstract
Interaction between viruses and bacteria during the development of infectious diseases is a complex question that requires continuous study. In this study, we explored the interactions between pseudorabies virus (PRV) and Pasteurella multocida (PM), which are recognized as the primary and secondary agents of porcine respiratory disease complex (PRDC), respectively. In vivo tests using mouse models demonstrated that intranasal inoculation with PRV at a sublethal dose induced disruption of murine respiratory barrier and promoted the invasion and damages caused by PM through respiratory infection. Inoculation with PRV also disrupted the barrier function of murine and porcine respiratory epithelial cells, and accelerated the adherence and invasion of PM to the cells. In mechanism, PRV infection resulted in decreased expression of tight junction proteins (ZO-1, occludin) and adherens junction proteins (β-catenin, E-cadherin) between neighboring respiratory epithelial cells. Additionally, PRV inoculation at an early stage downregulated multiple biological processes contributing to epithelial adhesion and barrier functions while upregulating signals beneficial for respiratory barrier disruption (e.g., the HIF-1α signaling). Furthermore, PRV infection also stimulated the upregulation of cellular receptors (CAM5, ICAM2, ACAN, and DSCAM) that promote bacterial adherence. The data presented in this study provide insights into the understanding of virus-bacteria interactions in PRDC and may also contribute to understanding the mechanisms of secondary infections caused by different respiratory viruses (e.g., influenza virus and SARS-CoV-2) in both medical and veterinary medicine. IMPORTANCE Co-infections caused by viral and bacterial agents are common in both medical and veterinary medicine, but the related mechanisms are not fully understood. This study investigated the interactions between the zoonotic pathogens PRV and PM during the development of respiratory infections in both cell and mouse models, and reported the possible mechanisms which included: (i) the primary infection of PRV may induce the disruption and/or damage of mammal respiratory barrier, thereby contributing to the invasion of PM; (ii) PRV infection at early stage accelerates the transcription and/or expression of several cellular receptors that are beneficial for bacterial adherence. This study may shed a light on understanding the mechanisms on the secondary infection of PM promoted by different respiratory viruses (e.g., influenza virus and SARS-CoV-2) in both medical and veterinary medicine.
Collapse
Affiliation(s)
- Dajun Zhang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Lin Lin
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Jie Yang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Qingjie Lv
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Mixue Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Lin Hua
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Keshan Zhang
- Department of Veterinary Medicine, College of Life Science and Engineering, Foshan University, Foshan, China
| | - Huanchun Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Bin Wu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Zhong Peng
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
4
|
Shi C, Zhu Z, Shang Y, Song W, Yang J, Bi H, Wang Z, Xie R, Zhao M, Hua L, Chen H, Wu B, Peng Z. Discovery of the tigecycline resistance gene cluster tmexCD3-toprJ1 in Pasteurella multocida strains isolated from pigs in China. Vet Microbiol 2024; 292:110046. [PMID: 38471428 DOI: 10.1016/j.vetmic.2024.110046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 03/01/2024] [Accepted: 03/07/2024] [Indexed: 03/14/2024]
Abstract
Pasteurella multocida is a leading cause of respiratory disorders in pigs. However, the genotypes and antimicrobial resistance characteristics of P. multocida from pigs in China have not been reported frequently. In this study, we investigated 381 porcine strains of P. multocida collected in China between 2013 and 2022. These strains were assigned to capsular genotypes A (69.55%, n = 265), D (27.82%, n =106), and F (2.62%, n = 10); or lipopolysaccharide genotypes L1 (1.31%, n = 5), L3 (24.41%, n = 93), and L6 (74.28%, n = 283). Overall, P. multocida genotype A:L6 (46.46%) was the most-commonly identified type, followed by D:L6 (27.82%), A:L3 (21.78%), F:L3 (2.62%), and A:L1 (1.31%). Antimicrobial susceptibility testing showed that a relatively high proportion of strains were resistant to tetracycline (66.67%, n = 254), and florfenicol (35.17%, n = 134), while a small proportion of strains showed resistance phenotypes to enrofloxacin (10.76%, n = 41), ampicillin (8.40%, n = 32), tilmicosin (7.09%, n = 27), and ceftiofur (2.89%, n = 11). Notably, Illumina short-read and Nanopore long-read sequencing identified a chromosome-borne tigecycline-resistance gene cluster tmexCD3-toprJ1 in P. multocida. The structure of this cluster was highly similar to the respective structures found in several members of Proteus or Pseudomonas. It is assumed that the current study identified the tmexCD3-toprJ1 cluster for the first time in P. multocida.
Collapse
Affiliation(s)
- Congcong Shi
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Hubei Hongshan Laboratory, Wuhan, China; Frontiers Science Center for Animal Breeding and Sustainable Production, The Cooperative Innovation Center for Susceptible Pig Production, Wuhan, China
| | - Zhanwei Zhu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Hubei Hongshan Laboratory, Wuhan, China; Frontiers Science Center for Animal Breeding and Sustainable Production, The Cooperative Innovation Center for Susceptible Pig Production, Wuhan, China
| | - Yuyao Shang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Hubei Hongshan Laboratory, Wuhan, China; Frontiers Science Center for Animal Breeding and Sustainable Production, The Cooperative Innovation Center for Susceptible Pig Production, Wuhan, China
| | - Wenbo Song
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Hubei Hongshan Laboratory, Wuhan, China; Frontiers Science Center for Animal Breeding and Sustainable Production, The Cooperative Innovation Center for Susceptible Pig Production, Wuhan, China
| | - Jie Yang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Hubei Hongshan Laboratory, Wuhan, China; Frontiers Science Center for Animal Breeding and Sustainable Production, The Cooperative Innovation Center for Susceptible Pig Production, Wuhan, China
| | - Haixin Bi
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Hubei Hongshan Laboratory, Wuhan, China; Frontiers Science Center for Animal Breeding and Sustainable Production, The Cooperative Innovation Center for Susceptible Pig Production, Wuhan, China
| | - Zihao Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Hubei Hongshan Laboratory, Wuhan, China; Frontiers Science Center for Animal Breeding and Sustainable Production, The Cooperative Innovation Center for Susceptible Pig Production, Wuhan, China
| | - Rui Xie
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Hubei Hongshan Laboratory, Wuhan, China; Frontiers Science Center for Animal Breeding and Sustainable Production, The Cooperative Innovation Center for Susceptible Pig Production, Wuhan, China
| | - Mengfei Zhao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Hubei Hongshan Laboratory, Wuhan, China; Frontiers Science Center for Animal Breeding and Sustainable Production, The Cooperative Innovation Center for Susceptible Pig Production, Wuhan, China
| | - Lin Hua
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Hubei Hongshan Laboratory, Wuhan, China; Frontiers Science Center for Animal Breeding and Sustainable Production, The Cooperative Innovation Center for Susceptible Pig Production, Wuhan, China
| | - Huanchun Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Hubei Hongshan Laboratory, Wuhan, China; Frontiers Science Center for Animal Breeding and Sustainable Production, The Cooperative Innovation Center for Susceptible Pig Production, Wuhan, China
| | - Bin Wu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Frontiers Science Center for Animal Breeding and Sustainable Production, The Cooperative Innovation Center for Susceptible Pig Production, Wuhan, China.
| | - Zhong Peng
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Hubei Hongshan Laboratory, Wuhan, China; Frontiers Science Center for Animal Breeding and Sustainable Production, The Cooperative Innovation Center for Susceptible Pig Production, Wuhan, China.
| |
Collapse
|
5
|
Wang Z, Wang M, Wang F, Luo Y, Liu H, Zhu Z, Huang X, Hua L, Chen H, Wu B, Peng Z. Dendritic cell targeting peptide plus Salmonella FliCd flagellin fused outer membrane protein H (OmpH) demonstrated increased efficacy against infections caused by different Pasteurella multocida serogroups in mouse models. Vaccine 2024; 42:3075-3083. [PMID: 38584060 DOI: 10.1016/j.vaccine.2024.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/29/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
As the major outer membrane protein (OMP) presents in the Pasteurella multocida envelope, OmpH was frequently expressed for laboratory assessments of its immunogenicity against P. multocida infections, but the results are not good. In this study, we modified OmpH with dendritic cell targeting peptide (Depeps) and/or Salmonella FliCd flagellin, and expressed three types of recombinant proteins with the MBP tag (rDepeps-FliC-OmpH-MBP, rDepeps-OmpH-MBP, rFliC-OmpH-MBP). Assessments in mouse models revealed that vaccination with rDepeps-FliC-OmpH-MBP, rDepeps-OmpH-MBP, or rFliC-OmpH-MBP induced significant higher level of antibodies as well as IFN-γ and IL-4 in murine sera than vaccination with rOmpH-MBP (P < 0.5). Vaccination with the three modified proteins also provided increased protection (rDepeps-FliC-OmpH-MBP, 70 %; rDepeps-OmpH-MBP, 50 %; rFliC-OmpH-MBP, 60 %) against P. multocida serotype D compared to vaccination with rOmpH-MBP (30 %). In mice vaccinated with different types of modified OmpHs, a significantly decreased bacterial strains were recovered from bloods, lungs, and spleens compared to rOmpH-MBP-vaccinated mice (P < 0.5). Notably, our assessments also demonstrated that vaccination with rDepeps-FliC-OmpH-MBP provided good protection against infections caused by a heterogeneous group of P. multocida serotypes (A, B, D). Our above findings indicate that modification with DCpep and Salmonella flagellin could be used as a promising strategy to improve vaccine effectiveness.
Collapse
Affiliation(s)
- Zihao Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; Frontiers Science Center for Animal Breeding and Sustainable Production, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Mixue Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; Frontiers Science Center for Animal Breeding and Sustainable Production, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Fei Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; Frontiers Science Center for Animal Breeding and Sustainable Production, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Yajuan Luo
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; Frontiers Science Center for Animal Breeding and Sustainable Production, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Hanyuan Liu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; Frontiers Science Center for Animal Breeding and Sustainable Production, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Zhanwei Zhu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; Frontiers Science Center for Animal Breeding and Sustainable Production, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Xi Huang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; Frontiers Science Center for Animal Breeding and Sustainable Production, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Lin Hua
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Frontiers Science Center for Animal Breeding and Sustainable Production, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Huanchun Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; Frontiers Science Center for Animal Breeding and Sustainable Production, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Bin Wu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Frontiers Science Center for Animal Breeding and Sustainable Production, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.
| | - Zhong Peng
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; Frontiers Science Center for Animal Breeding and Sustainable Production, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.
| |
Collapse
|
6
|
Prajapati A, Yogisharadhya R, Mohanty NN, Mendem SK, Chanda MM, Siddaramappa S, Shivachandra SB. Comparative genome analysis of Pasteurella multocida strains of porcine origin. Genome 2024; 67:13-23. [PMID: 37639729 DOI: 10.1139/gen-2023-0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Pasteurella multocida causes acute/chronic pasteurellosis in porcine, resulting in considerable economic losses globally. The draft genomes of two Indian strains NIVEDIPm17 (serogroup D) and NIVEDIPm36 (serogroup A) were sequenced. A total of 2182-2284 coding sequences (CDSs) were predicted along with 5-6 rRNA and 45-46 tRNA genes in the genomes. Multilocus sequence analysis and LPS genotyping showed the presence of ST50: genotype 07 and ST74: genotype 06 in NIVEDIPm17 and NIVEDIPm36, respectively. Pangenome analysis of 61 strains showed the presence of 1653 core genes, 167 soft core genes, 750 shell genes, and 1820 cloud genes. Analysis of virulence-associated genes in 61 genomes indicated the presence of nanB, exbB, exbD, ptfA, ompA, ompH, fur, plpB, fimA, sodA, sodC, tonB, and omp87 in all strains. The 61 genomes contained genes encoding tetracycline (54%), streptomycin (48%), sulphonamide (28%), tigecycline (25%), chloramphenicol (21%), amikacin (7%), cephalosporin (5%), and trimethoprim (5%) resistance. Multilocus sequence type revealed that ST50 was the most common (34%), followed by ST74 (26%), ST13 (24%), ST287 (5%), ST09 (5%), ST122 (3%), and ST07 (2%). Single-nucleotide polymorphism and core genome-based phylogenetic analysis clustered the strains into three major clusters. In conclusion, we described the various virulence factors, mobile genetic elements, and antimicrobial resistance genes in the pangenome of P. multocida of porcine origin, besides the rare presence of LPS genotype 7 in serogroup D.
Collapse
Affiliation(s)
- Awadhesh Prajapati
- ICAR - National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Bengaluru 560064, Karnataka, India
| | - Revanaiah Yogisharadhya
- ICAR - National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Bengaluru 560064, Karnataka, India
| | - Nihar Nalini Mohanty
- CCS - National Institute of Animal Health (NIAH), Baghpat 250609, Uttar Pradesh, India
| | - Suresh Kumar Mendem
- ICAR - National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Bengaluru 560064, Karnataka, India
| | - Mohammed Mudassar Chanda
- ICAR - National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Bengaluru 560064, Karnataka, India
| | - Shivakumara Siddaramappa
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Bengaluru 560100, Karnataka, India
| | | |
Collapse
|
7
|
Liu G, Wang K, Yang Z, Tang X, Chang YF, Dai K, Tang X, Hu B, Zhang Y, Cao S, Huang X, Yan Q, Wu R, Zhao Q, Du S, Wen X, Wen Y. Identification of a Novel Linear B-Cell Epitope of HbpA Protein from Glaesserella parasuis Using Monoclonal Antibody. Int J Mol Sci 2023; 24:8638. [PMID: 37239984 PMCID: PMC10218323 DOI: 10.3390/ijms24108638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Glaesserella parasuis (G. parasuis.) is the etiological pathogen of Glässer's disease, which causes high economic losses to the pig industry. The heme-binding protein A precursor (HbpA) was a putative virulence-associated factor proposed to be potential subunit vaccine candidate in G. parasuis. In this study, three monoclonal antibodies (mAb) 5D11, 2H81, and 4F2 against recombinant HbpA (rHbpA) of G. parasuis SH0165 (serotype 5) were generated by fusing SP2/0-Ag14 murine myeloma cells and spleen cells from BALB/c mice immunized with the rHbpA. Indirect enzyme-linked immunosorbent assay (ELISA) and indirect immunofluorescence assay (IFA) demonstrated that the antibody designated 5D11 showed a strong binding affinity with the HbpA protein and was chosen for subsequent experiments. The subtypes of the 5D11 were IgG1/κ chains. Western blot analysis showed that mAb 5D11 could react with all 15 serotype reference strains of G. parasuis. None of the other bacteria tested reacted with 5D11. In addition, a linear B-cell epitope recognized by 5D11 was identified by serial truncations of HbpA protein and then a series of truncated peptides were synthesized to define the minimal region that was required for mAb 5D11 binding. The 5D11 epitope was located on amino acids 324-LPQYEFNLEKAKALLA-339 by testing the 5D11 monoclonal for reactivity with 14 truncations. The minimal epitope 325-PQYEFNLEKAKALLA-339 (designated EP-5D11) was pinpointed by testing the mAb 5D11 for reactivity with a series of synthetic peptides of this region. The epitope was highly conserved among G. parasuis strains, confirmed by alignment analysis. These results indicated that mAb 5D11 and EP-5D11 might potentially be used to develop serological diagnostic tools for G. parasuis. Three-dimensional structural analysis revealed that amino acids of EP-5D11 were in close proximity and may be exposed on the surface of the HbpA protein.
Collapse
Affiliation(s)
- Geyan Liu
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (G.L.); (K.W.); (Z.Y.); (X.T.); (K.D.); (X.T.); (B.H.); (Y.Z.); (S.C.); (X.H.); (Q.Y.); (R.W.); (Q.Z.); (S.D.); (X.W.)
| | - Kang Wang
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (G.L.); (K.W.); (Z.Y.); (X.T.); (K.D.); (X.T.); (B.H.); (Y.Z.); (S.C.); (X.H.); (Q.Y.); (R.W.); (Q.Z.); (S.D.); (X.W.)
| | - Zhen Yang
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (G.L.); (K.W.); (Z.Y.); (X.T.); (K.D.); (X.T.); (B.H.); (Y.Z.); (S.C.); (X.H.); (Q.Y.); (R.W.); (Q.Z.); (S.D.); (X.W.)
| | - Xiaoyu Tang
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (G.L.); (K.W.); (Z.Y.); (X.T.); (K.D.); (X.T.); (B.H.); (Y.Z.); (S.C.); (X.H.); (Q.Y.); (R.W.); (Q.Z.); (S.D.); (X.W.)
| | - Yung-Fu Chang
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, New York, NY 14850, USA;
| | - Ke Dai
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (G.L.); (K.W.); (Z.Y.); (X.T.); (K.D.); (X.T.); (B.H.); (Y.Z.); (S.C.); (X.H.); (Q.Y.); (R.W.); (Q.Z.); (S.D.); (X.W.)
| | - Xinwei Tang
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (G.L.); (K.W.); (Z.Y.); (X.T.); (K.D.); (X.T.); (B.H.); (Y.Z.); (S.C.); (X.H.); (Q.Y.); (R.W.); (Q.Z.); (S.D.); (X.W.)
| | - Bangdi Hu
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (G.L.); (K.W.); (Z.Y.); (X.T.); (K.D.); (X.T.); (B.H.); (Y.Z.); (S.C.); (X.H.); (Q.Y.); (R.W.); (Q.Z.); (S.D.); (X.W.)
| | - Yiwen Zhang
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (G.L.); (K.W.); (Z.Y.); (X.T.); (K.D.); (X.T.); (B.H.); (Y.Z.); (S.C.); (X.H.); (Q.Y.); (R.W.); (Q.Z.); (S.D.); (X.W.)
| | - Sanjie Cao
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (G.L.); (K.W.); (Z.Y.); (X.T.); (K.D.); (X.T.); (B.H.); (Y.Z.); (S.C.); (X.H.); (Q.Y.); (R.W.); (Q.Z.); (S.D.); (X.W.)
| | - Xiaobo Huang
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (G.L.); (K.W.); (Z.Y.); (X.T.); (K.D.); (X.T.); (B.H.); (Y.Z.); (S.C.); (X.H.); (Q.Y.); (R.W.); (Q.Z.); (S.D.); (X.W.)
| | - Qigui Yan
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (G.L.); (K.W.); (Z.Y.); (X.T.); (K.D.); (X.T.); (B.H.); (Y.Z.); (S.C.); (X.H.); (Q.Y.); (R.W.); (Q.Z.); (S.D.); (X.W.)
| | - Rui Wu
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (G.L.); (K.W.); (Z.Y.); (X.T.); (K.D.); (X.T.); (B.H.); (Y.Z.); (S.C.); (X.H.); (Q.Y.); (R.W.); (Q.Z.); (S.D.); (X.W.)
| | - Qin Zhao
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (G.L.); (K.W.); (Z.Y.); (X.T.); (K.D.); (X.T.); (B.H.); (Y.Z.); (S.C.); (X.H.); (Q.Y.); (R.W.); (Q.Z.); (S.D.); (X.W.)
| | - Senyan Du
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (G.L.); (K.W.); (Z.Y.); (X.T.); (K.D.); (X.T.); (B.H.); (Y.Z.); (S.C.); (X.H.); (Q.Y.); (R.W.); (Q.Z.); (S.D.); (X.W.)
| | - Xintian Wen
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (G.L.); (K.W.); (Z.Y.); (X.T.); (K.D.); (X.T.); (B.H.); (Y.Z.); (S.C.); (X.H.); (Q.Y.); (R.W.); (Q.Z.); (S.D.); (X.W.)
| | - Yiping Wen
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (G.L.); (K.W.); (Z.Y.); (X.T.); (K.D.); (X.T.); (B.H.); (Y.Z.); (S.C.); (X.H.); (Q.Y.); (R.W.); (Q.Z.); (S.D.); (X.W.)
| |
Collapse
|
8
|
Domínguez-Odio A, Delgado DLC. Global commercialization and research of veterinary vaccines against Pasteurella multocida: 2015-2022 technological surveillance. Vet World 2023; 16:946-956. [PMID: 37576757 PMCID: PMC10420726 DOI: 10.14202/vetworld.2023.946-956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 03/31/2023] [Indexed: 08/15/2023] Open
Abstract
Background and Aim Pasteurella multocida can infect a multitude of wild and domesticated animals, bacterial vaccines have become a crucial tool in combating antimicrobial resistance (AMR) in animal production. The study aimed to evaluate the current status and scientific trends related to veterinary vaccines against Pasteurella multocida during the 2015-2022 period. Material and Methods The characteristics of globally marketed vaccines were investigated based on the official websites of 22 pharmaceutical companies. VOSviewer® 1.6.18 was used to visualize networks of coauthorship and cooccurrence of keywords from papers published in English and available in Scopus. Results Current commercial vaccines are mostly inactivated (81.7%), adjuvanted in aluminum hydroxide (57.8%), and designed to immunize cattle (33.0%). Investigational vaccines prioritize the inclusion of attenuated strains, peptide fragments, recombinant proteins, DNA as antigens, aluminum compounds as adjuvants and poultry as the target species. Conclusion Despite advances in genetic engineering and biotechnology, there will be no changes in the commercial dominance of inactivated and aluminum hydroxide-adjuvanted vaccines in the short term (3-5 years). The future prospects for bacterial vaccines in animal production are promising, with advancements in vaccine formulation and genetic engineering, they have the potential to improve the sustainability of the industry. It is necessary to continue with the studies to improve the efficacy of the vaccines and their availability.
Collapse
Affiliation(s)
- Aníbal Domínguez-Odio
- Dirección de Ciencia e Innovación. Grupo Empresarial LABIOFAM. Avenida Independencia km 16½, Boyeros, La Habana, Cuba
| | - Daniel Leonardo Cala Delgado
- Animal Science Research Group, Universidad Cooperativa de Colombia, Sede Bucaramanga, Carrera 33 N°, 30ª-05 (4.162,49 km) 68000, Bucaramanga, Colombia
| |
Collapse
|
9
|
Liang W, Xiao H, Chen JY, Chang YF, Cao SJ, Wen YP, Wu R, Du SY, Yan QG, Huang XB, Zhao Q. Immunogenicity and protective efficacy of a multi-epitope recombinant toxin antigen of Pasteurella multocida against virulent challenge in mice. Vaccine 2023; 41:2387-2396. [PMID: 36872144 DOI: 10.1016/j.vaccine.2023.02.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023]
Abstract
Pasteurella multocida (P. multocida) infection frequently results in porcine atrophic rhinitis and swine plague, leading to large economic losses for the swine industry worldwide. P. multocida toxin (PMT, 146 kDa) is a highly virulent key virulence factor that plays a vital role in causing lung and turbinate lesions. This study developed a multi-epitope recombinant antigen of PMT (rPMT) that showed excellent immunogenicity and protection in a mouse model. Using bioinformatics to analyse the dominant epitopes of PMT, we constructed and synthesized rPMT containing 10 B-cell epitopes, 8 peptides with multiple B-cell epitopes and 13 T-cell epitopes of PMT and a rpmt gene (1,974 bp) with multiple epitopes. The rPMT protein (97 kDa) was soluble and contained a GST tag protein. Immunization of mice with rPMT stimulated significantly elevated serum IgG titres and splenocyte proliferation, and serum IFN-γ and IL-12 were upregulated by 5-fold and 1.6-fold, respectively, but IL-4 was not. Furthermore, the rPMT immunization group exhibited alleviated lung tissue lesions and a significantly decreased degree of neutrophil infiltration compared with the control groups post-challenge. In the rPMT vaccination group, 57.1% (8/14) of the mice survived the challenge, similar to the bacterin HN06 group, while all the mice in the control groups succumbed to the challenge. Thus, rPMT could be a suitable candidate antigen for developing a subunit vaccine against toxigenic P. multocida infection.
Collapse
Affiliation(s)
- Wei Liang
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Hang Xiao
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Jia-Yong Chen
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yung-Fu Chang
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - San-Jie Cao
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technique, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China; National Demonstration Center for Experimental Animal Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Yi-Ping Wen
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technique, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China; National Demonstration Center for Experimental Animal Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Rui Wu
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technique, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China; National Demonstration Center for Experimental Animal Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Sen-Yan Du
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technique, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China; National Demonstration Center for Experimental Animal Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Qi-Gui Yan
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technique, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China; National Demonstration Center for Experimental Animal Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiao-Bo Huang
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technique, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China; National Demonstration Center for Experimental Animal Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Qin Zhao
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technique, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China; National Demonstration Center for Experimental Animal Education, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
10
|
Guan LJ, Yang JQ, Xu QY, Feng YF, Zhang XC, Tang B, Zhao ZQ. Immunogenicity and efficacy of serogroup A and D bacterins against Pasteurella multocida in mice. Front Vet Sci 2023; 10:1132536. [PMID: 36937018 PMCID: PMC10014835 DOI: 10.3389/fvets.2023.1132536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/02/2023] [Indexed: 03/05/2023] Open
Abstract
Introduction Pasteurella multocida is a widespread respiratory pathogen in pigs, causing swine pneumonia and atrophic rhinitis, and the capsular serogroups A and D are the main epidemic serogroups in infected animals. This study investigated the protective effects of serogroup A and D bacterins against current circulating P. multocida strains, to better understand the immunity generated by bacterins. Method 13 serogroup A (seven A: L3 and six A: L6 strains) and 13 serogroup D (all D: L6 strains) P. multocida strains were isolated, and used as inactivated whole cell antigen to prepare P. multocida bacterins. Mice were immunized with these bacterins at 21-day interval and intraperitoneally challenged with the homologous and heterologous P. multocida strains, respectively. The antibody titer levels and immunization protective efficacy of vaccines were evaluated. Results All of the bacterins tested induced high titer levels of immunoglobulin G antibodies against the parental bacterial antigen in mice. Vaccination with the six A: L6 bacterins provided no protection against the parent strain, but some strains did provide heterologous protection against A: L3 strains. Vaccination with the seven A: L3 bacterins provided 50%-100% protection against the parent strain, but none gave heterologous protection against the A:L6 strains. Immunization with the thirteen D: L6 bacterins offered 60%-100% protection against the parent strain, and almost all D: L6 strains gave cross-protection. Discussion This study found that the cross-protectivity of serogroup A strains was poor, while serogroup D strains was effective, which provided some insights for P. multocida vaccine development.
Collapse
Affiliation(s)
- Li-jun Guan
- College of Veterinary Medicine, Jilin University, Changchun, China
- Lab of Veterinary Microbiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Jin-qian Yang
- Lab of Veterinary Microbiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Qing-yuan Xu
- Lab of Veterinary Microbiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Yi-fan Feng
- Lab of Veterinary Microbiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Xi-chen Zhang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Bo Tang
- College of Veterinary Medicine, Jilin University, Changchun, China
- Bo Tang
| | - Zhan-qin Zhao
- Lab of Veterinary Microbiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
- *Correspondence: Zhan-qin Zhao
| |
Collapse
|