1
|
Effah CY, Drokow EK, Agboyibor C, Ding L, He S, Liu S, Akorli SY, Nuamah E, Sun T, Zhou X, Liu H, Xu Z, Feng F, Wu Y, Zhang X. Neutrophil-Dependent Immunity During Pulmonary Infections and Inflammations. Front Immunol 2021; 12:689866. [PMID: 34737734 PMCID: PMC8560714 DOI: 10.3389/fimmu.2021.689866] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 09/23/2021] [Indexed: 01/08/2023] Open
Abstract
Rapid recruitment of neutrophils to an inflamed site is one of the hallmarks of an effective host defense mechanism. The main pathway through which this happens is by the innate immune response. Neutrophils, which play an important part in innate immune defense, migrate into lungs through the modulation actions of chemokines to execute a variety of pro-inflammatory functions. Despite the importance of chemokines in host immunity, little has been discussed on their roles in host immunity. A holistic understanding of neutrophil recruitment, pattern recognition pathways, the roles of chemokines and the pathophysiological roles of neutrophils in host immunity may allow for new approaches in the treatment of infectious and inflammatory disease of the lung. Herein, this review aims at highlighting some of the developments in lung neutrophil-immunity by focusing on the functions and roles of CXC/CC chemokines and pattern recognition receptors in neutrophil immunity during pulmonary inflammations. The pathophysiological roles of neutrophils in COVID-19 and thromboembolism have also been summarized. We finally summarized various neutrophil biomarkers that can be utilized as prognostic molecules in pulmonary inflammations and discussed various neutrophil-targeted therapies for neutrophil-driven pulmonary inflammatory diseases.
Collapse
Affiliation(s)
| | - Emmanuel Kwateng Drokow
- Department of Radiation Oncology, Zhengzhou University People’s Hospital & Henan Provincial People’s Hospital, Zhengzhou, China
| | - Clement Agboyibor
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Lihua Ding
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Sitian He
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Shaohua Liu
- General ICU, Henan Key Laboratory of Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Senyo Yao Akorli
- College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Emmanuel Nuamah
- College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Tongwen Sun
- General ICU, Henan Key Laboratory of Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaolei Zhou
- Department of Respiratory, Henan Provincial Chest Hospital, Zhengzhou, China
| | - Hong Liu
- Department of Respiratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhiwei Xu
- Department of Respiratory and Critical Care Medicine, People’s Hospital of Zhengzhou University & Henan Provincial People’s Hospital, Zhengzhou, China
| | - Feifei Feng
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yongjun Wu
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xiaoju Zhang
- Department of Respiratory and Critical Care Medicine, People’s Hospital of Zhengzhou University & Henan Provincial People’s Hospital, Zhengzhou, China
| |
Collapse
|
2
|
Sawant KV, Sepuru KM, Lowry E, Penaranda B, Frevert CW, Garofalo RP, Rajarathnam K. Neutrophil recruitment by chemokines Cxcl1/KC and Cxcl2/MIP2: Role of Cxcr2 activation and glycosaminoglycan interactions. J Leukoc Biol 2021; 109:777-791. [PMID: 32881070 PMCID: PMC8296306 DOI: 10.1002/jlb.3a0820-207r] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/03/2020] [Accepted: 08/07/2020] [Indexed: 12/11/2022] Open
Abstract
Chemokines play a crucial role in combating microbial infection by recruiting blood neutrophils to infected tissue. In mice, the chemokines Cxcl1/KC and Cxcl2/MIP2 fulfill this role. Cxcl1 and Cxcl2 exist as monomers and dimers, and exert their function by activating the Cxcr2 receptor and binding glycosaminoglycans (GAGs). Here, we characterized Cxcr2 G protein and β-arrestin activities, and GAG heparan sulfate (HS) interactions of Cxcl1 and Cxcl2 and of the trapped dimeric variants. To understand how Cxcr2 and GAG interactions impact in vivo function, we characterized their neutrophil recruitment activity to the peritoneum, Cxcr2 and CD11b levels on peritoneal and blood neutrophils, and transport profiles out of the peritoneum. Cxcl2 variants compared with Cxcl1 variants were more potent for Cxcr2 activity. Native Cxcl1 compared with native Cxcl2 and dimers compared with native proteins bound HS with higher affinity. Interestingly, recruitment activity between native Cxcl1 and Cxcl2, between dimers, and between the native protein and the dimer could be similar or very different depending on the dose or the time point. These data indicate that peritoneal neutrophil recruitment cannot be solely attributed to Cxcr2 or GAG interactions, and that the relationship between recruited neutrophils, Cxcr2 activation, GAG interactions, and chemokine levels is complex and highly context dependent. We propose that the ability of Cxcl1 and Cxcl2 to reversibly exist as monomers and dimers and differences in their Cxcr2 activity and GAG interactions coordinate neutrophil recruitment and activation, which play a critical role for successful resolution of inflammation.
Collapse
Affiliation(s)
- Kirti V. Sawant
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas, USA
| | - Krishna Mohan Sepuru
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas, USA
| | - Emily Lowry
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas, USA
| | - Brigith Penaranda
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas, USA
| | - Charles W. Frevert
- Department of Comparative Medicine and Center for Lung Biology, University of Washington, Seattle, WA, USA
| | - Roberto P. Garofalo
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, Texas, USA
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, USA
| | - Krishna Rajarathnam
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas, USA
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, Texas, USA
- Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
3
|
Fehrenbach DJ, Abais-Battad JM, Dasinger JH, Lund H, Keppel T, Zemaj J, Cherian-Shaw M, Gundry RL, Geurts AM, Dwinell MR, Mattson DL. Sexual Dimorphic Role of CD14 (Cluster of Differentiation 14) in Salt-Sensitive Hypertension and Renal Injury. Hypertension 2020; 77:228-240. [PMID: 33249861 DOI: 10.1161/hypertensionaha.120.14928] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Genomic sequence and gene expression association studies in animals and humans have identified genes that may be integral in the pathogenesis of various diseases. CD14 (cluster of differentiation 14)-a cell surface protein involved in innate immune system activation-is one such gene associated with cardiovascular and hypertensive disease. We previously showed that this gene is upregulated in renal macrophages of Dahl salt-sensitive animals fed a high-salt diet; here we test the hypothesis that CD14 contributes to the elevated pressure and renal injury observed in salt-sensitive hypertension. Using CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeat-associated 9), we created a targeted mutation in the CD14 gene on the Dahl SS (SS/JrHSDMcwi) background and validated the absence of CD14 peptides via mass spectrometry. Radiotelemetry was used to monitor blood pressure in wild-type and CD14-/- animals challenged with high salt and identified infiltrating renal immune cells via flow cytometry. Germline knockout of CD14 exacerbated salt-sensitive hypertension and renal injury in female animals but not males. CD14-/- females demonstrated increased infiltrating macrophages but no difference in infiltrating lymphocytes. Transplant of CD14+/+ or CD14-/- bone marrow was used to isolate the effects of CD14 knockout to hematopoietic cells and confirmed that the differential phenotype observed was due to knockout of CD14 in hematopoietic cells. Ovariectomy was used to remove the influence of female sex hormones, which completely abrogated the effect of CD14 knockout. These studies provide a novel treatment target and evidence of a new dichotomy in immune activation between sexes within the context of hypertensive disease where CD14 regulates immune cell activation and renal injury.
Collapse
Affiliation(s)
- Daniel J Fehrenbach
- Department of Physiology (D.J.F., H.L., J.Z., A.M.G., M.R.D.), Medical College of Wisconsin, Wauwatosa, WI.,Department of Physiology, Augusta University and the Medical College of Georgia, Augusta, GA (D.J.F., J.M.A.-B., J.H.D., M.C.-S., D.L.M.)
| | - Justine M Abais-Battad
- Department of Physiology, Augusta University and the Medical College of Georgia, Augusta, GA (D.J.F., J.M.A.-B., J.H.D., M.C.-S., D.L.M.)
| | - John Henry Dasinger
- Department of Physiology, Augusta University and the Medical College of Georgia, Augusta, GA (D.J.F., J.M.A.-B., J.H.D., M.C.-S., D.L.M.)
| | - Hayley Lund
- Department of Physiology (D.J.F., H.L., J.Z., A.M.G., M.R.D.), Medical College of Wisconsin, Wauwatosa, WI
| | - Theodore Keppel
- Center for Biomedical Mass Spectrometry Research (T.K., R.L.G.), Medical College of Wisconsin, Wauwatosa, WI
| | - Jeylan Zemaj
- Department of Physiology (D.J.F., H.L., J.Z., A.M.G., M.R.D.), Medical College of Wisconsin, Wauwatosa, WI
| | - Mary Cherian-Shaw
- Department of Physiology, Augusta University and the Medical College of Georgia, Augusta, GA (D.J.F., J.M.A.-B., J.H.D., M.C.-S., D.L.M.)
| | - Rebekah L Gundry
- Center for Biomedical Mass Spectrometry Research (T.K., R.L.G.), Medical College of Wisconsin, Wauwatosa, WI.,CardiOmics Program, Center for Heart and Vascular Research (R.L.G.), University of Nebraska Medical Center, Omaha, NE.,Division of Cardiovascular Medicine (R.L.G.), University of Nebraska Medical Center, Omaha, NE.,Department of Cellular and Integrative Physiology (R.L.G.), University of Nebraska Medical Center, Omaha, NE
| | - Aron M Geurts
- Department of Physiology (D.J.F., H.L., J.Z., A.M.G., M.R.D.), Medical College of Wisconsin, Wauwatosa, WI.,Genomic Sciences and Precision Medicine Center (A.M.G., M.R.D.), Medical College of Wisconsin, Wauwatosa, WI
| | - Melinda R Dwinell
- Department of Physiology (D.J.F., H.L., J.Z., A.M.G., M.R.D.), Medical College of Wisconsin, Wauwatosa, WI.,Genomic Sciences and Precision Medicine Center (A.M.G., M.R.D.), Medical College of Wisconsin, Wauwatosa, WI
| | - David L Mattson
- Department of Physiology, Augusta University and the Medical College of Georgia, Augusta, GA (D.J.F., J.M.A.-B., J.H.D., M.C.-S., D.L.M.)
| |
Collapse
|
4
|
Hernandez A, Bohannon JK, Luan L, Fensterheim BA, Guo Y, Patil NK, McAdams C, Wang J, Sherwood ER. The role of MyD88- and TRIF-dependent signaling in monophosphoryl lipid A-induced expansion and recruitment of innate immunocytes. J Leukoc Biol 2016; 100:1311-1322. [PMID: 27354411 DOI: 10.1189/jlb.1a0216-072r] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 06/01/2016] [Accepted: 06/12/2016] [Indexed: 12/26/2022] Open
Abstract
Treatment with the TLR4 agonist MPLA augments innate resistance to common bacterial pathogens. However, the cellular and molecular mechanisms by which MPLA augments innate immunocyte functions are not well characterized. This study examined the importance of MyD88- and TRIF-dependent signaling for leukocyte mobilization, recruitment, and activation following administration of MPLA. MPLA potently induced MyD88- and TRIF-dependent signaling. A single injection of MPLA caused rapid mobilization and recruitment of neutrophils, a response that was largely mediated by the chemokines CXCL1 and -2 and the hemopoietic factor G-CSF. Rapid neutrophil recruitment and chemokine production were regulated by both pathways although the MyD88-dependent pathway showed some predominance. In further studies, multiple injections of MPLA potently induced mobilization and recruitment of neutrophils and monocytes. Neutrophil recruitment after multiple injections of MPLA was reliant on MyD88-dependent signaling, but effective monocyte recruitment required activation of both pathways. MPLA treatment induced expansion of myeloid progenitors in bone marrow and upregulation of CD11b and shedding of L-selectin by neutrophils, all of which were attenuated in MyD88- and TRIF-deficient mice. These results show that MPLA-induced neutrophil and monocyte recruitment, expansion of bone marrow progenitors and augmentation of neutrophil adhesion molecule expression are regulated by both the MyD88- and TRIF-dependent pathways.
Collapse
Affiliation(s)
- Antonio Hernandez
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee;
| | - Julia K Bohannon
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Liming Luan
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Benjamin A Fensterheim
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee; and
| | - Yin Guo
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee; and
| | - Naeem K Patil
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee; and
| | - Chase McAdams
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jingbin Wang
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee; and
| | - Edward R Sherwood
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee; and
| |
Collapse
|
5
|
Bishop CV, Xu F, Molskness TA, Stouffer RL, Hennebold JD. Dynamics of Immune Cell Types Within the Macaque Corpus Luteum During the Menstrual Cycle: Role of Progesterone. Biol Reprod 2015; 93:112. [PMID: 26400401 DOI: 10.1095/biolreprod.115.132753] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 09/18/2015] [Indexed: 12/20/2022] Open
Abstract
The goal of the current study was to characterize the immune cell types within the primate corpus luteum (CL). Luteal tissue was collected from rhesus females at discrete intervals during the luteal phase of the natural menstrual cycle. Dispersed cells were incubated with fluorescently labeled antibodies specific for the immune cell surface proteins CD11b (neutrophils and monocytes/macrophages), CD14 (monocytes/macrophages), CD16 (natural killer [NK] cells), CD20 (B-lymphocytes), and CD3epsilon (T-lymphocytes) for analysis by flow cytometry. Numbers of CD11b-positive (CD11b(+)) and CD14(+) cells increased significantly 3 to 4 days after serum progesterone (P4) concentrations declined below 0.3 ng/ml. CD16(+) cells were the most abundant immune cell type in CL during the mid and mid-late luteal phases and were 3-fold increased 3 to 4 days after serum P4 decreased to baseline levels. CD3epsilon(+) cells tended to increase 3 to 4 days after P4 decline. To determine whether immune cells were upregulated by the loss of luteotropic (LH) support or through loss of LH-dependent steroid milieu, monkeys were assigned to 4 groups: control (no treatment), the GnRH antagonist Antide, Antide plus synthetic progestin (R5020), or Antide plus the estrogen receptor agonists diarylpropionitrile (DPN)/propyl-pyrazole-triol (PPT) during the mid-late luteal phase. Antide treatment increased the numbers of CD11b(+) and CD14(+) cells, whereas progestin, but not estrogen, replacement suppressed the numbers of CD11b(+), CD14(+), and CD16(+) cells. Neither Antide nor steroid replacement altered numbers of CD3epsilon(+) cells. These data suggest that increased numbers of innate immune cells in primate CL after P4 synthesis declines play a role in onset of structural regression of primate CL.
Collapse
Affiliation(s)
- Cecily V Bishop
- Division of Reproductive and Developmental Sciences, Oregon Health & Science University, Portland, Oregon
| | - Fuhua Xu
- Division of Reproductive and Developmental Sciences, Oregon Health & Science University, Portland, Oregon
| | - Theodore A Molskness
- Division of Reproductive and Developmental Sciences, Oregon Health & Science University, Portland, Oregon
| | - Richard L Stouffer
- Division of Reproductive and Developmental Sciences, Oregon Health & Science University, Portland, Oregon Division of Obstetrics and Gynecology, Oregon Health & Science University, Portland, Oregon
| | - Jon D Hennebold
- Division of Reproductive and Developmental Sciences, Oregon Health & Science University, Portland, Oregon Division of Obstetrics and Gynecology, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
6
|
Systemic E. coli lipopolysaccharide but not deoxynivalenol results in transient leukopenia and diminished metabolic activity of peripheral blood mononuclear cells ex vivo. Mycotoxin Res 2014; 31:41-50. [PMID: 25315977 DOI: 10.1007/s12550-014-0212-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/22/2014] [Accepted: 09/28/2014] [Indexed: 01/26/2023]
Abstract
The mycotoxin deoxynivalenol (DON) and lipopolysaccharides (LPS) are reported to act synergistically in the animal organism. Thus, we tested the hypothesis that systemic co-exposure of DON and LPS aggravates the impact of the individual toxin on leukocyte counts in vivo and peripheral blood mononuclear cells (PBMC) ex vivo. Growing barrows were fed a standard diet, equipped with permanent venous catheters and infused for 1 h with one of four treatments: control group with physiological saline (CON, n=8), mycotoxin group (DON, n=6) with 100 μg/kg body weight (BW) deoxynivalenol, endotoxin group (LPS, n=6) with 7.5 μg/kg BW Escherichia coli LPS, and co-exposed group (DON+LPS, n=6) with 100 μg/kg BW DON and 7.5 μg/kg BW LPS. Blood was collected 30 min prior to infusion and 10, 20, 30, 60, 360, 720 and 1440 min after start of infusion for total and differential leukocyte counts. PBMC were isolated from blood drawn at 3 and 24 h and subjected to an ex vivo 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT) assay, either non-stimulated or stimulated with concanavalin A. LPS induced a transient significant leukopenia between 30 and 360 min, owing to a decrease in segmented neutrophils and lymphocytes (time×treatment: p<0.001). Metabolic activity of stimulated PBMC ex vivo was severely compromised in pigs 3 h after LPS exposure (<50% of control, p<0.001), but already regained 80% of its activity at 24 h, thus showing no difference between treatments. DON alone did not affect leukocytes in vivo or PBMC activity ex vivo and neither aggravated the effect of LPS.
Collapse
|
7
|
MPLA inhibits release of cytotoxic mediators from human neutrophils while preserving efficient bacterial killing. Immunol Cell Biol 2014; 92:799-809. [PMID: 25001496 DOI: 10.1038/icb.2014.55] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 06/03/2014] [Accepted: 06/04/2014] [Indexed: 11/08/2022]
Abstract
Monophosphoryl lipid A (MPLA) is a lipopolysaccharides (LPS) derivative associated with neutrophil-dependent anti-inflammatory outcomes in animal models of sepsis. Little is known about the effect of MPLA on neutrophil function. This study sought to test the hypothesis that MPLA would reduce release of cytotoxic mediators from neutrophils without impairing bacterial clearance. Neutrophils were isolated from whole blood of healthy volunteers. The effects of MPLA and LPS on autologous serum-opsonised Pseudomonas aeruginosa killing by neutrophils and phagocytosis of autologous serum-opsonised zymosan were examined. Neutrophil oxidative burst, chemotaxis, enzyme and cytokine release as well as Toll-like receptor 4 (TLR4) expression were assessed following exposure to LPS or MPLA. LPS, but not MPLA, induced significant release of superoxide and myeloperoxidase from neutrophils. However, MPLA did not impair neutrophil capacity to ingest microbial particles and kill P. aeruginosa efficiently. MPLA was directly chemotactic for neutrophils, involving TLR4, p38 mitogen-activated protein kinase and tyrosine and alkaline phosphatases. LPS, but not MPLA, impaired N-formyl-methionyl-leucyl phenylalanine-directed migration of neutrophils, increased surface expression of TLR4, increased interleukin-8 release and strongly activated the myeloid differentiation primary response 88 pathway. Phosphoinositide 3-kinase inhibition significantly augmented IL-8 release from MPLA-treated neutrophils. The addition of MPLA to LPS-preincubated neutrophils led to a significant reduction in LPS-mediated superoxide release and TLR4 surface expression. Collectively, these findings suggest that MPLA directs efficient chemotaxis and bacterial killing in human neutrophils without inducing extracellular release of cytotoxic mediators and suggest that MPLA warrants further attention as a potential therapeutic in human sepsis.
Collapse
|
8
|
Roy S, Karmakar M, Pearlman E. CD14 mediates Toll-like receptor 4 (TLR4) endocytosis and spleen tyrosine kinase (Syk) and interferon regulatory transcription factor 3 (IRF3) activation in epithelial cells and impairs neutrophil infiltration and Pseudomonas aeruginosa killing in vivo. J Biol Chem 2013; 289:1174-82. [PMID: 24275652 DOI: 10.1074/jbc.m113.523167] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the current study, we examined the role of CD14 in regulating LPS activation of corneal epithelial cells and Pseudomonas aeruginosa corneal infection. Our findings demonstrate that LPS induces Toll-like receptor 4 (TLR4) internalization in corneal epithelial cells and that blocking with anti-CD14 selectively inhibits TLR4 endocytosis, spleen tyrosine kinase (Syk) and IRF3 phosphorylation, and production of CCL5/RANTES and IFN-β, but not IL-8. Using a murine model of P. aeruginosa corneal infection, we show that although infected CD14(-/-) corneas produce less CCL5, they exhibit significantly increased CXC chemokine production, neutrophil recruitment to the corneal stroma, and bacterial clearance than C57BL/6 mice. We conclude that CD14 has a critical role in mediating TLR4 signaling through IRF3 in resident corneal epithelial cells and macrophages and thereby modulates TLR4 cell surface activation of the MyD88/NF-κB/AP-1 pathway and production of CXC chemokines and neutrophil infiltration to infected tissues.
Collapse
Affiliation(s)
- Sanhita Roy
- From the Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio 44095
| | | | | |
Collapse
|