1
|
Cadamuro M, Lasagni A, Radu CM, Calistri A, Pilan M, Valle C, Bonaffini PA, Vitiello A, Toffanin S, Venturin C, Friòn-Herrera Y, Sironi S, Alessio MG, Previtali G, Seghezzi M, Gianatti A, Strazzabosco M, Strain AJ, Campello E, Spiezia L, Palù G, Frigo AC, Tosoni A, Nebuloni M, Parolin C, Sonzogni A, Simioni P, Fabris L. Procoagulant phenotype of virus-infected pericytes is associated with portal thrombosis and intrapulmonary vascular dilations in fatal COVID-19. J Hepatol 2024; 81:872-885. [PMID: 38908437 DOI: 10.1016/j.jhep.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 05/22/2024] [Accepted: 06/05/2024] [Indexed: 06/24/2024]
Abstract
BACKGROUND & AIMS The underlying mechanisms and clinical impact of portal microthrombosis in severe COVID-19 are unknown. Intrapulmonary vascular dilation (IPVD)-related hypoxia has been described in severe liver diseases. We hypothesised that portal microthrombosis is associated with IPVD and fatal respiratory failure in COVID-19. METHODS Ninety-three patients who died from COVID-19 were analysed for portal microvascular damage (histology), IPVD (histology and chest-computed tomography, CT), and hypoxemia (arterial blood gas). Seventeen patients who died from COVID-19-unrelated pneumonia served as controls. Vascular lesions and microthrombi were phenotyped for endothelial (vWF) and pericyte (αSMA/PDGFR-β) markers, tissue factor (TF), viral spike protein and nucleoprotein (SP, NP), fibrinogen, and platelets (CD41a). Viral particles in vascular cells were assessed by transmission electron microscopy. Cultured pericytes were infected with SARS-CoV-2 to measure TF expression and tubulisation of human pulmonary microvascular endothelial cells was assessed upon vWF treatment. RESULTS IPVD was present in 16/66 patients with COVID-19, with available liver and lung histology, and was associated with younger age (62 vs. 78 years-old), longer illness (25 vs. 14 days), worsening hypoxemia (PaO2/FiO2 from 209 to 89), and an increased requirement for ventilatory support (63% vs. 22%) compared to COVID-19/Non-IPVD. IPVD, absent in controls, was confirmed by chest CT. COVID-19/IPVD liver histology showed portal microthrombosis in >82.5% of portal areas, with a thicker wall of αSMA/PDGFR-β+/SP+/NP+ pericytes compared with COVID-19/Non-IPVD. Thrombosed portal venules correlated with αSMA+ area, whereas infected SP+/NP+ pericytes expressed TF. SARS-CoV-2 viral particles were observed in portal pericytes. In vitro SARS-CoV-2 infection of pericytes upregulated TF and induced endothelial cells to overexpress vWF, which expanded human pulmonary microvascular endothelial cell tubules. CONCLUSIONS SARS-CoV-2 infection of liver pericytes elicits a local procoagulant response associated with extensive portal microthrombosis, IPVD and worsening respiratory failure in fatal COVID-19. IMPACT AND IMPLICATIONS Vascular involvement of the liver represents a serious complication of COVID-19 infection that must be considered in the work-up of patients with long-lasting and progressively worsening respiratory failure, as it may associate with the development of intrapulmonary vascular dilations. This clinical picture is associated with a procoagulant phenotype of portal venule pericytes, which is induced by SARS-CoV-2 infection of pericytes. Both observations provide a model that may apply, at least in part, to other vascular disorders of the liver, featuring obliterative portal venopathy, similarly characterised at the clinical level by development of hypoxemia and at the histological level by phlebosclerosis and reduced calibre of the portal vein branches in the absence of cirrhosis. Moreover, our findings shed light on an overlooked player in the pathophysiology of thrombosis, i.e. pericytes, which may present a novel therapeutic target.
Collapse
Affiliation(s)
- Massimiliano Cadamuro
- Department of Medicine DIMED, University of Padua, Padua, Italy; Clinical Medicine 1 and Thrombotic and Haemorrhagic Disease Unit, and Haemophilia Center, Padova University Hospital, Padua, Italy; School of Medicine and Surgery, University of Milan-Bicocca, Milan, Italy
| | - Alberto Lasagni
- Department of Medicine DIMED, University of Padua, Padua, Italy; Clinical Medicine 1 and Thrombotic and Haemorrhagic Disease Unit, and Haemophilia Center, Padova University Hospital, Padua, Italy
| | - Claudia Maria Radu
- Department of Women's & Children's Health (SDB), University of Padua, Italy
| | - Arianna Calistri
- Department of Molecular Medicine (DMM), University of Padua, Padua, Italy
| | - Matteo Pilan
- Department of Medicine DIMED, University of Padua, Padua, Italy; Clinical Medicine 1 and Thrombotic and Haemorrhagic Disease Unit, and Haemophilia Center, Padova University Hospital, Padua, Italy
| | - Clarissa Valle
- Department of Diagnostic Radiology, ASST Papa Giovanni XXIII Hospital, Bergamo, Italy
| | | | - Adriana Vitiello
- Department of Molecular Medicine (DMM), University of Padua, Padua, Italy
| | - Serena Toffanin
- Department of Medicine DIMED, University of Padua, Padua, Italy; Clinical Medicine 1 and Thrombotic and Haemorrhagic Disease Unit, and Haemophilia Center, Padova University Hospital, Padua, Italy
| | - Camilla Venturin
- Department of Medicine DIMED, University of Padua, Padua, Italy; Clinical Medicine 1 and Thrombotic and Haemorrhagic Disease Unit, and Haemophilia Center, Padova University Hospital, Padua, Italy
| | - Yahima Friòn-Herrera
- Department of Medicine DIMED, University of Padua, Padua, Italy; Clinical Medicine 1 and Thrombotic and Haemorrhagic Disease Unit, and Haemophilia Center, Padova University Hospital, Padua, Italy
| | - Sandro Sironi
- Department of Diagnostic Radiology, ASST Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Maria Grazia Alessio
- Clinical Chemistry Laboratory, ASST Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Giulia Previtali
- Clinical Chemistry Laboratory, ASST Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Michela Seghezzi
- Clinical Chemistry Laboratory, ASST Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Andrea Gianatti
- Department of Pathology, ASST Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Mario Strazzabosco
- Department of Internal Medicine, Digestive Disease Section, Liver Center, Yale University, New Haven, CT, US
| | | | - Elena Campello
- Department of Medicine DIMED, University of Padua, Padua, Italy; Clinical Medicine 1 and Thrombotic and Haemorrhagic Disease Unit, and Haemophilia Center, Padova University Hospital, Padua, Italy
| | - Luca Spiezia
- Department of Medicine DIMED, University of Padua, Padua, Italy; Clinical Medicine 1 and Thrombotic and Haemorrhagic Disease Unit, and Haemophilia Center, Padova University Hospital, Padua, Italy
| | - Giorgio Palù
- Department of Molecular Medicine (DMM), University of Padua, Padua, Italy
| | - Anna Chiara Frigo
- Department of Cardiac, Thoracic, and Vascular Sciences and Public Health (DCTV), University of Padua, Italy
| | - Antonella Tosoni
- Pathology Unit, L. Sacco Hospital, ASST Fatebenefratelli Sacco, Milan, Italy
| | - Manuela Nebuloni
- Pathology Unit, L. Sacco Hospital, ASST Fatebenefratelli Sacco, Milan, Italy; Pathology Unit, Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Cristina Parolin
- Department of Molecular Medicine (DMM), University of Padua, Padua, Italy
| | | | - Paolo Simioni
- Department of Medicine DIMED, University of Padua, Padua, Italy; Clinical Medicine 1 and Thrombotic and Haemorrhagic Disease Unit, and Haemophilia Center, Padova University Hospital, Padua, Italy.
| | - Luca Fabris
- Department of Medicine DIMED, University of Padua, Padua, Italy; Clinical Medicine 1 and Thrombotic and Haemorrhagic Disease Unit, and Haemophilia Center, Padova University Hospital, Padua, Italy; Department of Internal Medicine, Digestive Disease Section, Liver Center, Yale University, New Haven, CT, US.
| |
Collapse
|
2
|
Nanakorn Z, Kawai T, Tassanakajon A. Cytokine-like-Vago-mediated antiviral response in Penaeus monodon via IKK-NF-κB signaling pathway. iScience 2024; 27:110161. [PMID: 38974974 PMCID: PMC11226982 DOI: 10.1016/j.isci.2024.110161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/15/2024] [Accepted: 05/29/2024] [Indexed: 07/09/2024] Open
Abstract
Interferon (IFN) system is the primary mechanism of innate antiviral defense in immune response. To date, limited studies of IFN system were conducted in crustaceans. Previous report in Penaeus monodon demonstrated the interconnection of cytokine-like molecule Vago and inhibitor of kappa B kinase-nuclear factor κB (IKK-NF-κB) cascade against white spot syndrome virus (WSSV). This study further identified five different PmVago isoforms. Upon immune stimulation, PmVagos expressed against shrimp pathogens. PmVago1, PmVago4, and PmVago5 highly responded to WSSV, whereas, PmVago1 and PmVago4 RNAi exhibited a rapid mortality with elevated WSSV replication. Suppression of PmVago1 and PmVago4 negatively affected proPO system, genes in signal transduction, and AMPs. WSSV infection additionally induced PmVaog4 granule accumulation and cellular translocation to the area of cell membrane. More importantly, PmVago1 and PmVago4 promoters were stimulated by PmIKK overexpression; meanwhile, they further activated Dorsal and Relish promoter activities. These results suggested the possible roles of the cytokine-like PmVago via IKK-NF-κB cascade against WSSV infection.
Collapse
Affiliation(s)
- Zittipong Nanakorn
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Taro Kawai
- Laboratory of Molecular Immunobiology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara 630-0192, Japan
| | - Anchalee Tassanakajon
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|