1
|
Wang CC, Hu XM, Long YF, Huang HR, He Y, Xu ZR, Qi ZQ. Treatment of Parkinson's disease model with human umbilical cord mesenchymal stem cell-derived exosomes loaded with BDNF. Life Sci 2024; 356:123014. [PMID: 39182566 DOI: 10.1016/j.lfs.2024.123014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
AIMS Parkinson's disease (PD) is a common neurodegenerative disease that has received widespread attention; however, current clinical treatments can only relieve its symptoms, and do not effectively protect dopaminergic neurons. The purpose of the present study was to investigate the therapeutic effects of human umbilical cord mesenchymal stem cell-derived exosomes loaded with brain-derived neurotrophic factor (BDNF-EXO) on PD models and to explore the underlying mechanisms of these effects. MAIN METHODS 6-Hydroxydopamine was used to establish in vivo and in vitro PD models. Western blotting, flow cytometry, and immunofluorescence were used to detect the effects of BDNF-EXO on apoptosis and ferroptosis in SH-SY5Y cells. The in vivo biological distribution of BDNF-EXO was detected using a small animal imaging system, and dopaminergic neuron improvements in brain tissue were detected using western blotting, immunofluorescence, immunohistochemistry, and Nissl and Prussian blue staining. KEY FINDINGS BDNF-EXO effectively suppressed 6-hydroxydopamine-induced apoptosis and ferroptosis in SH-SY5Y cells. Following intravenous administration, BDNF-EXO crossed the blood-brain barrier to reach afflicted brain regions in mice, leading to a notable enhancement in neuronal survival. Furthermore, BDNF-EXO modulated microtubule-associated protein 2 and phosphorylated tau expression, thereby promoting neuronal cytoskeletal stability. Additionally, BDNF-EXO bolstered cellular antioxidant defense mechanisms through the activation of the nuclear factor erythroid 2-related factor 2 signaling pathway, thereby conferring neuroprotection against damage. SIGNIFICANCE The novel drug delivery system, BDNF-EXO, had substantial therapeutic effects in both in vivo and in vitro PD models, and may represent a new treatment strategy for PD.
Collapse
Affiliation(s)
- Can-Can Wang
- Medical College, Guangxi University, Da-Xue-Dong Road No.100, Nanning 530004, Guangxi Zhuang Autonomous Region, China
| | - Xin-Mei Hu
- Medical College, Guangxi University, Da-Xue-Dong Road No.100, Nanning 530004, Guangxi Zhuang Autonomous Region, China
| | - Yu-Fei Long
- Medical College, Guangxi University, Da-Xue-Dong Road No.100, Nanning 530004, Guangxi Zhuang Autonomous Region, China
| | - Hong-Ri Huang
- GuangXi TaiMeiRenSheng Biotechnology Co., LTD., Nanning, Guangxi 530000, China
| | - Ying He
- Medical College, Guangxi University, Da-Xue-Dong Road No.100, Nanning 530004, Guangxi Zhuang Autonomous Region, China
| | - Zhi-Ran Xu
- Translational Medicine Research Center, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi 530011, China
| | - Zhong-Quan Qi
- Medical College, Guangxi University, Da-Xue-Dong Road No.100, Nanning 530004, Guangxi Zhuang Autonomous Region, China.
| |
Collapse
|
2
|
Almahasneh F, Abu-El-Rub E, Khasawneh RR, Almazari R. Effects of high glucose and severe hypoxia on the biological behavior of mesenchymal stem cells at various passages. World J Stem Cells 2024; 16:434-443. [PMID: 38690519 PMCID: PMC11056633 DOI: 10.4252/wjsc.v16.i4.434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/05/2024] [Accepted: 03/18/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) have been extensively studied for therapeutic potential, due to their regenerative and immunomodulatory properties. Serial passage and stress factors may affect the biological characteristics of MSCs, but the details of these effects have not been recognized yet. AIM To investigate the effects of stress factors (high glucose and severe hypoxia) on the biological characteristics of MSCs at different passages, in order to optimize the therapeutic applications of MSCs. METHODS In this study, we investigated the impact of two stress conditions; severe hypoxia and high glucose on human adipose-tissue derived MSCs (hAD-MSCs) at passages 6 (P6), P8, and P10. Proliferation, senescence and apoptosis were evaluated measuring WST-1, senescence-associated beta-galactosidase, and annexin V, respectively. RESULTS Cells at P6 showed decreased proliferation and increased apoptosis under conditions of high glucose and hypoxia compared to control, while the extent of senescence did not change significantly under stress conditions. At P8 hAD-MSCs cultured in stress conditions had a significant decrease in proliferation and apoptosis and a significant increase in senescence compared to counterpart cells at P6. Cells cultured in high glucose at P10 had lower proliferation and higher senescence than their counterparts in the previous passage, while no change in apoptosis was observed. On the other hand, MSCs cultured under hypoxia showed decreased senescence, increased apoptosis and no significant change in proliferation when compared to the same conditions at P8. CONCLUSION These results indicate that stress factors had distinct effects on the biological processes of MSCs at different passages, and suggest that senescence may be a protective mechanism for MSCs to survive under stress conditions at higher passage numbers.
Collapse
Affiliation(s)
- Fatimah Almahasneh
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan
| | - Ejlal Abu-El-Rub
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan.
| | - Ramada R Khasawneh
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan
| | - Rawan Almazari
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan
| |
Collapse
|
3
|
Nasrolahi A, Shabani Z, Sadigh-Eteghad S, Salehi-Pourmehr H, Mahmoudi J. Stem Cell Therapy for the Treatment of Parkinson's Disease: What Promise Does it Hold? Curr Stem Cell Res Ther 2024; 19:185-199. [PMID: 36815638 DOI: 10.2174/1574888x18666230222144116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 02/24/2023]
Abstract
Parkinson's disease (PD) is a common, progressive neurodegenerative disorder characterized by substantia nigra dopamine cell death and a varied clinical picture that affects older people. Although more than two centuries have passed since the earliest attempts to find a cure for PD, it remains an unresolved problem. With this in mind, cell replacement therapy is a new strategy for treating PD. This novel approach aims to replace degenerated dopaminergic (DAergic) neurons with new ones or provide a new source of cells that can differentiate into DAergic neurons. Induced pluripotent stem cells (iPSCs), mesenchymal stem cells (MSCs), neural stem cells (NSCs), and embryonic stem cells (ESCs) are among the cells considered for transplantation therapies. Recently disease-modifying strategies like cell replacement therapies combined with other therapeutic approaches, such as utilizing natural compounds or biomaterials, are proposed to modify the underlying neurodegeneration. In the present review, we discuss the current advances in cell replacement therapy for PD and summarize the existing experimental and clinical evidence supporting this approach.
Collapse
Affiliation(s)
- Ava Nasrolahi
- Infectious Ophthalmologic Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Cellular and Molecular Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zahra Shabani
- Center for Cerebrovascular Research, University of California, San Francisco, California, USA
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hanieh Salehi-Pourmehr
- Research Center for Evidence-Based Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Mahmoudi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Ghasemi M, Roshandel E, Mohammadian M, Farhadihosseinabadi B, Akbarzadehlaleh P, Shamsasenjan K. Mesenchymal stromal cell-derived secretome-based therapy for neurodegenerative diseases: overview of clinical trials. Stem Cell Res Ther 2023; 14:122. [PMID: 37143147 PMCID: PMC10161443 DOI: 10.1186/s13287-023-03264-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 03/06/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Over the past few years, mesenchymal stromal cells (MSCs) have attracted a great deal of scientific attention owing to their promising results in the treatment of incurable diseases. However, there are several concerns about their possible side effects after direct cell transplantation, including host immune response, time-consuming cell culture procedures, and the dependence of cell quality on the donor, which limit the application of MSCs in clinical trials. On the other hand, it is well accepted that the beneficial effects of MSCs are mediated by secretome rather than cell replacement. MSC secretome refers to a variety of bioactive molecules involved in different biological processes, specifically neuro-regeneration. MAIN BODY Due to the limited ability of the central nervous system to compensate for neuronal loss and relieve disease progress, mesenchymal stem cell products may be used as a potential cure for central nervous system disorders. In the present study, the therapeutic effects of MSC secretome were reviewed and discussed the possible mechanisms in the three most prevalent central nervous system disorders, namely Alzheimer's disease, multiple sclerosis, and Parkinson's disease. The current work aimed to help discover new medicine for the mentioned complications. CONCLUSION The use of MSC-derived secretomes in the treatment of the mentioned diseases has encouraging results, so it can be considered as a treatment option for which no treatment has been introduced so far.
Collapse
Affiliation(s)
- Maryam Ghasemi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Roshandel
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mozhdeh Mohammadian
- Department of Hematology, School of Medicine, Tarbiat Modares University (TMU), Tehran, Iran
| | | | - Parvin Akbarzadehlaleh
- Pharmaceutical Biotechnology Department, Pharmacy Faculty, Tabriz University of Medical Science, Tabriz, Iran.
| | - Karim Shamsasenjan
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
5
|
Kao TW, Liu YS, Yang CY, Lee OKS. Mechanotransduction of mesenchymal stem cells and hemodynamic implications. CHINESE J PHYSIOL 2023; 66:55-64. [PMID: 37082993 DOI: 10.4103/cjop.cjop-d-22-00144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023] Open
Abstract
Mesenchymal stem cells (MSCs) possess the capacity for self-renewal and multipotency. The traditional approach to manipulating MSC's fate choice predominantly relies on biochemical stimulation. Accumulating evidence also suggests the role of physical input in MSCs differentiation. Therefore, investigating mechanotransduction at the molecular level and related to tissue-specific cell functions sheds light on the responses secondary to mechanical forces. In this review, a new frontier aiming to optimize the cultural parameters was illustrated, i.e. spatial boundary condition, which recapitulates in vivo physiology and facilitates the investigations of cellular behavior. The concept of mechanical memory was additionally addressed to appreciate how MSCs store imprints from previous culture niches. Besides, different types of forces as physical stimuli were of interest based on the association with the respective signaling pathways and the differentiation outcome. The downstream mechanoreceptors and their corresponding effects were further pinpointed. The cardiovascular system or immune system may share similar mechanisms of mechanosensing and mechanotransduction; for example, resident stem cells in a vascular wall and recruited MSCs in the bloodstream experience mechanical forces such as stretch and fluid shear stress. In addition, baroreceptors or mechanosensors of endothelial cells detect changes in blood flow, pass over signals induced by mechanical stimuli and eventually maintain arterial pressure at the physiological level. These mechanosensitive receptors transduce pressure variation and regulate endothelial barrier functions. The exact signal transduction is considered context dependent but still elusive. In this review, we summarized the current evidence of how mechanical stimuli impact MSCs commitment and the underlying mechanisms. Future perspectives are anticipated to focus on the application of cardiovascular bioengineering and regenerative medicine.
Collapse
Affiliation(s)
- Ting-Wei Kao
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Shiuan Liu
- School of Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Chih-Yu Yang
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University; Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University; Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Oscar Kuang-Sheng Lee
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University; Stem Cell Research Center, National Yang Ming Chiao Tung University; Department of Medical Research, Taipei Veterans General Hospital, Taipei; Department of Orthopedics, China Medical University Hospital; Center for Translational Genomics and Regenerative Medicine Research, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
6
|
Brianna, Ling APK, Wong YP. Applying stem cell therapy in intractable diseases: a narrative review of decades of progress and challenges. Stem Cell Investig 2022; 9:4. [PMID: 36238449 PMCID: PMC9552054 DOI: 10.21037/sci-2022-021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/09/2022] [Indexed: 08/10/2023]
Abstract
Background and Objective Stem cell therapy (SCT) is one of the vastly researched branches of regenerative medicine as a therapeutic tool to treat incurable diseases. With the use of human stem cells such as embryonic stem cells (ESCs), adult stem cells (ASCs) and induced pluripotent stem cells (iPSCs), stem cell therapy aims to regenerate or repair damaged tissues and congenital defects. As stem cells are able to undergo infinite self-renewal, differentiate into various types of cells and secrete protective paracrine factors, many researchers have investigated the potential of SCT in regenerative medicine. Therefore, this review aims to provide a comprehensive review on the recent application of SCT in various intractable diseases, namely, haematological diseases, neurological diseases, diabetes mellitus, retinal degenerative disorders and COVID-19 infections along with the challenges faced in the clinical translation of SCT. Methods An extensive search was conducted on Google scholar, PubMed and Clinicaltrials.gov using related keywords. Latest articles on stem cell therapy application in selected diseases along with their challenges in clinical applications were selected. Key content and findings In vitro and in vivo studies involving SCT are shown to be safe and efficacious in treating various diseases covered in this review. There are also a number of small-scale clinical trials that validated the positive therapeutic outcomes of SCT. Nevertheless, the effectiveness of SCT are highly variable as some SCT works best in patients with early-stage diseases while in other diseases, SCT is more likely to work in patients in late stages of illnesses. Among the challenges identified in SCT translation are uncertainty in the underlying stem cell mechanism, ethical issues, genetic instability and immune rejection. Conclusions SCT will be a revolutionary treatment in the future that will provide hope to patients with intractable diseases. Therefore, studies ought to be done to ascertain the long-term effects of SCT while addressing the challenges faced in validating SCT for clinical use. Moreover, as there are many studies investigating the safety and efficacy of SCT, future studies should look into elucidating the regenerative and reparative capabilities of stem cells which largely remains unknown.
Collapse
Affiliation(s)
- Brianna
- Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Anna Pick Kiong Ling
- Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Ying Pei Wong
- Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
7
|
MicroRNA-206 down-regulated human umbilical cord mesenchymal stem cells alleviate cognitive decline in D-galactose-induced aging mice. Cell Death Dis 2022; 8:304. [PMID: 35781287 PMCID: PMC9250929 DOI: 10.1038/s41420-022-01097-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/09/2022] [Accepted: 06/21/2022] [Indexed: 11/29/2022]
Abstract
Background Non-pathological cognitive decline is a neurodegenerative condition associated with brain aging owing to epigenetic changes, telomere shortening, stem cells exhaustion, or altered differentiation. Human umbilical cord mesenchymal stem cells (hUCMSCs) have shown excellent therapeutic prospects on the hallmarks of aging. In this study, we aimed to elucidate the role of hUCMSCs with down-regulated miRNA-206 (hUCMSCs anti-miR-206) on cognitive decline and the underlying mechanism. Methods After daily subcutaneous injection of D-gal (500 mg/kg/d) for 8 weeks, 17-week-old male C57BL/6 J mice were stem cells transplanted by lateral ventricular localization injection. During the 10-day rest period, were tested the behavioral experiments applied to cognitive behavior in the hippocampus. And then, the mice were sacrificed for sampling to complete the molecular and morphological experiments. Results Our behavioral experiments of open field test (OFT), new object recognition test (NOR), and Y-maze revealed that D-galactose (D-gal)-induced aging mice treated with hUCMSCs anti-miR-206 had no obvious spontaneous activity disorder and had recovery in learning and spatial memory ability compared with the PBS-treated group. The hUCMSCs anti-miR-206 reconstituted neuronal physiological function in the hippocampal regions of the aging mice with an increase of Nissl bodies and the overexpression of Egr-1, BDNF, and PSD-95. Conclusion This study first reports that hUCMSCs anti-miR-206 could provide a novel stem cell-based antiaging therapeutic approach.
Collapse
|
8
|
Zhang X, Zhou Y, Ye Y, Wu R, Li W, Yao C, Wang S. Human umbilical cord mesenchymal stem cell-derived exosomal microRNA-148a-3p inhibits neointimal hyperplasia by targeting Serpine1. Arch Biochem Biophys 2022; 719:109155. [PMID: 35218720 DOI: 10.1016/j.abb.2022.109155] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/17/2022]
Abstract
BACKGROUND Restenosis is inevitable when patients undergo percutaneous transluminal angioplasty due to neointimal hyperplasia (NIH). Human umbilical cord mesenchymal stem cell-derived exosomes (hucMSC-Exos) have been studied in the field of cardiovascular diseases. However, the effects and mechanisms of hucMSC-Exos on NIH are unclear. We aimed to investigate whether MSC-Exos regulate vascular smooth muscle cell (VSMC) functions to inhibit NIH and explore the underlying mechanisms. METHODS HucMSCs and mouse VSMCs were isolated and characterized by flow cytometry and immunofluorescence. HucMSC-Exos were identified by transmission electron microscopy, nanoparticle tracking analysis and western blots. Exosomes (Exos) were intravenously injected into mice with left common carotid artery ligation, and their effects on NIH were assessed by haematoxylin and eosin (H&E) and immunohistochemistry staining. The effects of hucMSC-Exos on VSMCs were evaluated by Cell Counting Kit-8, scratch wound, Transwell and Western blot assays. MicroRNA sequencing data in the Gene Expression Omnibus and mRNA sequencing results were used to identify potential molecules in hucMSC-Exos and target genes in VSMCs, respectively. We tested the regulatory effect of microRNAs in Exos and target genes in VSMCs using overexpression and knockdown experiments. RESULTS Primary hucMSCs, VSMCs and hucMSC-Exos were isolated and characterized. Administration of hucMSC-Exos suppressed NIH after artery ligation. H&E and immunohistochemistry results showed that hucMSC-Exos decreased the intima and media area and intima/media ratio, increased the contractile phenotype protein SM22a in the media layer and downregulated Serpine1 expression in the carotid artery. Exos were ingested by VSMCs, which inhibited migration and upregulated SM22a expression by suppressing Serpine1 expression in vitro. MiR-148a-3p was enriched in hucMSC-Exos and repressed Serpine1 by targeting its 3' untranslated region. Moreover, exosomal miR-148a-3p suppressed VSMC phenotypic switching and migration by targeting Serpine1. CONCLUSIONS We found that hucMSC-Exos inhibited NIH in a mouse carotid artery ligation model and that the inhibitory effects on VSMC phenotypic switching and migration were mediated by delivery of miR-148a-3p to VSMCs to target Serpine1.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yu Zhou
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yanchen Ye
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ridong Wu
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wen Li
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Chen Yao
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Shenming Wang
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
9
|
Ahmad J, Haider N, Khan MA, Md S, Alhakamy NA, Ghoneim MM, Alshehri S, Sarim Imam S, Ahmad MZ, Mishra A. Novel therapeutic interventions for combating Parkinson's disease and prospects of Nose-to-Brain drug delivery. Biochem Pharmacol 2021; 195:114849. [PMID: 34808125 DOI: 10.1016/j.bcp.2021.114849] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 02/06/2023]
Abstract
Parkinson disease (PD) is a progressive neurodegenerative disorder prevalent mainly in geriatric population. While, L-DOPA remains one of the major choices for the therapeutic management of PD, various motor and non-motor manifestations complicate the management of PD. In the last two decades, exhaustive research has been carried out to explore novel therapeutic approaches for mitigating motor and non-motor symptoms of PD. These approaches majorly include receptor-based, anti-inflammatory, stem-cell and nucleic acid based. The major limitations of existing therapeutic interventions (of commonly oral route) are low efficacy due to low brain bioavailability and associated side effects. Nanotechnology has been exploited and has gained wide attention in the recent years as an approach for enhancement of bioavailability of various small molecule drugs in the brain. To address the challenges associated with PD therapy, nose-to-brain delivery utilizing nanomedicine-based approaches has been found to be encouraging in published evidence. Therefore, the present work summarises the major challenges and limitations with antiparkinsonian drugs, novel therapeutic interventions, and scope of nanomedicine-based nose-to-brain delivery in addressing the current challenges of antiparkinsonian therapy. The manuscript tries to sensitize the researchers for designing brain-targeted nanomedicine loaded with natural/synthetic scaffolds, biosimilars, and nucleic acids that can bypass the first-pass effect for the effective management of PD.
Collapse
Affiliation(s)
- Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia.
| | - Nafis Haider
- Prince Sultan Military College of Health Sciences, Dhahran 34313, Saudi Arabia.
| | - Mohammad Ahmed Khan
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Nabil A Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Mohammed M Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia.
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Mohammad Zaki Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia.
| | - Awanish Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Guwahati, Changsari, Kamrup Assam-781101, India.
| |
Collapse
|
10
|
Shekarchi S, Roushandeh AM, Roudkenar MH, Bahadori MH. Dimethyl fumarate prevents cytotoxicity and apoptosis mediated by oxidative stress in human adipose-derived mesenchymal stem cells. Mol Biol Rep 2021; 48:6375-6385. [PMID: 34426902 DOI: 10.1007/s11033-021-06638-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 08/10/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND The poor survival rate and undesirable homing of transplanted stem cells are the major challenges in stem cell therapy. Addressing the challenge would improve the therapeutic efficacy of these cells. Dimethyl fumarate (DMF) is an anti-inflammatory drug that exerts its effects through the activation of the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. Therefore, its cytoprotective effects on human adipose-derived MSCs (hASCs) against various oxidative stresses have been investigated in this study. METHODS AND RESULTS hASCs were cultured with different concentrations of DMF to evaluate the cytotoxicity of DMF on hASCs using Cell Counting Kit-8 (CCK-8). Besides, the migration ability of the cells after DMF treatment was evaluated using the Transwell method. Furthermore, the expression of HO-1 and NQO-1 was determined using RT-PCR. The cytoprotective effects of DMF on hASCs against the oxidative stress caused by H2O2 and Ultra Violet (UV) were evaluated by assessing cell proliferation and apoptosis. Our results demonstrated that under oxidative stress conditions induced by H2O2 and UV, DMF increased the survival rate and proliferation of the cells and prevented apoptosis. Moreover, the expression of HO-1 and NQO-1 was upregulated in hASCs pretreated with DMF which confirms the activation of the Nrf2 pathway. However, DMF significantly decreased migration in hADSCs (P < 0.0001). CONCLUSION Our findings indicate that DMF enhances the proliferation capability and viability of hASCs and prevents their apoptosis in harsh stressful microenvironments. However, the applicability of DMF as a cytoprotective factor for the augmentation of hASCs requires in-depth preclinical and clinical studies.
Collapse
Affiliation(s)
- Shima Shekarchi
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Amaneh Mohammadi Roushandeh
- Burn and Regenerative Medicine Research Center, School of Medicine, Velayat Hospital, Guilan University of Medical Sciences, Rasht, Iran.
| | - Mehryar Habibi Roudkenar
- Burn and Regenerative Medicine Research Center, School of Medicine, Velayat Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammad Hadi Bahadori
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
11
|
Qin Y, Kumar Bundhun P, Yuan ZL, Chen MH. The effect of high-intensity interval training on exercise capacity in post-myocardial infarction patients: a systematic review and meta-analysis. Eur J Prev Cardiol 2021; 29:475-484. [PMID: 34279621 DOI: 10.1093/eurjpc/zwab060] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/10/2021] [Accepted: 03/22/2021] [Indexed: 11/12/2022]
Abstract
AIMS Exercise-based cardiac rehabilitation has been recommended a treatment for patients with cardiovascular disease. Nevertheless, it remains controversial which exercise characteristics are most beneficial for post-myocardial infarction (MI) patients. We performed a systematic review and meta-analysis to investigate the effects of high-intensity interval training (HIIT) in these patients. METHODS AND RESULTS We searched PubMed, Embase, the Cochrane Library, China National Knowledge Infrastructure (CNKI), Chinese Science and Technology Periodical Database (VIP), and Wanfang Dataset (from the earliest date available to February 2021) for randomized controlled trials and cohort studies that evaluated the effects of HIIT on post-MI patients. Studies were selected according to inclusion and exclusion criteria. Data synthesis was performed with R software version 4.0.1. Eight studies met the study criteria, including 387 patients. Compared to the control group [moderate-intensity continuous training (MICT) and/or routine physical activity], HIIT significantly improved peak oxygen uptake (peak VO2) [mean difference = 3.83 mL/kg/min, 95% confidence interval (CI) (3.25, 4.41), P < 0.01]. No significant difference in systolic and diastolic blood pressures, peak and resting heart rate, left ventricular ejection fraction, left ventricular end-diastolic volume, and the quality of life was found between HIIT group and control group. The duration of follow-up ranged from 6 to 12 weeks. The incidence of adverse events was similar between groups [risk difference = 0.01, 95% CI (-0.02, 0.04), P = 0.53]. CONCLUSION Compared with MICT and routine physical activity, HIIT could significantly improve exercise capacity in post-MI patients, and appears to be safe.
Collapse
Affiliation(s)
- Yuan Qin
- Department of Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530000, China
| | - Pravesh Kumar Bundhun
- Department of Internal Medicine, Bruno Cheong Hospital, Centre De Flacq 40601, Mauritius
| | - Zhang-Li Yuan
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530000, China
| | - Meng-Hua Chen
- Department of Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530000, China
| |
Collapse
|
12
|
Liu Z, Cheung HH. Stem Cell-Based Therapies for Parkinson Disease. Int J Mol Sci 2020; 21:ijms21218060. [PMID: 33137927 PMCID: PMC7663462 DOI: 10.3390/ijms21218060] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/27/2020] [Accepted: 10/27/2020] [Indexed: 12/11/2022] Open
Abstract
Parkinson disease (PD) is a neurological movement disorder resulting primarily from damage to and degeneration of the nigrostriatal dopaminergic pathway. The pathway consists of neural populations in the substantia nigra that project to the striatum of the brain where they release dopamine. Diagnosis of PD is based on the presence of impaired motor features such as asymmetric or unilateral resting tremor, bradykinesia, and rigidity. Nonmotor features including cognitive impairment, sleep disorders, and autonomic dysfunction are also present. No cure for PD has been discovered, and treatment strategies focus on symptomatic management through restoration of dopaminergic activity. However, proposed cell replacement therapies are promising because midbrain dopaminergic neurons have been shown to restore dopaminergic neurotransmission and functionally rescue the dopamine-depleted striatum. In this review, we summarize our current understanding of the molecular pathogenesis of neurodegeneration in PD and discuss the development of new therapeutic strategies that have led to the initiation of exploratory clinical trials. We focus on the applications of stem cells for the treatment of PD and discuss how stem cell research has contributed to an understanding of PD, predicted the efficacy of novel neuroprotective therapeutics, and highlighted what we believe to be the critical areas for future research.
Collapse
Affiliation(s)
- Zhaohui Liu
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China;
| | - Hoi-Hung Cheung
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China;
- Key Laboratory for Regenerative Medicine, Ministry of Education (Shenzhen Base), Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China
- Correspondence:
| |
Collapse
|
13
|
Zhang L, Wang X, Lu X, Ma Y, Xin X, Xu X, Wang S, Hou Y. Tetramethylpyrazine enhanced the therapeutic effects of human umbilical cord mesenchymal stem cells in experimental autoimmune encephalomyelitis mice through Nrf2/HO-1 signaling pathway. Stem Cell Res Ther 2020; 11:186. [PMID: 32430010 PMCID: PMC7238657 DOI: 10.1186/s13287-020-01700-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/15/2020] [Accepted: 04/28/2020] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION The therapeutic effects of mesenchymal stem cells (MSCs) have been limited by their apoptosis induced by oxidative stress after delivery into the injured sites. Therefore, strategies designed to improve the MSC therapeutic efficacy need to be explored. Tetramethylpyrazine (TMP) can promote the proliferation and differentiation of neural stem cells. In this study, we first evaluated the effects and mechanism of TMP on H2O2-stimulated human umbilical cord MSCs (hUCMSCs) and then further investigated the therapeutic effects of TMP-stimulated hUCMSCs on experimental autoimmune encephalomyelitis (EAE) mice. METHODS The toxicity of hUCMSCs against of TMP was determined by cell count kit-8 (CCK-8) assay. The effects of TMP on the hUCMSC cell cycle, the reactive oxygen species (ROS) production, and the apoptosis of H2O2-stimulated hUCMSCs were determined by flow cytometry. The expression of malondialdehyde (MDA) and superoxide dismutase (SOD) were also measured by colorimetry. The signaling pathway of TMP induced on H2O2-stimulated hUCMSCs was investigated by western blot. EAE was induced using immunization with MOG35-55 in C57BL/6 mice. The inflammatory cell infiltration and demyelination were detected by immunofluorescence staining. The blood-brain barrier (BBB) disruption was detected by Evans blue (EB) stain and the expression of tight junction protein (ZO-1) by western blot. RESULTS TMP significantly increased cell viability and changed the cell cycle of hUCMSCs. In addition, TMP (100 μM) significantly reduced intracellular ROS production, expression of MDA, and apoptosis, but increased expression of SOD through nuclear factor-erythroid 2-related factor-2 (Nrf2)/heme oxygenase 1 (HO-1) signaling pathway in H2O2-stimulated hUCMSCs. Most importantly, compared with wild hUCMSCs, TMP-stimulated hUCMSCs significantly ameliorated EAE, by attenuation of inflammation, demyelination, and BBB disruption. CONCLUSION The TMP-stimulated hUCMSCs provide a potential therapeutical protocol to enhance the therapeutic effects of hUCMSCs in multiple sclerosis.
Collapse
Affiliation(s)
- Lianshuang Zhang
- Department of Histology and Embryology, College of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Xifeng Wang
- Department of Critical Care Medicine, Yu Huang Ding Hospital, Qingdao University, Yantai, China
| | - Xueyan Lu
- Department of Histology and Embryology, College of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Yanchao Ma
- Department of Immunology, College of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Xin Xin
- Department of Histology and Embryology, College of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Xiaomin Xu
- Department of Histology and Embryology, College of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Siyuan Wang
- Department of Histology and Embryology, College of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Yun Hou
- Department of Histology and Embryology, College of Basic Medicine, Binzhou Medical University, Yantai, China.
| |
Collapse
|
14
|
Exosomes derived from mesenchymal stem cells repair a Parkinson's disease model by inducing autophagy. Cell Death Dis 2020; 11:288. [PMID: 32341347 PMCID: PMC7184757 DOI: 10.1038/s41419-020-2473-5] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 12/17/2022]
Abstract
Parkinson's disease (PD) is a progressively debilitating neurodegenerative condition that leads to motor and cognitive dysfunction. At present, clinical treatment can only improve symptoms, but cannot effectively protect dopaminergic neurons. Several reports have demonstrated that human umbilical cord mesenchymal stem cells (hucMSCs) afford neuroprotection, while their application is limited because of their uncontrollable differentiation and other reasons. Stem cells communicate with cells through secreted exosomes (Exos), the present study aimed to explore whether Exos secreted by hucMSCs could function instead of hucMSCs. hucMSCs were successfully isolated and characterized, and shown to contribute to 6-hydroxydopamine (6-OHDA)-stimulated SH-SY5Y cell proliferation; hucMSC-derived Exos were also involved in this process. The Exos were purified and identified, and then labeled with PKH 26, it was found that the Exos could be efficiently taken up by SH-SY5Y cells after 12 h of incubation. Pretreatment with Exos promoted 6-OHDA-stimulated SH-SY5Y cells to proliferate and inhibited apoptosis by inducing autophagy. Furthermore, Exos reached the substantia nigra through the blood-brain barrier (BBB) in vivo, relieved apomorphine-induced asymmetric rotation, reduced substantia nigra dopaminergic neuron loss and apoptosis, and upregulated the level of dopamine in the striatum. These results demonstrate that hucMSCs-Exos have a treatment capability for PD and can traverse the BBB, indicating their potential for the effective treatment of PD.
Collapse
|
15
|
Therapeutic Potential of Human Amniotic Epithelial Cells on Injuries and Disorders in the Central Nervous System. Stem Cells Int 2019; 2019:5432301. [PMID: 31827529 PMCID: PMC6886344 DOI: 10.1155/2019/5432301] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/02/2019] [Accepted: 10/08/2019] [Indexed: 02/07/2023] Open
Abstract
Despite recent advances in neurosurgery and pharmaceuticals, contemporary treatments are ineffective in restoring lost neurological functions in patients with injuries and disorders of the central nervous system (CNS). Therefore, novel and effective therapies are urgently needed. Recent studies have indicated that stem cells, including embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), and mesenchymal stem cells (MSCs), could repair/replace damaged or degenerative neurons and improve functional recovery in both preclinical and clinical trials. However, there are many unanswered questions and unsolved issues regarding stem cell therapy in terms of potency, stability, oncogenicity, immune response, cell sources, and ethics. Currently, human amniotic epithelial cells (hAECs) derived from the amnion exhibit considerable advantages over other stem cells and have drawn much attention from researchers. hAECs are readily available, pose no ethical concerns, and have little risk of tumorigenicity and immunogenicity. Mounting evidence has shown that hAECs can promote neural cell survival and regeneration, repair affected neurons, and reestablish damaged neural connections. It is suggested that hAECs may be the most promising candidate for cell-based therapy of neurological diseases. In this review, we mainly focus on recent advances and potential applications of hAECs for treating various CNS injuries and neurodegenerative disorders. We also discuss current hurdles and challenges regarding hAEC therapies.
Collapse
|
16
|
Zhao H, Li Y, Chen L, Shen C, Xiao Z, Xu R, Wang J, Luo Y. HucMSCs-Derived miR-206-Knockdown Exosomes Contribute to Neuroprotection in Subarachnoid Hemorrhage Induced Early Brain Injury by Targeting BDNF. Neuroscience 2019; 417:11-23. [PMID: 31400488 DOI: 10.1016/j.neuroscience.2019.07.051] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 12/17/2022]
Abstract
Early brain injury (EBI) is the most important potentially treatable cause of mortality and morbidity following subarachnoid hemorrhage (SAH). Apoptosis is one of the main pathologies of SAH-induced EBI. Numerous studies suggest that human umbilical cord derived mesenchymal stem cells (hucMSCs) may exert neuroprotective effect through exosomes instead of transdifferentiation. In addition, microRNA-206 (miR-206) targets BDNF and plays a critical role in brain injury diseases. However, the therapy effect of miR-206 modified exosomes on EBI after SAH and its regulatory mechanism have not been elucidated. Here, to identify whether hucMSCs-derived miR-206-knockdown exosomes have a better neuroprotective effect, we established SAH rat model and treated it with the exosomes to research the mechanism of miR-206 in EBI after SAH. We found that treatment with hucMSCs-derived miR-206-knockdown exosomes has a greater neuroprotective effect on SAH-induced EBI compared to treatment with simple exosomes. The miR-206-knockdown exosomes could significantly improve neurological deficit and brain edema and suppress neuronal apoptosis by targeting BDNF. Moreover, the BDNF/TrkB/CREB pathway was activated following treatment with miR-206 modified exosomes in vivo. In summary, these findings indicate that the hucMSCs-derived miR-206-knockdown exosomes prevent early brain injury by inhibiting apoptosis via BDNF/TrkB/CREB signaling. This may serve as a novel therapeutic target for treatment of SAH-induced EBI.
Collapse
Affiliation(s)
- Hao Zhao
- Department of Neurosurgery, The Seventh Medical Center of the PLA General Hospital, Beijing, 100000, China
| | - Yunjun Li
- Department of Neurosurgery, The Seventh Medical Center of the PLA General Hospital, Beijing, 100000, China
| | - Lihua Chen
- Department of Neurosurgery, The Seventh Medical Center of the PLA General Hospital, Beijing, 100000, China
| | - Chunsen Shen
- Department of Neurosurgery, The Seventh Medical Center of the PLA General Hospital, Beijing, 100000, China
| | - Zongyu Xiao
- Department of Neurosurgery, Affiliated Hospital of Qinghai University, Xining, 810000, China
| | - Ruxiang Xu
- Department of Neurosurgery, The Seventh Medical Center of the PLA General Hospital, Beijing, 100000, China
| | - Ji Wang
- Department of Neurosurgery, The Seventh Medical Center of the PLA General Hospital, Beijing, 100000, China; Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.
| | - Yongchun Luo
- Department of Neurosurgery, The Seventh Medical Center of the PLA General Hospital, Beijing, 100000, China.
| |
Collapse
|
17
|
Xu AL, Rodriguez LA, Walker KP, Mohammadipoor A, Kamucheka RM, Cancio LC, Batchinsky AI, Antebi B. Mesenchymal Stem Cells Reconditioned in Their Own Serum Exhibit Augmented Therapeutic Properties in the Setting of Acute Respiratory Distress Syndrome. Stem Cells Transl Med 2019; 8:1092-1106. [PMID: 31219247 PMCID: PMC6766690 DOI: 10.1002/sctm.18-0236] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 04/03/2019] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are a promising form of therapy for acute respiratory distress syndrome (ARDS). The objective of this study was twofold: (a) to characterize cytokine expression in serum from ARDS subjects receiving MSCs and (b) to determine MSC function following “preconditioning” with ARDS serum. In phase I, serum from three cohorts of animals (uninjured [no ARDS, n = 4], injured untreated [n = 5], and injured treated with approximately 6 million per kilogram MSCs [n = 7]) was analyzed for expression of inflammatory mediators. In phase II, the functional properties of bone marrow porcine MSCs were assessed following “preconditioning” with serum from the three cohorts. In phase III, the findings from the previous phases were validated using human bone marrow MSCs (hBM‐MSCs) and lipopolysaccharide (LPS). Serum from injured treated animals had significantly lower levels of interferon‐γ and significantly higher levels of interleukin (IL)‐1 receptor antagonist (IL‐1RA) and IL‐6. Similarly, upon exposure to the injured treated serum ex vivo, the MSCs secreted higher levels of IL‐1RA and IL‐10, dampened the secretion of proinflammatory cytokines, exhibited upregulation of toll‐like receptor 4 (TLR‐4) and vascular endothelial growth factor (VEGF) genes, and triggered a strong immunomodulatory response via prostaglandin E2 (PGE2). hBM‐MSCs demonstrated a similar augmented therapeutic function following reconditioning in a LPS milieu. Administration of MSCs modulated the inflammatory milieu following ARDS. Exposure to ARDS serum ex vivo paralleled the trends seen in vivo, which appear to be mediated, in part, through TLR‐4 and VEGF and PGE2. Reconditioning MSCs in their own serum potentiates their immunotherapeutic function, a technique that can be used in clinical applications. stem cells translational medicine2019;8:1092–1106
Collapse
Affiliation(s)
- Amy L Xu
- Department of Expeditionary Critical Care, U.S. Army Institute of Surgical Research, San Antonio, Texas, USA.,Department of Human Biology, Stanford University, Stanford, California, USA
| | - Luis A Rodriguez
- Department of Expeditionary Critical Care, U.S. Army Institute of Surgical Research, San Antonio, Texas, USA.,Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA
| | - Kerfoot P Walker
- Department of Expeditionary Critical Care, U.S. Army Institute of Surgical Research, San Antonio, Texas, USA.,Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA
| | - Arezoo Mohammadipoor
- Department of Expeditionary Critical Care, U.S. Army Institute of Surgical Research, San Antonio, Texas, USA.,Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA
| | - Robin M Kamucheka
- Department of Expeditionary Critical Care, U.S. Army Institute of Surgical Research, San Antonio, Texas, USA
| | - Leopoldo C Cancio
- Department of Expeditionary Critical Care, U.S. Army Institute of Surgical Research, San Antonio, Texas, USA
| | - Andriy I Batchinsky
- Department of Expeditionary Critical Care, U.S. Army Institute of Surgical Research, San Antonio, Texas, USA.,The Geneva Foundation, Tacoma, Washington, USA
| | - Ben Antebi
- Department of Expeditionary Critical Care, U.S. Army Institute of Surgical Research, San Antonio, Texas, USA.,Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
18
|
Bashiri H, Amiri F, Hosseini A, Hamidi M, Mohammadi Roushandeh A, Kuwahara Y, Jalili MA, Habibi Roudkenar M. Dual Preconditioning: A Novel Strategy to Withstand Mesenchymal Stem Cells against Harsh Microenvironments. Adv Pharm Bull 2018; 8:465-470. [PMID: 30276143 PMCID: PMC6156477 DOI: 10.15171/apb.2018.054] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/21/2018] [Accepted: 07/19/2018] [Indexed: 02/06/2023] Open
Abstract
Purpose: Poor survival rate of mesenchymal stem cells (MSCs) following their transplantation is one of the major challenges in their therapeutic application. Therefore, it is necessary to augment the viability of the MSCs in order to improve their therapeutic efficacy. Several strategies have been used to overcome this problem. Preconditioning of MSCs with oxidative stresses has gained a lot of attention. Therefore, in the present study, we investigated the effects of simultaneous preconditioning of MSCs with hydrogen peroxide and serum deprivation stresses on their survival and resistance to stressful conditions. Methods: MSCs were isolated from human umbilical cord blood. To perform simultaneous preconditioning, the cells were cultured in DMEM medium containing 1, 2.5 and 5 percent FBS and different concentrations of H2O2 (5, 10, 15, 20, 25, 30, 35, 40, 50, 60, 80 and 100 µM) for 24 hrs. Then, the cells were cultured in recovery culture medium. Finally, one group of the cells was exposed to a lethal concentration of H2O2 (300µM), and the other cells were cultivated in FBS free DMEM medium as the lethal situation. In addition, the percentage of apoptotic cells was analyzed using Caspase 3 assay kit. Results: Simultaneous preconditioning of the MSCs with 15µM H2O2 plus serum deprivation, 2.5% FBS, significantly increased the resistance of the cells to the toxicity induced following their cultivation in FBS free DMEM medium. It exerted the protective effect on the cells after treating with the lethal dose of H2O2 as well. Conclusion: Simultaneous preconditioning of MSCs with oxidative and serum deprivation stresses enhances their survival against harsh conditions, which might increase the viability and stability of the MSCs following their transplantation.
Collapse
Affiliation(s)
- Hamed Bashiri
- Department of Medical Laboratory Sciences, Faculty of Paramedical, Kurdistan University of Medical Sciences, Sanandaj, Iran.,Department of Medical Laboratory Sciences, School of Paramedicine, Hamadan University of Medical Sciences, Hamadan, Islamic Republic of Iran
| | - Fatemeh Amiri
- Department of Medical Laboratory Sciences, School of Paramedicine, Hamadan University of Medical Sciences, Hamadan, Islamic Republic of Iran
| | - Ali Hosseini
- Department of Medical Laboratory Sciences, School of Paramedicine, Hamadan University of Medical Sciences, Hamadan, Islamic Republic of Iran
| | - Masoud Hamidi
- Medical Biotechnology Research Center, Paramedicine Faculty, Guilan University of Medical Sciences, Rasht, Iran
| | - Amaneh Mohammadi Roushandeh
- Medical Biotechnology Research Center, Paramedicine Faculty, Guilan University of Medical Sciences, Rasht, Iran
| | - Yoshikazu Kuwahara
- Division of Radiation Biology and Medicine, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Mohammad Ali Jalili
- Department of Medical Laboratory Sciences, School of Paramedicine, Hamadan University of Medical Sciences, Hamadan, Islamic Republic of Iran
| | - Mehryar Habibi Roudkenar
- Cardiovascular Disease Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
19
|
OCT4 expression mediates partial cardiomyocyte reprogramming of mesenchymal stromal cells. PLoS One 2017; 12:e0189131. [PMID: 29216265 PMCID: PMC5720736 DOI: 10.1371/journal.pone.0189131] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 11/04/2017] [Indexed: 01/09/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are in numerous cell therapy clinical trials, including for injured myocardium. Acquisition of cardiomyocyte characteristics by MSCs may improve cardiac regeneration but the mechanisms regulating this process are unclear. Here, we investigated whether the pluripotency transcription factor OCT4 is involved in the activation of cardiac lineage genetic programs in MSCs. We employed our established co-culture model of MSCs with rat embryonic cardiomyocytes showing co-expression of cardiac markers on MSCs independent of cell fusion. Bone marrow-derived MSCs were isolated from transgenic mice expressing GFP under the control of the cardiac-specific α-myosin heavy chain promoter. After 5 days of co-culture, MSCs expressed cardiac specific genes, including Nkx2.5, atrial natriuretic factor and α-cardiac actin. The frequency of GFP+ cells was 7.6±1.9%, however, these cells retained the stromal cell phenotype, indicating, as expected, only partial differentiation. Global OCT4 expression increased 2.6±0.7-fold in co-cultured MSCs and of interest, 87±5% vs 79±4% of MSCs expressed OCT4 by flow cytometry in controls and after co-culture, respectively. Consistent with the latter observation, the GFP+ cells did not express nuclear OCT4 and showed a significant increase in OCT4 promoter methylation compared with undifferentiated MSCs (92% vs 45%), inferring that OCT4 is regulated by an epigenetic mechanism. We further showed that siRNA silencing of OCT4 in MSCs resulted in a reduced frequency of GFP+ cells in co-culture to less than 1%. Our data infer that OCT4 expression may have a direct effect on partial cardiomyocyte reprogramming of MSCs and suggest a new mechanism(s) associated with MSC multipotency and a requirement for crosstalk with the cardiac microenvironment.
Collapse
|
20
|
Abstract
Abstract
Stem cell-based therapies for neurodegenerative diseases aim at halting clinical deterioration by regeneration and by providing local support for damaged tissue. Mesenchymal stem cells (MSCs) hold great potential for cell therapy as they can be efficiently derived from adult tissue, ex vivo expanded in culture and safely transplanted autologously. MSCs were also shown to be able to differentiate toward neural fates and to secrete a broad range of factors able to promote nervous tissue maintenance and repair. Moreover, upon transplantation, MSCs were shown capable of homing toward lesioned areas, implying their potential use as vehicles for therapeutic agents administration. Indeed, various advantageous effects were reported following human MSCs transplantation into rodent models of neurodegenerative diseases, such as neurotrophic factor-mediated protection, enhanced neurogenesis, modulation of inflammation, and abnormal protein aggregate clearance. Recent studies have also used ex vivo manipulation for enhanced expression of potentially favorable factors, by so exploiting the homing capacity of MSCs for effective expression at the lesion site. Here, we will summarize current advancements in MSCs-based therapies for neurodegenerative diseases. We will examine the roles of central mechanisms suggested to mediate the beneficial effects of MSCs-based therapy and consider the augmentation of these mechanisms for superior clinical outcomes in rodent models of neurodegeneration as well as in clinical trials.
Collapse
|
21
|
Volkman R, Offen D. Concise Review: Mesenchymal Stem Cells in Neurodegenerative Diseases. Stem Cells 2017. [DOI: 10.1002/stem.2651 and extractvalue(5426,concat(0x5c,0x717a6a6b71,(select (elt(5426=5426,1))),0x71707a7a71))-- ncmy] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Abstract
Stem cell-based therapies for neurodegenerative diseases aim at halting clinical deterioration by regeneration and by providing local support for damaged tissue. Mesenchymal stem cells (MSCs) hold great potential for cell therapy as they can be efficiently derived from adult tissue, ex vivo expanded in culture and safely transplanted autologously. MSCs were also shown to be able to differentiate toward neural fates and to secrete a broad range of factors able to promote nervous tissue maintenance and repair. Moreover, upon transplantation, MSCs were shown capable of homing toward lesioned areas, implying their potential use as vehicles for therapeutic agents administration. Indeed, various advantageous effects were reported following human MSCs transplantation into rodent models of neurodegenerative diseases, such as neurotrophic factor-mediated protection, enhanced neurogenesis, modulation of inflammation, and abnormal protein aggregate clearance. Recent studies have also used ex vivo manipulation for enhanced expression of potentially favorable factors, by so exploiting the homing capacity of MSCs for effective expression at the lesion site. Here, we will summarize current advancements in MSCs-based therapies for neurodegenerative diseases. We will examine the roles of central mechanisms suggested to mediate the beneficial effects of MSCs-based therapy and consider the augmentation of these mechanisms for superior clinical outcomes in rodent models of neurodegeneration as well as in clinical trials.
Collapse
|
22
|
Abstract
Abstract
Stem cell-based therapies for neurodegenerative diseases aim at halting clinical deterioration by regeneration and by providing local support for damaged tissue. Mesenchymal stem cells (MSCs) hold great potential for cell therapy as they can be efficiently derived from adult tissue, ex vivo expanded in culture and safely transplanted autologously. MSCs were also shown to be able to differentiate toward neural fates and to secrete a broad range of factors able to promote nervous tissue maintenance and repair. Moreover, upon transplantation, MSCs were shown capable of homing toward lesioned areas, implying their potential use as vehicles for therapeutic agents administration. Indeed, various advantageous effects were reported following human MSCs transplantation into rodent models of neurodegenerative diseases, such as neurotrophic factor-mediated protection, enhanced neurogenesis, modulation of inflammation, and abnormal protein aggregate clearance. Recent studies have also used ex vivo manipulation for enhanced expression of potentially favorable factors, by so exploiting the homing capacity of MSCs for effective expression at the lesion site. Here, we will summarize current advancements in MSCs-based therapies for neurodegenerative diseases. We will examine the roles of central mechanisms suggested to mediate the beneficial effects of MSCs-based therapy and consider the augmentation of these mechanisms for superior clinical outcomes in rodent models of neurodegeneration as well as in clinical trials.
Collapse
|
23
|
Abstract
Abstract
Stem cell-based therapies for neurodegenerative diseases aim at halting clinical deterioration by regeneration and by providing local support for damaged tissue. Mesenchymal stem cells (MSCs) hold great potential for cell therapy as they can be efficiently derived from adult tissue, ex vivo expanded in culture and safely transplanted autologously. MSCs were also shown to be able to differentiate toward neural fates and to secrete a broad range of factors able to promote nervous tissue maintenance and repair. Moreover, upon transplantation, MSCs were shown capable of homing toward lesioned areas, implying their potential use as vehicles for therapeutic agents administration. Indeed, various advantageous effects were reported following human MSCs transplantation into rodent models of neurodegenerative diseases, such as neurotrophic factor-mediated protection, enhanced neurogenesis, modulation of inflammation, and abnormal protein aggregate clearance. Recent studies have also used ex vivo manipulation for enhanced expression of potentially favorable factors, by so exploiting the homing capacity of MSCs for effective expression at the lesion site. Here, we will summarize current advancements in MSCs-based therapies for neurodegenerative diseases. We will examine the roles of central mechanisms suggested to mediate the beneficial effects of MSCs-based therapy and consider the augmentation of these mechanisms for superior clinical outcomes in rodent models of neurodegeneration as well as in clinical trials.
Collapse
|
24
|
Volkman R, Offen D. Concise Review: Mesenchymal Stem Cells in Neurodegenerative Diseases. Stem Cells 2017. [DOI: 10.1002/stem.2651 order by 1-- hpcc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract
Stem cell-based therapies for neurodegenerative diseases aim at halting clinical deterioration by regeneration and by providing local support for damaged tissue. Mesenchymal stem cells (MSCs) hold great potential for cell therapy as they can be efficiently derived from adult tissue, ex vivo expanded in culture and safely transplanted autologously. MSCs were also shown to be able to differentiate toward neural fates and to secrete a broad range of factors able to promote nervous tissue maintenance and repair. Moreover, upon transplantation, MSCs were shown capable of homing toward lesioned areas, implying their potential use as vehicles for therapeutic agents administration. Indeed, various advantageous effects were reported following human MSCs transplantation into rodent models of neurodegenerative diseases, such as neurotrophic factor-mediated protection, enhanced neurogenesis, modulation of inflammation, and abnormal protein aggregate clearance. Recent studies have also used ex vivo manipulation for enhanced expression of potentially favorable factors, by so exploiting the homing capacity of MSCs for effective expression at the lesion site. Here, we will summarize current advancements in MSCs-based therapies for neurodegenerative diseases. We will examine the roles of central mechanisms suggested to mediate the beneficial effects of MSCs-based therapy and consider the augmentation of these mechanisms for superior clinical outcomes in rodent models of neurodegeneration as well as in clinical trials.
Collapse
|
25
|
Abstract
Abstract
Stem cell-based therapies for neurodegenerative diseases aim at halting clinical deterioration by regeneration and by providing local support for damaged tissue. Mesenchymal stem cells (MSCs) hold great potential for cell therapy as they can be efficiently derived from adult tissue, ex vivo expanded in culture and safely transplanted autologously. MSCs were also shown to be able to differentiate toward neural fates and to secrete a broad range of factors able to promote nervous tissue maintenance and repair. Moreover, upon transplantation, MSCs were shown capable of homing toward lesioned areas, implying their potential use as vehicles for therapeutic agents administration. Indeed, various advantageous effects were reported following human MSCs transplantation into rodent models of neurodegenerative diseases, such as neurotrophic factor-mediated protection, enhanced neurogenesis, modulation of inflammation, and abnormal protein aggregate clearance. Recent studies have also used ex vivo manipulation for enhanced expression of potentially favorable factors, by so exploiting the homing capacity of MSCs for effective expression at the lesion site. Here, we will summarize current advancements in MSCs-based therapies for neurodegenerative diseases. We will examine the roles of central mechanisms suggested to mediate the beneficial effects of MSCs-based therapy and consider the augmentation of these mechanisms for superior clinical outcomes in rodent models of neurodegeneration as well as in clinical trials.
Collapse
|
26
|
Abstract
Abstract
Stem cell-based therapies for neurodegenerative diseases aim at halting clinical deterioration by regeneration and by providing local support for damaged tissue. Mesenchymal stem cells (MSCs) hold great potential for cell therapy as they can be efficiently derived from adult tissue, ex vivo expanded in culture and safely transplanted autologously. MSCs were also shown to be able to differentiate toward neural fates and to secrete a broad range of factors able to promote nervous tissue maintenance and repair. Moreover, upon transplantation, MSCs were shown capable of homing toward lesioned areas, implying their potential use as vehicles for therapeutic agents administration. Indeed, various advantageous effects were reported following human MSCs transplantation into rodent models of neurodegenerative diseases, such as neurotrophic factor-mediated protection, enhanced neurogenesis, modulation of inflammation, and abnormal protein aggregate clearance. Recent studies have also used ex vivo manipulation for enhanced expression of potentially favorable factors, by so exploiting the homing capacity of MSCs for effective expression at the lesion site. Here, we will summarize current advancements in MSCs-based therapies for neurodegenerative diseases. We will examine the roles of central mechanisms suggested to mediate the beneficial effects of MSCs-based therapy and consider the augmentation of these mechanisms for superior clinical outcomes in rodent models of neurodegeneration as well as in clinical trials.
Collapse
|
27
|
Abstract
Abstract
Stem cell-based therapies for neurodegenerative diseases aim at halting clinical deterioration by regeneration and by providing local support for damaged tissue. Mesenchymal stem cells (MSCs) hold great potential for cell therapy as they can be efficiently derived from adult tissue, ex vivo expanded in culture and safely transplanted autologously. MSCs were also shown to be able to differentiate toward neural fates and to secrete a broad range of factors able to promote nervous tissue maintenance and repair. Moreover, upon transplantation, MSCs were shown capable of homing toward lesioned areas, implying their potential use as vehicles for therapeutic agents administration. Indeed, various advantageous effects were reported following human MSCs transplantation into rodent models of neurodegenerative diseases, such as neurotrophic factor-mediated protection, enhanced neurogenesis, modulation of inflammation, and abnormal protein aggregate clearance. Recent studies have also used ex vivo manipulation for enhanced expression of potentially favorable factors, by so exploiting the homing capacity of MSCs for effective expression at the lesion site. Here, we will summarize current advancements in MSCs-based therapies for neurodegenerative diseases. We will examine the roles of central mechanisms suggested to mediate the beneficial effects of MSCs-based therapy and consider the augmentation of these mechanisms for superior clinical outcomes in rodent models of neurodegeneration as well as in clinical trials.
Collapse
|
28
|
Volkman R, Offen D. Concise Review: Mesenchymal Stem Cells in Neurodegenerative Diseases. Stem Cells 2017. [DOI: 10.1002/stem.2651 order by 1-- asnk] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Abstract
Stem cell-based therapies for neurodegenerative diseases aim at halting clinical deterioration by regeneration and by providing local support for damaged tissue. Mesenchymal stem cells (MSCs) hold great potential for cell therapy as they can be efficiently derived from adult tissue, ex vivo expanded in culture and safely transplanted autologously. MSCs were also shown to be able to differentiate toward neural fates and to secrete a broad range of factors able to promote nervous tissue maintenance and repair. Moreover, upon transplantation, MSCs were shown capable of homing toward lesioned areas, implying their potential use as vehicles for therapeutic agents administration. Indeed, various advantageous effects were reported following human MSCs transplantation into rodent models of neurodegenerative diseases, such as neurotrophic factor-mediated protection, enhanced neurogenesis, modulation of inflammation, and abnormal protein aggregate clearance. Recent studies have also used ex vivo manipulation for enhanced expression of potentially favorable factors, by so exploiting the homing capacity of MSCs for effective expression at the lesion site. Here, we will summarize current advancements in MSCs-based therapies for neurodegenerative diseases. We will examine the roles of central mechanisms suggested to mediate the beneficial effects of MSCs-based therapy and consider the augmentation of these mechanisms for superior clinical outcomes in rodent models of neurodegeneration as well as in clinical trials.
Collapse
|
29
|
Abstract
Abstract
Stem cell-based therapies for neurodegenerative diseases aim at halting clinical deterioration by regeneration and by providing local support for damaged tissue. Mesenchymal stem cells (MSCs) hold great potential for cell therapy as they can be efficiently derived from adult tissue, ex vivo expanded in culture and safely transplanted autologously. MSCs were also shown to be able to differentiate toward neural fates and to secrete a broad range of factors able to promote nervous tissue maintenance and repair. Moreover, upon transplantation, MSCs were shown capable of homing toward lesioned areas, implying their potential use as vehicles for therapeutic agents administration. Indeed, various advantageous effects were reported following human MSCs transplantation into rodent models of neurodegenerative diseases, such as neurotrophic factor-mediated protection, enhanced neurogenesis, modulation of inflammation, and abnormal protein aggregate clearance. Recent studies have also used ex vivo manipulation for enhanced expression of potentially favorable factors, by so exploiting the homing capacity of MSCs for effective expression at the lesion site. Here, we will summarize current advancements in MSCs-based therapies for neurodegenerative diseases. We will examine the roles of central mechanisms suggested to mediate the beneficial effects of MSCs-based therapy and consider the augmentation of these mechanisms for superior clinical outcomes in rodent models of neurodegeneration as well as in clinical trials.
Collapse
|
30
|
Sanap A, Chandravanshi B, Shah T, Tillu G, Dhanushkodi A, Bhonde R, Joshi K. Herbal pre-conditioning induces proliferation and delays senescence in Wharton's Jelly Mesenchymal Stem Cells. Biomed Pharmacother 2017; 93:772-778. [PMID: 28724259 DOI: 10.1016/j.biopha.2017.06.107] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 06/15/2017] [Accepted: 06/29/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Mesenchymal Stem Cells (MSCs) are multipotent stem cells which are being explored for various clinical applications. Isolation and in-vitro expansion of MSCs remain important in achieving desired cell number for the therapy. However, in-vitro proliferation of MSCs is often associated with senescence and early onset of apoptosis which limits its therapeutic ability and long term clinical use. Tinospora cordifolia and Withania somnifera are used widely in Ayurveda: the traditional Indian system of medicine and are reported to have rejuvenating and anti-aging potential. In the present study, we investigated the effect of Tinospora cordifolia and Withania somnifera on proliferation and senescence of wharton's jelly MSCs (WJMSCs) in-vitro. METHODS WJMSCs were treated in culture medium with Tinospora cordifolia leaf and Withania somnifera root extracts to examine their effect on proliferation and senescence properties of WJMSCs. Proliferation of WJMSCs was assayed by cell count, MTT, BrdU incorporation assay, cell cycle analysis and Ki67 mRNA expression. Senescence was demonstrated using β-galactosidase senescence assay and associated mRNA markers. RESULTS Culture medium supplemented with Tinospora cordifolia leaf and Withania somnifera root extracts exhibited significant increase in proliferation of WJMSCs as evidenced by cell count and MTT assay. Cell cycle analysis using propidium iodide showed increase in G2/M phase and decrease in apoptotic cells. BrdU incorporation and upregulation of proliferation marker ki67 by RT PCR showed increased DNA synthesis/proliferation in Tinospora cordifolia and Withania somnifera extract treated MSCs. Delayed senescence was confirmed by β-galactosidase senescence assay and down regulation of senescence marker p21. CONCLUSION Our results demonstrate for the first time that Tinospora cordifolia and Withania somnifera extracts support proliferation and inhibit senescence in WJMSCs making them suitable candidates as supplements for in-vitro expansion without affecting the cell viability indicating its non-toxic nature.
Collapse
Affiliation(s)
- Avinash Sanap
- Department of Biotechnology, Sinhgad College of Engineering, Affiliated to Savitribai Phule Pune University, Pune 411041, India
| | | | - Tejas Shah
- Department of Biotechnology, Sinhgad College of Engineering, Affiliated to Savitribai Phule Pune University, Pune 411041, India
| | - Girish Tillu
- Interdisciplinary School of Health Sciences, Savitribai Phule Pune University, Pune 411007, India
| | - Anand Dhanushkodi
- School of Regenerative Medicine, Manipal University, Bangalore 560065, India
| | - Ramesh Bhonde
- School of Regenerative Medicine, Manipal University, Bangalore 560065, India
| | - Kalpana Joshi
- Department of Biotechnology, Sinhgad College of Engineering, Affiliated to Savitribai Phule Pune University, Pune 411041, India.
| |
Collapse
|
31
|
Volkman R, Offen D. Concise Review: Mesenchymal Stem Cells in Neurodegenerative Diseases. Stem Cells 2017; 35:1867-1880. [PMID: 28589621 DOI: 10.1002/stem.2651] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 05/06/2017] [Indexed: 12/13/2022]
Abstract
Stem cell-based therapies for neurodegenerative diseases aim at halting clinical deterioration by regeneration and by providing local support for damaged tissue. Mesenchymal stem cells (MSCs) hold great potential for cell therapy as they can be efficiently derived from adult tissue, ex vivo expanded in culture and safely transplanted autologously. MSCs were also shown to be able to differentiate toward neural fates and to secrete a broad range of factors able to promote nervous tissue maintenance and repair. Moreover, upon transplantation, MSCs were shown capable of homing toward lesioned areas, implying their potential use as vehicles for therapeutic agents administration. Indeed, various advantageous effects were reported following human MSCs transplantation into rodent models of neurodegenerative diseases, such as neurotrophic factor-mediated protection, enhanced neurogenesis, modulation of inflammation, and abnormal protein aggregate clearance. Per journal style, most nonstandard abbreviations must be used at least two times in the abstract to be retained; NTF was used once and thus has been deleted. Recent studies have also used ex vivo manipulation for enhanced expression of potentially favorable factors, by so exploiting the homing capacity of MSCs for effective expression at the lesion site. Here, we will summarize current advancements in MSCs-based therapies for neurodegenerative diseases. We will examine the roles of central mechanisms suggested to mediate the beneficial effects of MSCs-based therapy and consider the augmentation of these mechanisms for superior clinical outcomes in rodent models of neurodegeneration as well as in clinical trials. Stem Cells 2017;35:1867-1880.
Collapse
|
32
|
Redondo-Castro E, Cunningham C, Miller J, Martuscelli L, Aoulad-Ali S, Rothwell NJ, Kielty CM, Allan SM, Pinteaux E. Interleukin-1 primes human mesenchymal stem cells towards an anti-inflammatory and pro-trophic phenotype in vitro. Stem Cell Res Ther 2017; 8:79. [PMID: 28412968 PMCID: PMC5393041 DOI: 10.1186/s13287-017-0531-4] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 03/01/2017] [Accepted: 03/08/2017] [Indexed: 12/25/2022] Open
Abstract
Background Inflammation is a key contributor to central nervous system (CNS) injury such as stroke, and is a major target for therapeutic intervention. Effective treatments for CNS injuries are limited and applicable to only a minority of patients. Stem cell-based therapies are increasingly considered for the treatment of CNS disease, because they can be used as in-situ regulators of inflammation, and improve tissue repair and recovery. One promising option is the use of bone marrow-derived mesenchymal stem cells (MSCs), which can secrete anti-inflammatory and trophic factors, can migrate towards inflamed and injured sites or can be implanted locally. Here we tested the hypothesis that pre-treatment with inflammatory cytokines can prime MSCs towards an anti-inflammatory and pro-trophic phenotype in vitro. Methods Human MSCs from three different donors were cultured in vitro and treated with inflammatory mediators as follows: interleukin (IL)-1α, IL-1β, tumour necrosis factor alpha (TNF-α) or interferon-γ. After 24 h of treatment, cell supernatants were analysed by ELISA for expression of granulocyte-colony stimulating factor (G-CSF), IL-10, brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), IL-1 receptor antagonist (IL-1Ra) and vascular endothelial growth factor (VEGF). To confirm the anti-inflammatory potential of MSCs, immortalised mouse microglial BV2 cells were treated with bacterial lipopolysaccharide (LPS) and exposed to conditioned media (CM) of naïve or IL-1-primed MSCs, and levels of secreted microglial-derived inflammatory mediators including TNF-α, IL-10, G-CSF and IL-6 were measured by ELISA. Results Unstimulated MSCs constitutively expressed anti-inflammatory cytokines and trophic factors (IL-10, VEGF, BDNF, G-CSF, NGF and IL-1Ra). MSCs primed with IL-1α or IL-1β showed increased secretion of G-CSF, which was blocked by IL-1Ra. Furthermore, LPS-treated BV2 cells secreted less inflammatory and apoptotic markers, and showed increased secretion of the anti-inflammatory IL-10 in response to treatment with CM of IL-1-primed MSCs compared with CM of unprimed MSCs. Conclusions Our results demonstrate that priming MSCs with IL-1 increases expression of trophic factor G-CSF through an IL-1 receptor type 1 (IL-1R1) mechanism, and induces a reduction in the secretion of inflammatory mediators in LPS-activated microglial cells. The results therefore support the potential use of preconditioning treatments of stem cells in future therapies. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0531-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elena Redondo-Castro
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Catriona Cunningham
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Jonjo Miller
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Licia Martuscelli
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Sarah Aoulad-Ali
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Nancy J Rothwell
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Cay M Kielty
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Stuart M Allan
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Emmanuel Pinteaux
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| |
Collapse
|
33
|
Nitzsche F, Müller C, Lukomska B, Jolkkonen J, Deten A, Boltze J. Concise Review: MSC Adhesion Cascade-Insights into Homing and Transendothelial Migration. Stem Cells 2017; 35:1446-1460. [DOI: 10.1002/stem.2614] [Citation(s) in RCA: 207] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 02/13/2017] [Accepted: 02/23/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Franziska Nitzsche
- Department of Ischemia Research; Fraunhofer Institute for Cell Therapy and Immunology; Leipzig Germany
- Department of Radiology, McGowan Institute for Regenerative Medicine; University of Pittsburgh; Pittsburgh Pennsylvania USA
| | - Claudia Müller
- Department of Ischemia Research; Fraunhofer Institute for Cell Therapy and Immunology; Leipzig Germany
| | - Barbara Lukomska
- NeuroRepair Department; Mossakowski Medical Research Centre; Warsaw Poland
| | - Jukka Jolkkonen
- Department of Neurology; Institute of Clinical Medicine, University of Eastern; Kuopio Finland
| | - Alexander Deten
- Translational Centre for Regenerative Medicine, Leipzig University; Leipzig Germany
| | - Johannes Boltze
- Department of Ischemia Research; Fraunhofer Institute for Cell Therapy and Immunology; Leipzig Germany
- Translational Centre for Regenerative Medicine, Leipzig University; Leipzig Germany
- Department of Translational Medicine and Cell Technology; Fraunhofer Research Institution for Marine Biotechnology and Institute for Medical and Marine Biotechnology, University of Lübeck; Lübeck Germany
| |
Collapse
|
34
|
Yu H, Lu K, Zhu J, Wang J. Stem cell therapy for ischemic heart diseases. Br Med Bull 2017; 121:135-154. [PMID: 28164211 DOI: 10.1093/bmb/ldw059] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 01/25/2017] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Ischemic heart diseases, especially the myocardial infarction, is a major hazard problem to human health. Despite substantial advances in control of risk factors and therapies with drugs and interventions including bypass surgery and stent placement, the ischemic heart diseases usually result in heart failure (HF), which could aggravate social burden and increase the mortality rate. The current therapeutic methods to treat HF stay at delaying the disease progression without repair and regeneration of the damaged myocardium. While heart transplantation is the only effective therapy for end-stage patients, limited supply of donor heart makes it impossible to meet the substantial demand from patients with HF. Stem cell-based transplantation is one of the most promising treatment for the damaged myocardial tissue. SOURCES OF DATA Key recent published literatures and ClinicalTrials.gov. AREAS OF AGREEMENT Stem cell-based therapy is a promising strategy for the damaged myocardial tissue. Different kinds of stem cells have their advantages for treatment of Ischemic heart diseases. AREAS OF CONTROVERSY The efficacy and potency of cell therapies vary significantly from trial to trial; some clinical trials did not show benefit. Diverged effects of cell therapy could be affected by cell types, sources, delivery methods, dose and their mechanisms by which delivered cells exert their effects. GROWING POINTS Understanding the origin of the regenerated cardiomyocytes, exploring the therapeutic effects of stem cell-derived exosomes and using the cell reprogram technology to improve the efficacy of cell therapy for cardiovascular diseases. AREAS TIMELY FOR DEVELOPING RESEARCH Recently, stem cell-derived exosomes emerge as a critical player in paracrine mechanism of stem cell-based therapy. It is promising to exploit exosomes-based cell-free therapy for ischemic heart diseases in the future.
Collapse
Affiliation(s)
- Hong Yu
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310009, P.R. China.,Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang Province, 310009, P.R. China
| | - Kai Lu
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310009, P.R. China.,Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang Province, 310009, P.R. China.,Department of Cardiology, The First People's Hospital of Huzhou, 158 Guangchanghou Road, Huzhou, Zhejiang Province, 313000, P.R. China
| | - Jinyun Zhu
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310009, P.R. China.,Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang Province, 310009, P.R. China
| | - Jian'an Wang
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310009, P.R. China.,Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang Province, 310009, P.R. China
| |
Collapse
|
35
|
Han YS, Lee JH, Yoon YM, Yun CW, Noh H, Lee SH. Hypoxia-induced expression of cellular prion protein improves the therapeutic potential of mesenchymal stem cells. Cell Death Dis 2016; 7:e2395. [PMID: 27711081 PMCID: PMC5133977 DOI: 10.1038/cddis.2016.310] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 08/30/2016] [Accepted: 09/05/2016] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cells (MSCs) are ‘adult' multipotent cells that promote regeneration of injured tissues in vivo. However, differences in oxygenation levels between normoxic culture conditions (21% oxygen) and both the MSC niche (2–8% oxygen) and ischemic injury-induced oxidative stress conditions in vivo have resulted in low efficacy of MSC therapies in both pre-clinical and clinical studies. To address this issue, we examined the effectiveness of hypoxia preconditioning (2% oxygen) for enhancing the bioactivity and tissue-regenerative potential of adipose-derived MSCs. Hypoxia preconditioning enhanced the proliferative potential of MSCs by promoting the expression of normal cellular prion protein (PrPC). In particular, hypoxia preconditioning-mediated MSC proliferation was regulated by PrPC-dependent JAK2 and STAT3 activation. In addition, hypoxia preconditioning-induced PrPC regulated superoxide dismutase and catalase activity, and inhibited oxidative stress-induced apoptosis via inactivation of cleaved caspase-3. In a murine hindlimb ischemia model, hypoxia preconditioning enhanced the survival and proliferation of transplanted MSCs, ultimately resulting in improved functional recovery of the ischemic tissue, including the ratio of blood flow perfusion, limb salvage, and neovascularization. These results suggest that Hypo-MSC offer a therapeutic strategy for accelerated neovasculogenesis in ischemic diseases, and that PrPC comprises a potential target for MSC-based therapies.
Collapse
Affiliation(s)
- Yong-Seok Han
- Medical Science Research Institute, Soonchunhyang University Seoul Hospital, Seoul, Republic of Korea
| | - Jun Hee Lee
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham School of Medicine, Baltimore, AL 35294, USA
| | - Yeo Min Yoon
- Medical Science Research Institute, Soonchunhyang University Seoul Hospital, Seoul, Republic of Korea
| | - Chul Won Yun
- Medical Science Research Institute, Soonchunhyang University Seoul Hospital, Seoul, Republic of Korea
| | - Hyunjin Noh
- Department of Internal Medicine, Soonchunhyang University, Seoul, Republic of Korea.,Hyonam Kidney Laboratory, Soonchunhyang University, Seoul, Republic of Korea
| | - Sang Hun Lee
- Medical Science Research Institute, Soonchunhyang University Seoul Hospital, Seoul, Republic of Korea.,Departments of Biochemistry, Soonchunhyang University College of Medicine, Cheonan 330-930, Republic of Korea
| |
Collapse
|
36
|
Lee JH, Jung HK, Han YS, Yoon YM, Yun CW, Sun HY, Cho HW, Lee SH. Antioxidant effects of Cirsium setidens extract on oxidative stress in human mesenchymal stem cells. Mol Med Rep 2016; 14:3777-84. [PMID: 27599894 PMCID: PMC5042755 DOI: 10.3892/mmr.2016.5706] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 08/15/2016] [Indexed: 12/13/2022] Open
Abstract
Human mesenchymal stem cells (MSCs) may be used in cell-based therapy to promote neovascularization for the treatment of ischemic diseases. However, high levels of reactive oxygen species (ROS) derived from the pathophysiological ischemic environment induce senescence and apoptosis of MSCs, resulting in reduced functionality and defective neovascularization. Therefore, the present study aimed to determine the protective effects of Cirsium setidens, a natural product, on oxidative stress-induced apoptosis in MSCs. The present study investigated for the change of ROS levels in MSCs using ROS assays. In addition, cell viability determined by MTT and TUNEL assays. Western blot analysis was performed to investigate the change of apoptosis-associated proteins in MSCs. Treatment of MSCs with hydrogen peroxide (H2O2; 200 µM) significantly increased intracellular ROS levels and cell death; however, pretreatment with C. setidens (100 µg/ml) suppressed H2O2-induced ROS generation and increased the survival of MSCs. H2O2-induced ROS production increased the levels of phosphorylated-p38 mitogen activated protein kinase, c-Jun N-terminal kinase, ataxia telangiectasia mutated and p53; these increases were inhibited by pretreatment with C. setidens. In addition, C. setidens inhibited ROS-induced apoptosis of MSCs by increasing the expression levels of the anti-apoptotic protein B-cell lymphoma 2 (BCL-2), and decreasing the expression levels of the proapoptotic protein BCL-2-associated X protein. These findings indicated that pretreatment of MSCs with C. setidens may prevent ROS-induced oxidative injury by regulating the oxidative stress-associated signaling pathway, and suppressing the apoptosis-associated signal pathway. Therefore, C. setidens may be developed as a beneficial broad-spectrum agent for enhancing the effectiveness of MSC transplantation in the treatment of ischemic diseases.
Collapse
Affiliation(s)
- Jun Hee Lee
- Department of Physiology, Laboratory for Vascular Medicine and Stem Cell Biology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan, South Gyeongsang 50612, Republic of Korea
| | - Ho Kyung Jung
- Department of Herb Research, Jeollanamdo Development Institute of Traditional Korean Medicine, Jangheung, South Jeolla 59338, Republic of Korea
| | - Yong-Seok Han
- Department of Biochemistry, Medical Science Research Institute, Soonchunhyang University College of Medicine, Cheonan, South Chungcheong 31151, Republic of Korea
| | - Yeo Min Yoon
- Department of Biochemistry, Medical Science Research Institute, Soonchunhyang University College of Medicine, Cheonan, South Chungcheong 31151, Republic of Korea
| | - Chul Won Yun
- Department of Biochemistry, Medical Science Research Institute, Soonchunhyang University College of Medicine, Cheonan, South Chungcheong 31151, Republic of Korea
| | - Hwa Yeon Sun
- Department of Urology, Soonchunhyang University Hospital, Soonchunhyang University College of Medicine, Seoul 04401, Republic of Korea
| | - Hyun Woo Cho
- Department of Neurology, Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Sang Hun Lee
- Department of Biochemistry, Medical Science Research Institute, Soonchunhyang University College of Medicine, Cheonan, South Chungcheong 31151, Republic of Korea
| |
Collapse
|
37
|
Gray A, Schloss RS, Yarmush M. Donor variability among anti-inflammatory pre-activated mesenchymal stromal cells. TECHNOLOGY 2016; 4:201-215. [PMID: 29732384 PMCID: PMC5932627 DOI: 10.1142/s2339547816500084] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Therapeutic mesenchymal stromal cells (MSCs) are attractive in part due to their immunomodulatory properties, achieved by their paracrine secretion of factors including prostaglandin E2 (PGE2). Despite promising pre-clinical data, demonstrating clinical efficacy has proven difficult. The current studies were designed to develop approaches to pre-induce desired functions from naïve MSCs and examine MSC donor variability, two factors contributing to this disconnect. MSCs from six human donors were pre-activated with interleukin 1 beta (IL-1β) at a concentration and duration identified as optimal or interferon gamma (IFN-γ) as a comparator. Their secretion of PGE2 after pre-activation and secondary exposure to pro-inflammatory molecules was measured. Modulation of tumor necrosis factor alpha (TNF-α) secretion from M1 pro-inflammatory macrophages by co-cultured pre-activated MSCs was also measured. Our results indicated that pre-activation of MSCs with IL-1β resulted in upregulated PGE2 secretion post exposure. Pre-activation with IL-1β or IFN-γ resulted in higher sensitivity to induction by secondary stimuli compared to no pre-activation. While IL-1β pre-activation led to enhanced MSC-mediated attenuation of macrophage TNF-α secretion, IFN-γ pre-activation resulted in enhanced TNF-α secretion. Donor variability was noted in PGE2 secretion and upregulation and the level of improved or impaired macrophage modulation.
Collapse
Affiliation(s)
- Andrea Gray
- Department of Biomedical Engineering, Rutgers, the State University of New Jersey, New Jersey, USA
| | - Rene S Schloss
- Department of Biomedical Engineering, Rutgers, the State University of New Jersey, New Jersey, USA
| | - Martin Yarmush
- Department of Biomedical Engineering, Rutgers, the State University of New Jersey, New Jersey, USA
- Center for Engineering in Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
38
|
Enhancement of Anti-Hypoxic Activity and Differentiation of Cardiac Stem Cells by Supernatant Fluids from Cultured Macrophages that Phagocytized Dead Mesenchymal Stem Cells. Int J Mol Sci 2016; 17:ijms17071175. [PMID: 27447628 PMCID: PMC4964546 DOI: 10.3390/ijms17071175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 07/06/2016] [Accepted: 07/13/2016] [Indexed: 11/16/2022] Open
Abstract
Background: Most mesenchymal stem cells (MSCs) die shortly after transplantation into a myocardial infarcted area. Dead MSCs (dMSCs) are phagocytized by macrophages (pMΦ) in vivo and in vitro; however, the effects of pMΦ on cardiac stem cells (CSCs) remain unknown. Methods: MSCs, CSCs, and macrophages were obtained from bone marrow, hearts, and peritoneal cavity of mice, respectively. dMSCs were harvested after hypoxia for 24 h, and incubated with macrophages (2:1) for another 2 days with or without lipopolysaccharide (LPS, 50 ng/mL) and sorted by flow cytometry to obtain pMΦ. Viability and apoptosis of CSCs were respectively evaluated with the cell counting kit-8 (CCk-8) assay and Annexin V-PE/7-AAD staining at 0, 6, 12, and 24 h of culture with supernatant fluids from macrophages (MΦ), LPS-stimulated macrophages (LPS-pMΦ), pMΦ, and MSCs. GATA-4 and c-TnI expression was measured by flow cytometry on the seventh day. Expression of inflammation and growth factors was assessed by real-time polymerase chain reaction (RT-PCR) in MΦ, LPS-pMΦ, and pMΦ cells. Results: pMΦ expressed higher levels of interleukin-10 (IL-10) and transforming growth factor-β (TGF-β)and lower levels of tumor necrosis factor-α(TNF-α)and IL-6 than LPS-pMΦ, higher levels of growth factors and of GATA-4 and c-TnI at the 7th day, which were similar to those in MSCs. CSCs cultured with supernatant fluids of pMΦ exhibited higher proliferative, anti-hypoxic, and differentiation activities. Conclusion: The supernatant fluids of macrophages that had phagocytized dead MSCs encouraged changes in phenotype and growth factor expression, enhanced proliferation, differentiation, and anti-hypoxic activity of CSCs, which is relevant to understanding the persistent therapeutic effect of MSCs after their massive demise upon transplantation in myocardial infarction. Furthermore, some miRNAs or proteins which were extracted from the supernatant fluids may give us a new insight into the treatment of myocardial infarction in the future.
Collapse
|
39
|
Chinnadurai R, Copland IB, Garcia MA, Petersen CT, Lewis CN, Waller EK, Kirk AD, Galipeau J. Cryopreserved Mesenchymal Stromal Cells Are Susceptible to T-Cell Mediated Apoptosis Which Is Partly Rescued by IFNγ Licensing. Stem Cells 2016; 34:2429-42. [PMID: 27299362 DOI: 10.1002/stem.2415] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 04/18/2016] [Indexed: 12/16/2022]
Abstract
We have previously demonstrated that cryopreservation and thawing lead to altered Mesenchymal stromal cells (MSC) functionalities. Here, we further analyzed MSC's fitness post freeze-thaw. We have observed that thawed MSC can suppress T-cell proliferation when separated from them by transwell membrane and the effect is lost in a MSC:T-cell coculture system. Unlike actively growing MSCs, thawed MSCs were lysed upon coculture with activated autologous Peripheral Blood Mononuclear Cells (PBMCs) and the lysing effect was further enhanced with allogeneic PBMCs. The use of DMSO-free cryoprotectants or substitution of Human Serum Albumin (HSA) with human platelet lysate in freezing media and use of autophagy or caspase inhibitors did not prevent thaw defects. We tested the hypothesis that IFNγ prelicensing before cryobanking can enhance MSC fitness post thaw. Post thawing, IFNγ licensed MSCs inhibit T cell proliferation as well as fresh MSCs and this effect can be blocked by 1-methyl Tryptophan, an Indoleamine 2,3-dioxygenase (IDO) inhibitor. In addition, IFNγ prelicensed thawed MSCs inhibit the degranulation of cytotoxic T cells while IFNγ unlicensed thawed MSCs failed to do so. However, IFNγ prelicensed thawed MSCs do not deploy lung tropism in vivo following intravenous injection as well as fresh MSCs suggesting that IFNγ prelicensing does not fully rescue thaw-induced lung homing defect. We identified reversible and irreversible cryoinjury mechanisms that result in susceptibility to host T-cell cytolysis and affect MSC's cell survival and tissue distribution. The susceptibility of MSC to negative effects of cryopreservation and the potential to mitigate the effects with IFNγ prelicensing may inform strategies to enhance the therapeutic efficacy of MSC in clinical use. Stem Cells 2016;34:2429-2442.
Collapse
Affiliation(s)
- Raghavan Chinnadurai
- Department of Hematology and Oncology, Emory University School of Medicine, Atlanta, Georgia, USA.,Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Ian B Copland
- Department of Hematology and Oncology, Emory University School of Medicine, Atlanta, Georgia, USA.,Winship Cancer Institute, Emory University, Atlanta, Georgia, USA.,Emory Personalized Immunotherapy Center, Emory Healthcare, Atlanta, Georgia, USA
| | - Marco A Garcia
- Emory Personalized Immunotherapy Center, Emory Healthcare, Atlanta, Georgia, USA
| | - Christopher T Petersen
- Department of Hematology and Oncology, Emory University School of Medicine, Atlanta, Georgia, USA.,Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Christopher N Lewis
- Department of Hematology and Oncology, Emory University School of Medicine, Atlanta, Georgia, USA.,Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Edmund K Waller
- Department of Hematology and Oncology, Emory University School of Medicine, Atlanta, Georgia, USA.,Winship Cancer Institute, Emory University, Atlanta, Georgia, USA.,Emory Personalized Immunotherapy Center, Emory Healthcare, Atlanta, Georgia, USA
| | - Allan D Kirk
- Department of Surgery, Duke University, Durham, North Carolina, USA
| | - Jacques Galipeau
- Department of Hematology and Oncology, Emory University School of Medicine, Atlanta, Georgia, USA. .,Winship Cancer Institute, Emory University, Atlanta, Georgia, USA. .,Department of Pediatrics, Emory University, Atlanta, Georgia, USA. .,Emory Personalized Immunotherapy Center, Emory Healthcare, Atlanta, Georgia, USA.
| |
Collapse
|
40
|
Schilders KAA, Eenjes E, van Riet S, Poot AA, Stamatialis D, Truckenmüller R, Hiemstra PS, Rottier RJ. Regeneration of the lung: Lung stem cells and the development of lung mimicking devices. Respir Res 2016; 17:44. [PMID: 27107715 PMCID: PMC4842297 DOI: 10.1186/s12931-016-0358-z] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/25/2016] [Indexed: 01/07/2023] Open
Abstract
Inspired by the increasing burden of lung associated diseases in society and an growing demand to accommodate patients, great efforts by the scientific community produce an increasing stream of data that are focused on delineating the basic principles of lung development and growth, as well as understanding the biomechanical properties to build artificial lung devices. In addition, the continuing efforts to better define the disease origin, progression and pathology by basic scientists and clinicians contributes to insights in the basic principles of lung biology. However, the use of different model systems, experimental approaches and readout systems may generate somewhat conflicting or contradictory results. In an effort to summarize the latest developments in the lung epithelial stem cell biology, we provide an overview of the current status of the field. We first describe the different stem cells, or progenitor cells, residing in the homeostatic lung. Next, we focus on the plasticity of the different cell types upon several injury-induced activation or repair models, and highlight the regenerative capacity of lung cells. Lastly, we summarize the generation of lung mimics, such as air-liquid interface cultures, organoids and lung on a chip, that are required to test emerging hypotheses. Moreover, the increasing collaboration between distinct specializations will contribute to the eventual development of an artificial lung device capable of assisting reduced lung function and capacity in human patients.
Collapse
Affiliation(s)
- Kim A A Schilders
- Department of Pediatric Surgery, Erasmus Medical Center-Sophia Children's Hospital, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Evelien Eenjes
- Department of Pediatric Surgery, Erasmus Medical Center-Sophia Children's Hospital, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Sander van Riet
- Department of Pulmonology, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands
| | - André A Poot
- Department of Biomaterials Science and Technology, University of Twente, MIRA Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology, P.O Box 217, 7500 AE, Enschede, The Netherlands
| | - Dimitrios Stamatialis
- Department of Biomaterials Science and Technology, University of Twente, MIRA Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology, P.O Box 217, 7500 AE, Enschede, The Netherlands
| | - Roman Truckenmüller
- Department of Complex Tissue Regeneration, Maastricht University, Faculty of Health, Medicine and Life Sciences, MERLN Institute for Technology-Inspired Regenerative Medicine, PO Box 616, 6200 MD, Maastricht, The Netherlands
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands
| | - Robbert J Rottier
- Department of Pediatric Surgery, Erasmus Medical Center-Sophia Children's Hospital, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.
| |
Collapse
|
41
|
Gray A, Maguire T, Schloss R, Yarmush ML. Identification of IL-1β and LPS as optimal activators of monolayer and alginate-encapsulated mesenchymal stromal cell immunomodulation using design of experiments and statistical methods. Biotechnol Prog 2015; 31:1058-70. [PMID: 25958832 DOI: 10.1002/btpr.2103] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 04/23/2015] [Indexed: 12/13/2022]
Abstract
Induction of therapeutic mesenchymal stromal cell (MSC) function is dependent upon activating factors present in diseased or injured tissue microenvironments. These functions include modulation of macrophage phenotype via secreted molecules including prostaglandin E2 (PGE2). Many approaches aim to optimize MSC-based therapies, including preconditioning using soluble factors and cell immobilization in biomaterials. However, optimization of MSC function is usually inefficient as only a few factors are manipulated in parallel. We utilized fractional factorial design of experiments to screen a panel of 6 molecules (lipopolysaccharide [LPS], polyinosinic-polycytidylic acid [poly(I:C)], interleukin [IL]-6, IL-1β, interferon [IFN]-β, and IFN-γ), individually and in combinations, for the upregulation of MSC PGE2 secretion and attenuation of macrophage secretion of tumor necrosis factor (TNF)-α, a pro-inflammatory molecule, by activated-MSC conditioned medium (CM). We used multivariable linear regression (MLR) and analysis of covariance to determine differences in functions of optimal factors on monolayer MSCs and alginate-encapsulated MSCs (eMSCs). The screen revealed that LPS and IL-1β potently activated monolayer MSCs to enhance PGE2 production and attenuate macrophage TNF-α. Activation by LPS and IL-1β together synergistically increased MSC PGE2, but did not synergistically reduce macrophage TNF-α. MLR and covariate analysis revealed that macrophage TNF-α was strongly dependent on the MSC activation factor, PGE2 level, and macrophage donor but not MSC culture format (monolayer versus encapsulated). The results demonstrate the feasibility and utility of using statistical approaches for higher throughput cell analysis. This approach can be extended to develop activation schemes to maximize MSC and MSC-biomaterial functions prior to transplantation to improve MSC therapies.
Collapse
Affiliation(s)
- Andrea Gray
- Dept. of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854
| | - Timothy Maguire
- Dept. of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854
| | - Rene Schloss
- Dept. of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854
| | - Martin L Yarmush
- Dept. of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854
| |
Collapse
|
42
|
Ghrelin improves functional survival of engrafted adipose-derived mesenchymal stem cells in ischemic heart through PI3K/Akt signaling pathway. BIOMED RESEARCH INTERNATIONAL 2015; 2015:858349. [PMID: 25879037 PMCID: PMC4387976 DOI: 10.1155/2015/858349] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 01/26/2015] [Accepted: 01/27/2015] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cells (MSCs) have been proposed as a promising cell population for cell therapy and regenerative medicine applications. However, the low retention and poor survival of engrafted cells hampered the therapeutic efficacy of engrafted MSCs. Ghrelin is a 28-amino-acid peptide hormone and is proved to exert a protective effect on the cardiovascular system. This study is designed to investigate the protective effects of ghrelin on engrafted adipose-derived mesenchymal stem cells (ADMSCs) and its beneficial effects with cellular therapy in mice myocardial infarction (MI). Results showed that intramyocardial injection of ADMSCs combining with ghrelin administration inhibited host cardiomyocyte apoptosis, reduced fibrosis, and improved cardiac function. To reveal possible mechanisms, ADMSCs were subjected to hypoxia/serum deprivation (H/SD) injury to simulate ischemic conditions in vivo. Ghrelin (10−8 M, 33712 pg/ml) improved ADMSCs survival under H/SD condition. Western blot assay revealed that ghrelin increased
AKT phosphorylation both in vivo and in vitro, decreased the proapoptotic protein Bax, and increased the antiapoptotic protein Bcl-2 in vitro, while these effects were abolished by PI3K inhibitor LY294002. These revealed that ghrelin may serve as a promising candidate for hormone-driven approaches to improve the efficacy of mesenchymal stem cell-based therapy for cardiac ischemic disease via PI3K/AKT pathway.
Collapse
|
43
|
Amiri F, Jahanian-Najafabadi A, Roudkenar MH. In vitro augmentation of mesenchymal stem cells viability in stressful microenvironments : In vitro augmentation of mesenchymal stem cells viability. Cell Stress Chaperones 2015; 20:237-51. [PMID: 25527070 PMCID: PMC4326383 DOI: 10.1007/s12192-014-0560-1] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 12/02/2014] [Accepted: 12/07/2014] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are under intensive investigation for use in cell-based therapies because their differentiation abilities, immunomodulatory effects, and homing properties offer potential for significantly augmenting regenerative capacity of many tissues. Nevertheless, major impediments to their therapeutic application, such as low proliferation and survival rates remain as obstacles to broad clinical use of MSCs. Another major challenge to evolution of MSC-based therapies is functional degradation of these cells as a result of their exposure to oxidative stressors during isolation. Indeed, oxidative stress-mediated MSC depletion occurs due to inflammatory processes associated with chemotherapy, radiotherapy, and expression of pro-apoptotic factors, and the microenvironment of damaged tissue in patients receiving MSC therapy is typically therapeutic not favorable to their survival. For this reason, any strategies that enhance the viability and proliferative capacity of MSCs associated with their therapeutic use are of great value. Here, recent strategies used by various researchers to improve MSC allograft function are reviewed, with particular focus on in vitro conditioning of MSCs in preparation for clinical application. Preconditioning, genetic manipulation, and optimization of MSC culture conditions are some examples of the methodologies described in the present article, along with novel strategies such as treatment of MSCs with secretome and MSC-derived microvesicles. This topic material is likely to find value as a guide for both research and clinical use of MSC allografts and for improvement of the value that use of these cells brings to health care.
Collapse
Affiliation(s)
- Fatemeh Amiri
- />Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Ali Jahanian-Najafabadi
- />Department of Pharmaceutical Biotechnology, School of Pharmacy, Isfahan University of Medical Sciences and Health Services, Isfahan, Iran
| | - Mehryar Habibi Roudkenar
- />Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| |
Collapse
|
44
|
Chen TL, Zhu GL, Wang JA, Wang Y, He XL, Jiang J. Apoptosis of bone marrow mesenchymal stem cells caused by hypoxia/reoxygenation via multiple pathways. Int J Clin Exp Med 2014; 7:4686-4697. [PMID: 25663966 PMCID: PMC4307413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 11/25/2014] [Indexed: 06/04/2023]
Abstract
The irreversible loss of cardiomyocytes remains a key problem to resolve, which forms the cellular basis of cardiac dysfunction. MSCs transplantation brings out a promising potential for myocardial renovation with less limitations. However, this cell transplantation therapy is limited by its poor viability after transplantation. Apoptosis is thought to be the major factor that affects the efficiency of MSCs transplantation. Therefore, exploring the process of apoptosis and the underlying mechanisms of MSCs in the 'harmful' microenvironment is significant for the sake of improving the efficiency of MSCs transplantation therapy. A hypoxia/reoxygenation (H/R) model of MSCs had been established. TUNEL, Hoechst staining and MTT were used for the evaluation of morphological changes, cell viability and apoptosis. Mitochondrial transmembrane potential was detected by JC-1 using the fluorescence microscopy system. The protein expression of cytochrome c, p-ERK, p-AKT, Bcl-2, Bax, p-JNK, HIF-1α and VEGF was assessed for the analysis of protein changes using the Western blot. In our study, H/R insult lead to apoptosis and cell viability lost in a time-dependent manner in MSCs. Multiple pathways were involved in the apoptosis of MSCs, including cytochrome c released from mitochondria to cytosol, mitochondrial transmembrane potential lost. In addition, p-ERK and p-AKT were downregulated, while Bcl-2, p-JNK and VEGF were upregulated. H/R induced the apoptosis in MSCs is through multiple pathways. These multiple pathways will be helpful for understanding and explaining the process and mechanism of apoptosis in MSCs.
Collapse
Affiliation(s)
- Tie-Long Chen
- Department of Cardiology, Hangzhou Hospital of TCM453 Ti Yu Chang Road, Hangzhou 310007, China
| | - Guang-Li Zhu
- Department of Cardiology, Hangzhou Hospital of TCM453 Ti Yu Chang Road, Hangzhou 310007, China
| | - Jian-An Wang
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University88 Fang Road, Hangzhou 310009, China
| | - Yu Wang
- Department of Cardiology, Hangzhou Hospital of TCM453 Ti Yu Chang Road, Hangzhou 310007, China
- Zhejiang University of TCMHangzhou 310000, China
| | - Xiao-Long He
- Department of Cardiology, Hangzhou Hospital of TCM453 Ti Yu Chang Road, Hangzhou 310007, China
| | - Jun Jiang
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University88 Fang Road, Hangzhou 310009, China
| |
Collapse
|
45
|
Qayyum AA, Mathiasen AB, Kastrup J. Stem cell therapy to treat heart ischaemia: implications for diabetes cardiovascular complications. Curr Diab Rep 2014; 14:554. [PMID: 25344789 DOI: 10.1007/s11892-014-0554-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Diabetes mellitus is a well-known risk factor for coronary artery disease (CAD), which can lead to acute myocardial infarction, chronic myocardial ischaemia and heart failure. Despite the advantages in medical treatment, percutaneous coronary intervention (PCI) and coronary artery bypass grafting (CABG), morbidity and mortality is still high in patients with CAD. Along with PCI and CABG or in patients without options for revascularization, stem cell regenerative therapy in controlled trials is a possibility. Stem cells are believed to exert their actions by angiogenesis and regeneration of cardiomyocytes. Recently published clinical trials and meta-analysis of stem cell studies have shown encouraging results with increased left ventricle ejection fraction and reduced symptoms in patients with CAD and heart failure. There is some evidence of mesenchymal stem cell being more effective compared to other cell types and cell therapy may be more effective in patients with known diabetes mellitus. However, further investigations are warranted.
Collapse
Affiliation(s)
- Abbas Ali Qayyum
- Cardiac Catheterization Laboratory 2014 and Cardiac Stem Cell Laboratory, The Heart Centre, Rigshospitalet, Copenhagen University Hospital and Faculty of Health Sciences, Blegdamsvej 9, 2100, Copenhagen Ø, Denmark,
| | | | | |
Collapse
|
46
|
Perdoni C, McGrath JA, Tolar J. Preconditioning of mesenchymal stem cells for improved transplantation efficacy in recessive dystrophic epidermolysis bullosa. Stem Cell Res Ther 2014; 5:121. [PMID: 25376815 PMCID: PMC4446116 DOI: 10.1186/scrt511] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 10/22/2014] [Indexed: 12/11/2022] Open
Abstract
Introduction The use of hematopoietic cell transplantation (HCT) has previously been shown to ameliorate cutaneous blistering in pediatric patients with recessive dystrophic epidermolysis bullosa (RDEB), an inherited skin disorder that results from loss-of-function mutations in COL7A1 and manifests as deficient or absent type VII collagen protein (C7) within the epidermal basement membrane. Mesenchymal stem cells (MSCs) found within the HCT graft are believed to be partially responsible for this amelioration, in part due to their intrinsic immunomodulatory and trophic properties and also because they have been shown to restore C7 protein following intradermal injections in models of RDEB. However, MSCs have not yet been demonstrated to improve disease severity as a stand-alone systemic infusion therapy. Improving the efficacy and functional utility of MSCs via a pre-transplant conditioning regimen may bring systemic MSC infusions closer to clinical practice. Methods MSCs were isolated from 2- to 4-week-old mice and treated with varying concentrations of transforming growth factor-β (TGFβ; 5-20 ng/mL), tumor necrosis factor- α (TNFα; 10-40 ng/mL), and stromal cell-derived factor 1-α (SDF-1α; 30 ng/mL) for 24-72 hours. Results We demonstrate that treating murine MSCs with exogenous TGFβ (15 ng/mL) and TNFα (30 ng/mL) for 48 hours induces an 8-fold increase in Col7a1 expression and a significant increase in secretion of C7 protein, and that the effects of these cytokines are both time and concentration dependent. This cytokine treatment also promotes a 4-fold increase in Tsg-6 expression, a gene whose product is associated with improved wound-healing and immunosuppressive features. Finally, the addition of exogenous SDF-1α to this regimen induces a simultaneous upregulation of Col7a1, Tsg-6, and Cxcr4 expression. Conclusions These data suggest that preconditioning represents a feasible method for improving the functional utility of MSCs in the context of RDEB stem cell transplantation, and also highlight the applicability of preconditioning principles toward other cell-based therapies aimed at treating RDEB patients.
Collapse
|
47
|
Exendin-4 pretreated adipose derived stem cells are resistant to oxidative stress and improve cardiac performance via enhanced adhesion in the infarcted heart. PLoS One 2014; 9:e99756. [PMID: 24915574 PMCID: PMC4051823 DOI: 10.1371/journal.pone.0099756] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 05/18/2014] [Indexed: 12/12/2022] Open
Abstract
Reactive oxygen species (ROS), which were largely generated after myocardial ischemia, severely impaired the adhesion and survival of transplanted stem cells. In this study, we aimed to determine whether Exendin-4 pretreatment could improve the adhesion and therapeutic efficacy of transplanted adipose derived stem cells (ADSCs) in ischemic myocardium. In vitro, H2O2 was used to provide ROS environments, in which ADSCs pretreated with Exendin-4 were incubated. ADSCs without pretreatment were used as control. Then, cell adhesion and viability were analyzed with time. Compared with control ADSCs, Exendin-4 treatment significantly increased the adhesion of ADSCs in ROS environment, while reduced intracellular ROS and cell injury as determined by dihydroethidium (DHE) staining live/Dead staining, lactate dehydrogenase-release assay and MTT assay. Western Blotting demonstrated that ROS significantly decreased the expression of adhesion-related integrins and integrin-related focal adhesion proteins, which were significantly reversed by Exendin-4 pretreatment and followed by decreases in caspase-3, indicating that Exendin-4 may facilitate cell survival through enhanced adhesion. In vivo, myocardial infarction (MI) was induced by the left anterior descending artery ligation in SD rats. Autologous ADSCs with or without Exendin-4 pretreatment were injected into the border area of infarcted hearts, respectively. Multi-techniques were used to assess the beneficial effects after transplantation. Longitudinal bioluminescence imaging and histological staining revealed that Exendin-4 pretreatment enhanced the survival and differentiation of engrafted ADSCs in ischemic myocardium, accompanied with significant benefits in cardiac function, matrix remodeling, and angiogenesis compared with non-pretreated ADSCs 4 weeks post-transplantation. In conclusion, transplantation of Exendin-4 pretreated ADSCs significantly improved cardiac performance and can be an innovative approach in the clinical perspective.
Collapse
|
48
|
Chinnadurai R, Garcia M, Sakurai Y, Lam W, Kirk A, Galipeau J, Copland I. Actin cytoskeletal disruption following cryopreservation alters the biodistribution of human mesenchymal stromal cells in vivo. Stem Cell Reports 2014; 3:60-72. [PMID: 25068122 PMCID: PMC4110775 DOI: 10.1016/j.stemcr.2014.05.003] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 05/05/2014] [Accepted: 05/06/2014] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stromal cells have shown clinical promise; however, variations in treatment responses are an ongoing concern. We previously demonstrated that MSCs are functionally stunned after thawing. Here, we investigated whether this cryopreservation/thawing defect also impacts the postinfusion biodistribution properties of MSCs. Under both static and physiologic flow, compared with live MSCs in active culture, MSCs thawed from cryopreservation bound poorly to fibronectin (40% reduction) and human endothelial cells (80% reduction), respectively. This reduction correlated with a reduced cytoskeletal F-actin content in post-thaw MSCs (60% reduction). In vivo, live human MSCs could be detected in murine lung tissues for up to 24 hr, whereas thawed MSCs were undetectable. Similarly, live MSCs whose actin cytoskeleton was chemically disrupted were undetectable at 24 hr postinfusion. Our data suggest that post-thaw cryopreserved MSCs are distinct from live MSCs. This distinction could significantly affect the utility of MSCs as a cellular therapeutic. Immediately after thawing, MSCs display attenuated binding and engraftment potential Immediately after thawing, MSCs display defective actin polymerization Disrupting actin cytoskeleton in MSCs replicates post-thaw MSC engraftment defect A 48 hr culture recovery of MSCs post-thaw restores in vivo engraftment potential
Collapse
Affiliation(s)
- Raghavan Chinnadurai
- Department of Hematology and Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | | | - Yumiko Sakurai
- Department of Pediatrics, Emory University, Atlanta, GA 30322, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech and Emory University, Atlanta, GA 30322, USA
| | - Wilbur A. Lam
- Department of Pediatrics, Emory University, Atlanta, GA 30322, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech and Emory University, Atlanta, GA 30322, USA
| | - Allan D. Kirk
- Department of Surgery, Division of Transplantation, Emory University School of Medicine, Atlanta, GA 30322, USA
- Emory Transplant Center, Emory University, Atlanta, GA 30322, USA
| | - Jacques Galipeau
- Department of Hematology and Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
- Department of Pediatrics, Emory University, Atlanta, GA 30322, USA
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Ian B. Copland
- Department of Hematology and Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
- Corresponding author
| |
Collapse
|
49
|
Moon HH, Joo MK, Mok H, Lee M, Hwang KC, Kim SW, Jeong JH, Choi D, Kim SH. MSC-based VEGF gene therapy in rat myocardial infarction model using facial amphipathic bile acid-conjugated polyethyleneimine. Biomaterials 2013; 35:1744-54. [PMID: 24280192 DOI: 10.1016/j.biomaterials.2013.11.019] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 11/07/2013] [Indexed: 12/28/2022]
Abstract
Mesenchymal stem cells (MSCs) have attracted much attention in regenerative medicine owing to their apparent usefulness as multi-potent replacement cells. The potential of MSC therapy can be further improved by transforming MSCs with therapeutic genes that maximize the efficacy of gene therapy and their own therapeutic ability. Since most conventional transfection methodologies have shown marginal success in delivering exogenous genes into primary cultured cells, efficient gene transfer into primary MSCs is a prerequisite for the development of MSC-based gene therapy strategies to achieve repair and regeneration of damaged tissues. Herein, facially amphipathic bile acid-modified polyethyleneimine (BA-PEI) conjugates were synthesized and used to transfer hypoxia-inducible vascular endothelial growth factor gene (pHI-VEGF) in MSCs for the treatment of rat myocardial infarction. Under the optimized transfection conditions, the BA-PEI conjugates significantly increased the VEGF protein expression levels in rat MSCs, compared with traditional transfection methods such as Lipofectamine™ and branched-PEI (25 kDa). Furthermore, the prepared pHI-VEGF-engineered MSCs (VEGF-MSCs) resulted in improved cell viability, particularly during severe hypoxic exposure in vitro. The transplantation of MSCs genetically modified to overexpress VEGF by BA-PEI enhanced the capillary formation in the infarction region and eventually attenuated left ventricular remodeling after myocardial infarction in rats. This study demonstrates the applicability of the BA-PEI conjugates for the efficient transfection of therapeutic genes into MSCs and the feasibility of using the genetically engineered MSCs in regenerative medicine for myocardial infarction.
Collapse
Affiliation(s)
- Hyung-Ho Moon
- Severance Integrative Research Institute for Cerebral and Cardiovascular Disease, Yonsei University Health System, 250 Seongsanno, Seodaemun-gu, Seoul 120-752, South Korea
| | - Min Kyung Joo
- Center for Theragnosis, Biomedical Research Center, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 6, Seongbuk-gu, Seoul 136-791, South Korea
| | - Hyejung Mok
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangji-gu, Seoul 143-701, South Korea
| | - Minhyung Lee
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 133-791, South Korea
| | - Ki-Chul Hwang
- Severance Integrative Research Institute for Cerebral and Cardiovascular Disease, Yonsei University Health System, 250 Seongsanno, Seodaemun-gu, Seoul 120-752, South Korea
| | - Sung Wan Kim
- Center for Controlled Chemical Delivery, Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Ji Hoon Jeong
- School of Pharmacy, Sungkyunkwan University, Suwon 440-746, South Korea
| | - Donghoon Choi
- Severance Integrative Research Institute for Cerebral and Cardiovascular Disease, Yonsei University Health System, 250 Seongsanno, Seodaemun-gu, Seoul 120-752, South Korea.
| | - Sun Hwa Kim
- Severance Integrative Research Institute for Cerebral and Cardiovascular Disease, Yonsei University Health System, 250 Seongsanno, Seodaemun-gu, Seoul 120-752, South Korea; Center for Theragnosis, Biomedical Research Center, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 6, Seongbuk-gu, Seoul 136-791, South Korea.
| |
Collapse
|