1
|
Gray GK, Li CMC, Rosenbluth JM, Selfors LM, Girnius N, Lin JR, Schackmann RCJ, Goh WL, Moore K, Shapiro HK, Mei S, D'Andrea K, Nathanson KL, Sorger PK, Santagata S, Regev A, Garber JE, Dillon DA, Brugge JS. A human breast atlas integrating single-cell proteomics and transcriptomics. Dev Cell 2022; 57:1400-1420.e7. [PMID: 35617956 DOI: 10.1016/j.devcel.2022.05.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/23/2022] [Accepted: 05/02/2022] [Indexed: 12/12/2022]
Abstract
The breast is a dynamic organ whose response to physiological and pathophysiological conditions alters its disease susceptibility, yet the specific effects of these clinical variables on cell state remain poorly annotated. We present a unified, high-resolution breast atlas by integrating single-cell RNA-seq, mass cytometry, and cyclic immunofluorescence, encompassing a myriad of states. We define cell subtypes within the alveolar, hormone-sensing, and basal epithelial lineages, delineating associations of several subtypes with cancer risk factors, including age, parity, and BRCA2 germline mutation. Of particular interest is a subset of alveolar cells termed basal-luminal (BL) cells, which exhibit poor transcriptional lineage fidelity, accumulate with age, and carry a gene signature associated with basal-like breast cancer. We further utilize a medium-depletion approach to identify molecular factors regulating cell-subtype proportion in organoids. Together, these data are a rich resource to elucidate diverse mammary cell states.
Collapse
Affiliation(s)
- G Kenneth Gray
- Department of Cell Biology, Harvard Medical School (HMS), Boston, MA 02115, USA
| | - Carman Man-Chung Li
- Department of Cell Biology, Harvard Medical School (HMS), Boston, MA 02115, USA
| | - Jennifer M Rosenbluth
- Department of Cell Biology, Harvard Medical School (HMS), Boston, MA 02115, USA; Department of Medical Oncology, Dana-Farber Cancer Institute (DFCI), Boston, MA 02115, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Laura M Selfors
- Department of Cell Biology, Harvard Medical School (HMS), Boston, MA 02115, USA
| | - Nomeda Girnius
- Department of Cell Biology, Harvard Medical School (HMS), Boston, MA 02115, USA; The Laboratory of Systems Pharmacology (LSP), HMS, Boston, MA 02115, USA
| | - Jia-Ren Lin
- The Laboratory of Systems Pharmacology (LSP), HMS, Boston, MA 02115, USA
| | - Ron C J Schackmann
- Department of Cell Biology, Harvard Medical School (HMS), Boston, MA 02115, USA
| | - Walter L Goh
- Department of Cell Biology, Harvard Medical School (HMS), Boston, MA 02115, USA
| | - Kaitlin Moore
- Department of Cell Biology, Harvard Medical School (HMS), Boston, MA 02115, USA
| | - Hana K Shapiro
- Department of Cell Biology, Harvard Medical School (HMS), Boston, MA 02115, USA
| | - Shaolin Mei
- The Laboratory of Systems Pharmacology (LSP), HMS, Boston, MA 02115, USA
| | - Kurt D'Andrea
- Department of Medicine, Division of Translation Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Katherine L Nathanson
- Department of Medicine, Division of Translation Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Peter K Sorger
- The Laboratory of Systems Pharmacology (LSP), HMS, Boston, MA 02115, USA
| | - Sandro Santagata
- The Laboratory of Systems Pharmacology (LSP), HMS, Boston, MA 02115, USA; Department of Pathology, Brigham and Women's Hospital (BWH), Boston, MA 02115, USA
| | - Aviv Regev
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Judy E Garber
- Department of Medical Oncology, Dana-Farber Cancer Institute (DFCI), Boston, MA 02115, USA
| | - Deborah A Dillon
- Department of Pathology, Brigham and Women's Hospital (BWH), Boston, MA 02115, USA
| | - Joan S Brugge
- Department of Cell Biology, Harvard Medical School (HMS), Boston, MA 02115, USA.
| |
Collapse
|
2
|
Geddes DT, Gridneva Z, Perrella SL, Mitoulas LR, Kent JC, Stinson LF, Lai CT, Sakalidis V, Twigger AJ, Hartmann PE. 25 Years of Research in Human Lactation: From Discovery to Translation. Nutrients 2021; 13:3071. [PMID: 34578947 PMCID: PMC8465002 DOI: 10.3390/nu13093071] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 02/06/2023] Open
Abstract
Researchers have recently called for human lactation research to be conceptualized as a biological framework where maternal and infant factors impacting human milk, in terms of composition, volume and energy content are studied along with relationships to infant growth, development and health. This approach allows for the development of evidence-based interventions that are more likely to support breastfeeding and lactation in pursuit of global breastfeeding goals. Here we summarize the seminal findings of our research programme using a biological systems approach traversing breast anatomy, milk secretion, physiology of milk removal with respect to breastfeeding and expression, milk composition and infant intake, and infant gastric emptying, culminating in the exploration of relationships with infant growth, development of body composition, and health. This approach has allowed the translation of the findings with respect to education, and clinical practice. It also sets a foundation for improved study design for future investigations in human lactation.
Collapse
Affiliation(s)
- Donna Tracy Geddes
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (Z.G.); (S.L.P.); (L.R.M.); (J.C.K.); (L.F.S.); (C.T.L.); (V.S.); (P.E.H.)
| | - Zoya Gridneva
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (Z.G.); (S.L.P.); (L.R.M.); (J.C.K.); (L.F.S.); (C.T.L.); (V.S.); (P.E.H.)
| | - Sharon Lisa Perrella
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (Z.G.); (S.L.P.); (L.R.M.); (J.C.K.); (L.F.S.); (C.T.L.); (V.S.); (P.E.H.)
| | - Leon Robert Mitoulas
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (Z.G.); (S.L.P.); (L.R.M.); (J.C.K.); (L.F.S.); (C.T.L.); (V.S.); (P.E.H.)
- Medela, AG, Lättichstrasse 4b, 6340 Baar, Switzerland
| | - Jacqueline Coral Kent
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (Z.G.); (S.L.P.); (L.R.M.); (J.C.K.); (L.F.S.); (C.T.L.); (V.S.); (P.E.H.)
| | - Lisa Faye Stinson
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (Z.G.); (S.L.P.); (L.R.M.); (J.C.K.); (L.F.S.); (C.T.L.); (V.S.); (P.E.H.)
| | - Ching Tat Lai
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (Z.G.); (S.L.P.); (L.R.M.); (J.C.K.); (L.F.S.); (C.T.L.); (V.S.); (P.E.H.)
| | - Vanessa Sakalidis
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (Z.G.); (S.L.P.); (L.R.M.); (J.C.K.); (L.F.S.); (C.T.L.); (V.S.); (P.E.H.)
| | | | - Peter Edwin Hartmann
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (Z.G.); (S.L.P.); (L.R.M.); (J.C.K.); (L.F.S.); (C.T.L.); (V.S.); (P.E.H.)
| |
Collapse
|
3
|
Nestin Expression Is Associated with Relapses in Head and Neck Lesions. Diagnostics (Basel) 2021; 11:diagnostics11040583. [PMID: 33805026 PMCID: PMC8063927 DOI: 10.3390/diagnostics11040583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/10/2021] [Accepted: 03/21/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The aim was to investigate the clinical significance of nestin immunohistochemical expression in head and neck area lesions and to study its role in patient survival and recurrence. METHODS 39 (44.3%) nasosinus, 37 (42%) major salivary gland (6 submandibular and 31 parotid) and 12 (13.6%) oral cavity lesions of paraffin-embedded samples were retrospectively included. RESULTS The expression was categorized into grades, negative for 55 (62.5%) cases, grade 1 in 10 cases (11.4%), grade 2 in 12 cases (13.6%), and grade 3 in 11 cases (12.5%); 100% of pleomorphic adenomas were positive for nestin with grade 3 intensity, 100% of polyps and inverted papillomas were negative (p < 0.001). The lowest estimate of disease-free-survival (DFS) was for grade 1 expression, with 50 months, confidence interval (CI): 95% 13.3-23.9 months and the highest for grade 3 expression, 167.9 months (CI: 95% 32.1-105 months; Log-Rank = 14.846, p = 0.002). ROC (receiver operating characteristic) curves revealed that the positivity for nestin (+/-) in relation to malignancy, presented a sensitivity of 50.98%, a specificity of 81.08%, with an area under the curve of 0.667 (p = 0.009). CONCLUSIONS Nestin could be a useful marker to detect the presence of stem cells in head and neck tumors that have a role in tumor initiation and progression.
Collapse
|
4
|
Tripathy S, Singh S, Das SK. Potential of breastmilk in stem cell research. Cell Tissue Bank 2019; 20:467-488. [PMID: 31606767 DOI: 10.1007/s10561-019-09791-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 10/01/2019] [Indexed: 11/28/2022]
Abstract
Breastmilk is a dynamic, multi-faceted, and complex fluid containing a plethora of biochemical and cellular components that execute developmental effects or differentiation program, providing nourishment and immunity to newborns. Recently, it was reported that breastmilk contains a heterogeneous population of naïve cells, including pluripotent stem cells, multipotent stem cells, immune cells, and non-immune cells. The stem cells derived from breastmilk possess immune privilege and non-tumorigenic properties. Thus, breastmilk may represent an ideal source of stem cells collected by non-perceive procedure than other available sources. Thus, this "maternally originating natural regenerative medicine" may have innumerable applications in clinical biology, cosmetics, and pharmacokinetics. This review describes the efficient integrated cellular system of mammary glands, the impressive stem cell hierarchy of breastmilk, and their possible implications in translational research and therapeutics.
Collapse
Affiliation(s)
- Seema Tripathy
- Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Kalinga Nagar, Ghatikia, Bhubaneswar, 751 003, India.
| | - Shikha Singh
- Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Kalinga Nagar, Ghatikia, Bhubaneswar, 751 003, India
| | - Saroj Kumar Das
- Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Kalinga Nagar, Ghatikia, Bhubaneswar, 751 003, India
| |
Collapse
|
5
|
Heterogeneity of Sweat Gland Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019. [PMID: 31487018 DOI: 10.1007/978-3-030-24108-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Sweat glands play an important role in skin physiology and are an integral part of the natural skin barrier. In order to maintain functionality throughout life, sweat glands make use of several types of stem cells. This chapter focuses on the classification of different types of stem cells found in the sweat gland and their physiological roles. First, sweat gland formation during skin maturation is addressed in order to give an overview of sweat gland origin and formation in vivo. Then, different kinds of adult sweat gland stem cells are introduced and classified between different potency levels and corresponding physiological roles. Finally, the importance of these cell sources for future developments, including applications in wound healing and cosmetics research, is discussed.
Collapse
|
6
|
A Ligation of the Lacrimal Excretory Duct in Mouse Induces Lacrimal Gland Inflammation with Proliferative Cells. Stem Cells Int 2017; 2017:4923426. [PMID: 28874911 PMCID: PMC5569877 DOI: 10.1155/2017/4923426] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 05/12/2017] [Accepted: 05/21/2017] [Indexed: 01/02/2023] Open
Abstract
The lacrimal gland secretes tear fluids to ocular surface, which plays an indispensable role in maintaining the health of the ocular epithelia and protecting the ocular surface from the external environment. The dysfunction of the lacrimal glands causes dry eye disease due to a reduction in tear volume. The dry eye disease is becoming a popular public disease, for the number of patients is increasing, who have subjective symptom and loss of vision, which affect the quality of life. Inflammatory change in the damaged lacrimal gland has been reported; however, a major challenge is to establish a simple animal model to observe the changes. Here, we demonstrated an injury model by ligating the main excretory duct of the lacrimal gland, which is a simple and stable way to clearly understand the mechanism of lacrimal gland inflammation. We observed the process of injury and proliferation of the lacrimal gland and detected a population of lacrimal gland epithelial cells with proliferation potential which were also nestin-positive cells following duct ligation. This study successfully established an injury model to observe the tissue injury process of the lacrimal gland, and this model will be useful for analysis of the inflammation and proliferation mechanism in the future.
Collapse
|
7
|
|
8
|
|
9
|
Seymour T, Twigger AJ, Kakulas F. Pluripotency Genes and Their Functions in the Normal and Aberrant Breast and Brain. Int J Mol Sci 2015; 16:27288-301. [PMID: 26580604 PMCID: PMC4661882 DOI: 10.3390/ijms161126024] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 11/05/2015] [Accepted: 11/06/2015] [Indexed: 12/11/2022] Open
Abstract
Pluripotent stem cells (PSCs) attracted considerable interest with the successful isolation of embryonic stem cells (ESCs) from the inner cell mass of murine, primate and human embryos. Whilst it was initially thought that the only PSCs were ESCs, in more recent years cells with similar properties have been isolated from organs of the adult, including the breast and brain. Adult PSCs in these organs have been suggested to be remnants of embryonic development that facilitate normal tissue homeostasis during repair and regeneration. They share certain characteristics with ESCs, such as an inherent capacity to self-renew and differentiate into cells of the three germ layers, properties that are regulated by master pluripotency transcription factors (TFs) OCT4 (octamer-binding transcription factor 4), SOX2 (sex determining region Y-box 2), and homeobox protein NANOG. Aberrant expression of these TFs can be oncogenic resulting in heterogeneous tumours fueled by cancer stem cells (CSC), which are resistant to conventional treatments and are associated with tumour recurrence post-treatment. Further to enriching our understanding of the role of pluripotency TFs in normal tissue function, research now aims to develop optimized isolation and propagation methods for normal adult PSCs and CSCs for the purposes of regenerative medicine, developmental biology, and disease modeling aimed at targeted personalised cancer therapies.
Collapse
Affiliation(s)
- Tracy Seymour
- School of Chemistry and Biochemistry, Faculty of Science, the University of Western Australia, Perth, Western Australia 6009, Australia.
- School of Medicine and Pharmacology, Faculty of Medicine, Dentistry and Health Sciences, the University of Western Australia, Perth, Western Australia 6009, Australia.
| | - Alecia-Jane Twigger
- School of Chemistry and Biochemistry, Faculty of Science, the University of Western Australia, Perth, Western Australia 6009, Australia.
| | - Foteini Kakulas
- School of Chemistry and Biochemistry, Faculty of Science, the University of Western Australia, Perth, Western Australia 6009, Australia.
| |
Collapse
|