1
|
Ruiz-Navarro J, Fernández-Hermira S, Sanz-Fernández I, Barbeito P, Navarro-Zapata A, Pérez-Martínez A, Garcia-Gonzalo FR, Calvo V, Izquierdo Pastor M. Formin-like 1β phosphorylation at S1086 is necessary for secretory polarized traffic of exosomes at the immune synapse in Jurkat T lymphocytes. eLife 2024; 13:RP96942. [PMID: 39479958 PMCID: PMC11527432 DOI: 10.7554/elife.96942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024] Open
Abstract
We analyzed here how formin-like 1 β (FMNL1β), an actin cytoskeleton-regulatory protein, regulates microtubule-organizing center (MTOC) and multivesicular bodies (MVB) polarization and exosome secretion at an immune synapse (IS) model in a phosphorylation-dependent manner. IS formation was associated with transient recruitment of FMNL1β to the IS, which was independent of protein kinase C δ (PKCδ). Simultaneous RNA interference of all FMNL1 isoforms prevented MTOC/MVB polarization and exosome secretion, which were restored by FMNL1βWT expression. However, expression of the non-phosphorylatable mutant FMNL1βS1086A did not restore neither MTOC/MVB polarization nor exosome secretion to control levels, supporting the crucial role of S1086 phosphorylation in MTOC/MVB polarization and exosome secretion. In contrast, the phosphomimetic mutant, FMNL1βS1086D, restored MTOC/MVB polarization and exosome secretion. Conversely, FMNL1βS1086D mutant did not recover the deficient MTOC/MVB polarization occurring in PKCδ-interfered clones, indicating that S1086 FMNL1β phosphorylation alone is not sufficient for MTOC/MVB polarization and exosome secretion. FMNL1 interference inhibited the depletion of F-actin at the central region of the immune synapse (cIS), which is necessary for MTOC/MVB polarization. FMNL1βWT and FMNL1βS1086D, but not FMNL1βS1086A expression, restored F-actin depletion at the cIS. Thus, actin cytoskeleton reorganization at the IS underlies the effects of all these FMNL1β variants on polarized secretory traffic. FMNL1 was found in the IS made by primary T lymphocytes, both in T cell receptor (TCR) and chimeric antigen receptor (CAR)-evoked synapses. Taken together, these results point out a crucial role of S1086 phosphorylation in FMNL1β activation, leading to cortical actin reorganization and subsequent control of MTOC/MVB polarization and exosome secretion.
Collapse
Affiliation(s)
- Javier Ruiz-Navarro
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), CSIC-UAMMadridSpain
| | | | - Irene Sanz-Fernández
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), CSIC-UAMMadridSpain
| | - Pablo Barbeito
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), CSIC-UAMMadridSpain
| | - Alfonso Navarro-Zapata
- Translational Research in Pediatric Oncology, Hematopoietic Transplantation and Cell Therapy, IdiPAZ, La Paz University HospitalMadridSpain
- Pediatric Onco-Hematology Clinical Research Unit, Spanish National Cancer Center (CNIO)MadridSpain
| | - Antonio Pérez-Martínez
- Translational Research in Pediatric Oncology, Hematopoietic Transplantation and Cell Therapy, IdiPAZ, La Paz University HospitalMadridSpain
- Pediatric Onco-Hematology Clinical Research Unit, Spanish National Cancer Center (CNIO)MadridSpain
- Department of Pediatric Hemato-Oncology, La Paz University HospitalMadridSpain
- Pediatric Department, Autonomous University of MadridMadridSpain
| | - Francesc R Garcia-Gonzalo
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), CSIC-UAMMadridSpain
- CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII)MadridSpain
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ)MadridSpain
| | - Víctor Calvo
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), CSIC-UAMMadridSpain
| | | |
Collapse
|
2
|
Sigler AL, Thompson SB, Ellwood-Digel L, Kandasamy A, Michaels MJ, Thumkeo D, Narumiya S, Del Alamo JC, Jacobelli J. FMNL1 and mDia1 promote efficient T cell migration through complex environments via distinct mechanisms. Front Immunol 2024; 15:1467415. [PMID: 39430739 PMCID: PMC11486666 DOI: 10.3389/fimmu.2024.1467415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/13/2024] [Indexed: 10/22/2024] Open
Abstract
Lymphocyte trafficking and migration through tissues is critical for adaptive immune function and, to perform their roles, T cells must be able to navigate through diverse tissue environments that present a range of mechanical challenges. T cells predominantly express two members of the formin family of actin effectors, Formin-like 1 (FMNL1) and mammalian diaphanous-related formin 1 (mDia1). While both FMNL1 and mDia1 have been studied individually, they have not been directly compared to determine functional differences in promoting T cell migration. Through in vivo analysis and the use of in vitro 2D and 3D model environments, we demonstrate that FMNL1 and mDia1 are both required for effective T cell migration, but they have different localization and roles in T cells, with specific environment-dependent functions. We found that mDia1 promotes general motility in 3D environments in conjunction with Myosin-II activity. We also show that, while mDia1 is almost entirely in the cytoplasmic compartment, a portion of FMNL1 physically associates with the nucleus. Furthermore, FMNL1 localizes to the rear of migrating T cells and contributes to efficient migration by promoting deformation of the rigid T cell nucleus in confined environments. Overall, our data indicates that while FMNL1 and mDia1 have similar mechanisms of actin polymerization, they have distinct roles in promoting T cell migration. This suggests that differential modulation of FMNL1 and mDia1 can be an attractive therapeutic route to fine-tune T cell migration behavior.
Collapse
Affiliation(s)
- Ashton L. Sigler
- Department of Immunology & Microbiology and Barbara Davis Research Center, University of Colorado School of Medicine, Aurora, CO, United States
| | - Scott B. Thompson
- Department of Immunology & Microbiology and Barbara Davis Research Center, University of Colorado School of Medicine, Aurora, CO, United States
| | - Logan Ellwood-Digel
- Department of Immunology & Microbiology and Barbara Davis Research Center, University of Colorado School of Medicine, Aurora, CO, United States
| | - Adithan Kandasamy
- Department of Mechanical Engineering, University of Washington, Seattle, WA, United States
| | - Mary J. Michaels
- Department of Immunology & Microbiology and Barbara Davis Research Center, University of Colorado School of Medicine, Aurora, CO, United States
| | - Dean Thumkeo
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shuh Narumiya
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Juan C. Del Alamo
- Department of Mechanical Engineering, University of Washington, Seattle, WA, United States
- Division of Cardiology, University of Washington, Seattle, WA, United States
| | - Jordan Jacobelli
- Department of Immunology & Microbiology and Barbara Davis Research Center, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
3
|
Vicari HP, Gomes RDC, Lima K, Rossini NDO, Rodrigues Junior MT, de Miranda LBL, Dias MVB, Costa-Lotufo LV, Coelho F, Machado-Neto JA. Cyclopenta[b]indoles as novel antimicrotubule agents with antileukemia activity. Toxicol In Vitro 2024; 99:105856. [PMID: 38821378 DOI: 10.1016/j.tiv.2024.105856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Acute leukemias present therapeutic challenges despite advances in treatments. Microtubule inhibitors have played a pivotal role in cancer therapy, inspiring exploration into novel compounds like C2E1 from the cyclopenta[b]indole class. In the present study, we investigated C2E1's potential as a therapeutic agent for acute leukemia at molecular, cellular, and genetic levels. C2E1 demonstrated tubulin depolarization activity, significantly reducing leukemia cell viability. Its impact involved multifaceted mechanisms: inducing apoptosis, arrest of cell cycle progression, and inhibition of clonogenicity and migration in leukemia cells. At a molecular level, C2E1 triggered DNA damage, antiproliferative, and apoptosis markers and altered gene expression related to cytoskeletal regulation, disrupting essential cellular processes crucial for leukemia cell survival and proliferation. These findings highlight C2E1's promise as a potential candidate for novel anti-cancer therapies. Notably, its distinct mode of action from conventional microtubule-targeting drugs suggests the potential to bypass common resistance mechanisms encountered with existing treatments. In summary, C2E1 emerges as a compelling compound with diverse effects on leukemia cells, showcasing promising antineoplastic properties. Its ability to disrupt critical cellular functions selective to leukemia cells positions it as a candidate for future therapeutic development.
Collapse
Affiliation(s)
- Hugo Passos Vicari
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ralph da Costa Gomes
- Department of Organic Chemistry, Institute of Chemistry, State University of Campinas, Campinas, São Paulo, Brazil
| | - Keli Lima
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; Laboratory of Medical Investigation in Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM-31), Department of Internal Medicine, Hematology Division, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | - Leticia Veras Costa-Lotufo
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Fernando Coelho
- Department of Organic Chemistry, Institute of Chemistry, State University of Campinas, Campinas, São Paulo, Brazil.
| | | |
Collapse
|
4
|
Peippo M, Gardberg M, Kronqvist P, Carpén O, Heuser VD. Characterization of Expression and Function of the Formins FHOD1, INF2, and DAAM1 in HER2-Positive Breast Cancer. J Breast Cancer 2023; 26:525-543. [PMID: 37985384 PMCID: PMC10761758 DOI: 10.4048/jbc.2023.26.e47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 08/31/2023] [Accepted: 10/16/2023] [Indexed: 11/22/2023] Open
Abstract
PURPOSE Human epidermal growth factor receptor 2 (HER2)-targeted therapies, such as trastuzumab, benefit patients with HER2-positive metastatic breast cancer; however, owing to traditional pathway activation or alternative signaling, resistance persists. Given the crucial role of the formin family in shaping the actin cytoskeleton during cancer progression, these proteins may function downstream of the HER2 signaling pathway. Our aim was to uncover the potential correlations between formins and HER2 expression using a combination of public databases, immunohistochemistry, and functional in vitro assays. METHODS Using online databases, we identified a negative prognostic correlation between specific formins mRNA expression in HER2-positive cancers. To validate these findings at the protein level, immunohistochemistry was performed on HER2 subtype breast cancer tumors to establish the links between staining patterns and clinical characteristics. We then knocked down individual or combined formins in MDA-MB-453 and SK-BR-3 cells and investigated their effects on wound healing, transwell migration, and proliferation. Furthermore, we investigated the effects of erb-b2 receptor tyrosine kinase 2 (ERBB2)/HER2 small interfering RNA (siRNA)-mediated knockdown on the PI3K/Akt and MEK/ERK1 pathways as well as on selected formins. RESULTS Our results revealed that correlations between INF2, FHOD1, and DAAM1 mRNA expression and ERBB2 in HER2-subtype breast cancer were associated with worse outcomes. Using immunohistochemistry, we found that high FHOD1 protein expression was linked to higher histological grades and was negatively correlated with estrogen and progesterone receptor positivity. Upon formins knockdown, we observed effects on wound healing and transwell migration, with a minimal impact on proliferation, which was evident through single and combined knockdowns in both cell lines. Notably, siRNA-mediated knockdown of HER2 affected FHOD1 and INF2 expression, along with the phosphorylated Akt/MAPK states. CONCLUSION Our study highlights the roles of FHOD1 and INF2 as downstream effectors of the HER2/Akt and HER2/MAPK pathways, suggesting that they are potential therapeutic targets in HER2-positive breast cancer.
Collapse
Affiliation(s)
- Minna Peippo
- Department of Pathology, Turku University Hospital, University of Turku, Turku, Finland
- Institute of Biomedicine and FICAN West Cancer Centre, University of Turku, Turku, Finland
| | - Maria Gardberg
- Department of Pathology, Turku University Hospital, University of Turku, Turku, Finland
| | - Pauliina Kronqvist
- Department of Pathology, Turku University Hospital, University of Turku, Turku, Finland
| | - Olli Carpén
- Department of Pathology, Turku University Hospital, University of Turku, Turku, Finland
- Institute of Biomedicine and FICAN West Cancer Centre, University of Turku, Turku, Finland
- Department of Pathology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Vanina D Heuser
- Institute of Biomedicine and FICAN West Cancer Centre, University of Turku, Turku, Finland.
| |
Collapse
|
5
|
Bueno MLP, Saad STO, Roversi FM. The antitumor effects of WNT5A against hematological malignancies. J Cell Commun Signal 2023:10.1007/s12079-023-00773-8. [PMID: 37310653 DOI: 10.1007/s12079-023-00773-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/30/2023] [Indexed: 06/14/2023] Open
Abstract
The bone marrow (BM) microenvironment (niche) is abnormally altered in acute myeloid leukemia (AML), leading to deficient secretion of proteins, soluble factors, and cytokines by mesenchymal stromal cells (MSC) that modifies the crosstalk between MSC and hematopoietic cells. We focused on a WNT gene/protein family member, WNT5A, which is downregulated in leukemia and correlated with disease progression and poor prognosis. We demonstrated that WNT5A protein upregulated the WNT non-canonical pathway only in leukemic cells, without modulating normal cell behavior. We also introduced a novel WNT5A-mimicking compound, Foxy-5. Our results showed reduction of crucial biological functions that are upregulated in leukemia cells, including ROS generation, cell proliferation, and autophagy, as well as G0/G1 cell cycle arrest. Additionally, Foxy-5 induced early-stage macrophage cell differentiation, a crucial process during leukemia development. At a molecular level, Foxy-5 led to the downregulation of two overexpressed leukemia pathways, PI3K and MAPK, which resulted in a disarrangement of actin polymerization with consequent impairment of CXCL12-induced chemotaxis. Notably, in a novel tri-dimensional bone marrow-mimicking model, Foxy-5 led to reduced leukemia cell growth and similar results were observed in a xenograft in vivo model. Overall, our findings highlight the pivotal role of WNT5A in leukemia and demonstrate that Foxy-5 acts as a specific antineoplastic agent in leukemia, counterbalancing several leukemic oncogenic processes related to the crosstalk in the bone marrow niche, and represents a promising therapeutic option for AML. WNT5A, a WNT gene/protein family member, is naturally secreted by mesenchymal stromal cells and contributes to the maintenance of the bone marrow microenvironment. WNT5A downregulation is correlated with disease progression and poor prognosis. The treatment with Foxy-5, a WNT5A mimetizing compound, counterbalanced several leukemogenic processes that are upregulated in leukemia cells, including ROS generation, cell proliferation, and autophagy and disruption of PI3K and MAPK signaling pathways.
Collapse
Affiliation(s)
- Maura Lima Pereira Bueno
- Hematology and Transfusion Medicine Center - University of Campinas/Hemocentro-UNICAMP, Rua Carlos Chagas, 480 - Cidade Universitária Zeferino Vaz - Barão Geraldo, Campinas, São Paulo, 13083-878, Brazil
| | - Sara Teresinha Olalla Saad
- Hematology and Transfusion Medicine Center - University of Campinas/Hemocentro-UNICAMP, Rua Carlos Chagas, 480 - Cidade Universitária Zeferino Vaz - Barão Geraldo, Campinas, São Paulo, 13083-878, Brazil
| | - Fernanda Marconi Roversi
- Hematology and Transfusion Medicine Center - University of Campinas/Hemocentro-UNICAMP, Rua Carlos Chagas, 480 - Cidade Universitária Zeferino Vaz - Barão Geraldo, Campinas, São Paulo, 13083-878, Brazil.
- Department of Surgery Division of Transplantation, Emory University, Atlanta, GA, USA.
| |
Collapse
|
6
|
Zhan C, Xu C, Chen J, Shen C, Li J, Wang Z, Ying X, Luo Z, Ren Y, Wu G, Zhang H, Qian M. Development and Validation of an IL6/JAK/STAT3-Related Gene Signature to Predict Overall Survival in Clear Cell Renal Cell Carcinoma. Front Cell Dev Biol 2021; 9:686907. [PMID: 34660570 PMCID: PMC8511427 DOI: 10.3389/fcell.2021.686907] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 05/10/2021] [Indexed: 01/13/2023] Open
Abstract
Background: Traditional clinicopathological features (TNM, pathology grade) are often insufficient in predictive prognosis accuracy of clear cell renal cell carcinoma (ccRCC). The IL6-JAK-STAT3 pathway is aberrantly hyperactivated in many cancer types, and such hyperactivation is generally associated with a poor clinical prognosis implying that it can be used as a promising prognosis indicator. The relation between the IL6-JAK-STAT3 pathway and ccRCC remains unknown. Methods: We evaluated the levels of various cancer hallmarks and filtered out the promising risk hallmarks in ccRCC. Subsequently, a prognosis model based on these hallmark-related genes was established via weighted correlation network analysis and Cox regression analysis. Besides, we constructed a nomogram based on the previous model with traditional clinicopathological features to improve the predictive power and accuracy. Results: The IL6-JAK-STAT3 pathway was identified as the promising risk hallmarks in ccRCC, and the pathway-related prognosis model based on five genes was built. Also, the nomogram we developed demonstrated the strongest and most stable survival predictive ability. Conclusion: Our study would provide new insights for guiding individualized treatment of ccRCC patients.
Collapse
Affiliation(s)
| | - Chao Xu
- Shaoxing People's Hospital, Shaoxing, China
| | | | - Chong Shen
- Shaoxing People's Hospital, Shaoxing, China
| | - Jinkun Li
- Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Zichu Wang
- Zhongshan Hospital, Xiamen University, Xiamen, China
| | | | | | - Yu Ren
- Shaoxing People's Hospital, Shaoxing, China
| | | | | | | |
Collapse
|
7
|
Abstract
Almost 25 years have passed since a mutation of a formin gene, DIAPH1, was identified as being responsible for a human inherited disorder: a form of sensorineural hearing loss. Since then, our knowledge of the links between formins and disease has deepened considerably. Mutations of DIAPH1 and six other formin genes (DAAM2, DIAPH2, DIAPH3, FMN2, INF2 and FHOD3) have been identified as the genetic cause of a variety of inherited human disorders, including intellectual disability, renal disease, peripheral neuropathy, thrombocytopenia, primary ovarian insufficiency, hearing loss and cardiomyopathy. In addition, alterations in formin genes have been associated with a variety of pathological conditions, including developmental defects affecting the heart, nervous system and kidney, aging-related diseases, and cancer. This review summarizes the most recent discoveries about the involvement of formin alterations in monogenic disorders and other human pathological conditions, especially cancer, with which they have been associated. In vitro results and experiments in modified animal models are discussed. Finally, we outline the directions for future research in this field.
Collapse
Affiliation(s)
| | - Miguel A. Alonso
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| |
Collapse
|
8
|
Formin-like protein 2 promotes cell proliferation by a p27-related mechanism in human breast cancer cells. BMC Cancer 2021; 21:760. [PMID: 34193109 PMCID: PMC8247103 DOI: 10.1186/s12885-021-08533-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 06/23/2021] [Indexed: 12/25/2022] Open
Abstract
Background Breast cancer is the leading cause of cancer-related deaths in females worldwide. Formin-like protein 2 (FMNL2) is a member of formin family that governs cytokinesis, cell polarity, morphogenesis and cell division. To our knowledge, the function of FMNL2 in breast cancer proliferation still remains uncovered. Methods Tumor immune estimation resource (TIMER) analysis was used to detect the correlation between FMNL2 and Ki67 in breast cancer tissues. Quantitative real-time transcription polymerase chain reaction (qRT-PCR) and western blotting were performed to analyze the expression in human breast cancer cells. Moreover, RNA interference (RNAi) and plasmids were performed to silence and overexpress FMNL2 and p27. The CCK8, MTT, cell counting, colony formation, and 5-ethynyl-2-deoxyuridine (EdU) incorporation assays were used to detect cell proliferation, respectively. Flow cytometry analysis was used to detect cell cycle distribution. Further, the distribution of p27 was examined using immunofluorescence. Results We found that FMNL2 expression was positively associated with Ki67 among collected breast cancer tissues and in TCGA database. Compared to lower proliferative cells MCF7 and T47D, FMNL2 was overexpressed in highly proliferative breast cancer cells MDA-MB-231, BT549 and SUM159, accompanied by reduced levels of p27 and p21, and elevated CyclinD1 and Ki67 expression. FMNL2 silencing significantly inhibited the cell proliferation of MDA-MB-231 and BT549 cells. Meanwhile, FMNL2 overexpression distinctly promoted the cell proliferation of MCF7 cells. Furthermore, FMNL2 suppressed the nuclear levels of p27 and promoted p27 proteasomal degradation in human breast cancer cells. The ubiquitination of p27 was inhibited by FMNL2 silencing in BT549 cells. Besides, p27 silencing markedly elevated Ki67 expression and cell viability, which could be blocked by additionally FMNL2 silencing in MDA-MB-231 and BT549 cells. Furthermore, overexpression of p27WT significantly reversed the increased levels of FMNL2 and Ki67, cell viability and cell cycle progression induced by FMNL2 overexpression in MCF7 cells. More importantly, compared to p27WT group, those effects could be significantly reversed by p27△NLS overexpression. Conclusions These results demonstrated that FMNL2 promoted cell proliferation partially by reducing p27 nuclear localization and p27 protein stability in human breast cancer cells, suggesting the pivotal role of FMNL2 in breast cancer progression. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08533-w.
Collapse
|
9
|
Roversi FM, Bueno MLP, Pericole FV, Saad STO. Hematopoietic Cell Kinase (HCK) Is a Player of the Crosstalk Between Hematopoietic Cells and Bone Marrow Niche Through CXCL12/CXCR4 Axis. Front Cell Dev Biol 2021; 9:634044. [PMID: 33842460 PMCID: PMC8027121 DOI: 10.3389/fcell.2021.634044] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/26/2021] [Indexed: 12/12/2022] Open
Abstract
The crosstalk between hematopoietic stem/progenitor cells (HSC), both normal and leukemic, and their neighboring bone marrow (BM) microenvironment (niche) creates a reciprocal dependency, a master regulator of biological process, and chemotherapy resistance. In acute myeloid leukemia (AML), leukemic stem/progenitor cells (LSC) anchored in the protective BM microenvironment, reprogram and transform this niche into a leukemia-supporting and chemoprotective environment. One most important player involved in this crosstalk are CXCL12, produced by the BM mesenchymal stromal cells, and its receptor CXCR4, present onto HSC. The downstream molecular mechanisms involved in CXCL12/CXCR4 axis have many targets, including the Src family members of non-receptor tyrosine kinase (SFK). We herein study the role of one SFK member, the Hematopoietic Cell Kinase (HCK), in CXCL12/CXCR4 pathway and its contribution to the AML pathogenesis. We verified that the inhibition of HCK severely impaired CXCL12-induced migration of leukemic cell lines and CD34 positive cells from AML patients bone marrow, through a disruption of the activation of CXCL12/CXCR4/PI3K/AKT and CXCL12/CXCR4/MAPK/ERK signaling, and by a decreased cytoskeleton dynamic through a lower rate of actin polymerization. We provide new insights into the key role of HCK in conferring a migratory advantage to leukemic cells thought CXCL12/CXCR4 axis. HCK represents an important protein of the main pathway involved in the crosstalk between HSC, and their surrounding milieu. Thus, HCK inhibition could represent a novel approach for the treatment of the acute myeloid leukemia.
Collapse
Affiliation(s)
- Fernanda Marconi Roversi
- Hematology and Transfusion Medicine Center-University of Campinas/Hemocentro-Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, Brazil
| | - Maura Lima Pereira Bueno
- Hematology and Transfusion Medicine Center-University of Campinas/Hemocentro-Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, Brazil
| | - Fernando Viera Pericole
- Hematology and Transfusion Medicine Center-University of Campinas/Hemocentro-Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, Brazil
| | - Sara Teresinha Olalla Saad
- Hematology and Transfusion Medicine Center-University of Campinas/Hemocentro-Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, Brazil
| |
Collapse
|
10
|
Mansuri N, Heuser VD, Birkman EM, Lintunen M, Ålgars A, Sundström J, Ristamäki R, Carpén O, Lehtinen L. FHOD1 and FMNL1 formin proteins in intestinal gastric cancer: correlation with tumor-infiltrating T lymphocytes and molecular subtypes. Gastric Cancer 2021; 24:1254-1263. [PMID: 34115237 PMCID: PMC8502136 DOI: 10.1007/s10120-021-01203-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/05/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Gastric cancer (GC) is the third most common cause of cancer death. Intestinal type GC is a molecularly diverse disease. Formins control cytoskeletal processes and have been implicated in the progression of many cancers. Their clinical significance in GC remains unclear. Here, we characterize the expression of formin proteins FHOD1 and FMNL1 in intestinal GC tissue samples and investigate their association with clinical parameters, GC molecular subtypes and intratumoral T lymphocytes. METHODS The prognostic significance of FHOD1 and FMNL1 mRNA expression was studied with Kaplan-Meier analyses in an online database. The expression of FHOD1 and FMNL1 proteins was characterized in GC cells, and in non-neoplastic and malignant tissues utilizing tumor microarrays of intestinal GC representing different molecular subtypes. FHOD1 and FMNL1 expression was correlated with clinical parameters, molecular features and T lymphocyte infiltration. Immunohistochemical expression of neither formin correlated with survival. RESULTS Kaplan-Meier analysis associated high FHOD1 and FMNL1 mRNA expression with reduced overall survival (OS). Characterization of FHOD1 and FMNL1 in GC cells showed cytoplasmic expression along the actin filaments. Similar pattern was recapitulated in GC tissue samples. Elevated FMNL1 was associated with larger tumor size and higher disease stage. Downregulation of FHOD1 associated with TP53-mutated GC tumors. Tumor cell FHOD1 expression strongly correlated with high numbers of tumor-infiltrating CD8 + lymphocytes. CONCLUSIONS FHOD1 and FMNL1 proteins are expressed in the tumor cells of intestinal GC and significantly associate with clinical parameters without direct prognostic significance. FHOD1 correlates with high intratumoral CD8 + T lymphocyte infiltration in this cohort.
Collapse
Affiliation(s)
- Naziha Mansuri
- grid.1374.10000 0001 2097 1371Institute of Biomedicine and FICAN West Cancer Centre, University of Turku and Turku University Hospital, Kiinamyllynkatu 10, 20520 Turku, Finland
| | - Vanina D. Heuser
- grid.1374.10000 0001 2097 1371Institute of Biomedicine and FICAN West Cancer Centre, University of Turku and Turku University Hospital, Kiinamyllynkatu 10, 20520 Turku, Finland
| | - Eva-Maria Birkman
- grid.410552.70000 0004 0628 215XDepartment of Pathology, Turku University Hospital and University of Turku, Kiinamyllynkatu 10, 20520 Turku, Finland
| | - Minnamaija Lintunen
- grid.410552.70000 0004 0628 215XDepartment of Pathology, Turku University Hospital and University of Turku, Kiinamyllynkatu 10, 20520 Turku, Finland
| | - Annika Ålgars
- grid.1374.10000 0001 2097 1371Department of Oncology, University of Turku and Turku University Hospital, Kiinamyllynkatu 4-8, 20521 Turku, Finland
| | - Jari Sundström
- grid.410552.70000 0004 0628 215XDepartment of Pathology, Turku University Hospital and University of Turku, Kiinamyllynkatu 10, 20520 Turku, Finland
| | - Raija Ristamäki
- grid.1374.10000 0001 2097 1371Department of Oncology, University of Turku and Turku University Hospital, Kiinamyllynkatu 4-8, 20521 Turku, Finland
| | - Olli Carpén
- grid.1374.10000 0001 2097 1371Institute of Biomedicine and FICAN West Cancer Centre, University of Turku and Turku University Hospital, Kiinamyllynkatu 10, 20520 Turku, Finland ,grid.7737.40000 0004 0410 2071Medicum, Research Program in Systems Oncology and HUSLAB, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 3, 00014 Helsinki, Finland
| | - Laura Lehtinen
- grid.1374.10000 0001 2097 1371Institute of Biomedicine and FICAN West Cancer Centre, University of Turku and Turku University Hospital, Kiinamyllynkatu 10, 20520 Turku, Finland
| |
Collapse
|
11
|
Zhang MF, Li QL, Yang YF, Cao Y, Zhang CZ. FMNL1 Exhibits Pro-Metastatic Activity via CXCR2 in Clear Cell Renal Cell Carcinoma. Front Oncol 2020; 10:564614. [PMID: 33324547 PMCID: PMC7726248 DOI: 10.3389/fonc.2020.564614] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 11/02/2020] [Indexed: 12/25/2022] Open
Abstract
Formin-like (FMNL) proteins are responsible for cytoskeletal remodeling and have been implicated in the progression and spread of human cancers. Yet the clinical significance and biological function of FMNL1 in clear cell renal cell carcinoma (ccRCC) remain unclear. In this study, the expression of FMNL1 in ccRCC and its clinical value were determined by tissue microarray-based IHC and statistical analyses. The role of FMNL1 in ccRCC metastasis and the underlying mechanism were investigated via in vitro and in vivo models using gene regulation detection, ChIP, Luciferase reporter assays, and rescue experiments. We show that FMNL1 is upregulated in ccRCC and exhibits pro-metastatic activity via induction of CXCR2. High expression of FMNL1 is significantly correlated with advanced tumor stage, higher pathological tumor grade, tumor metastasis, and unfavorable prognosis in two independent cohorts containing over 800 patients with ccRCC. The upregulation of FMNL1 in ccRCC is mediated by the loss of GATA3. Ectopic expression of FMNL1 promotes, whereas FMNL1 depletion inhibits cell migration in vitro and tumor metastasis in vivo. The FMNL1-enhanced cell mobility is markedly attenuated by the knockdown of CXCR2. Further studies demonstrate that FMNL1 increases the expression of CXCR2 via HDAC1. In clinical samples, FMNL1 expression is positively associated with CXCR2, and is negatively connected to GATA3 expression. Collectively, our data suggest FMNL1 serve as a potential prognostic factor and function as an oncogene. The axis of GATA3/FMNL1/CXCR2 may present a promising therapeutic target for tumor metastasis in ccRCC.
Collapse
Affiliation(s)
- Mei-Fang Zhang
- Department of Pathology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Qiu-Li Li
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yu-Feng Yang
- Department of Pathology, Dongguan Third People's Hospital, Dongguan, China
| | - Yun Cao
- Department of Pathology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Chris Zhiyi Zhang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
12
|
Biber G, Ben-Shmuel A, Sabag B, Barda-Saad M. Actin regulators in cancer progression and metastases: From structure and function to cytoskeletal dynamics. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 356:131-196. [PMID: 33066873 DOI: 10.1016/bs.ircmb.2020.05.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The cytoskeleton is a central factor contributing to various hallmarks of cancer. In recent years, there has been increasing evidence demonstrating the involvement of actin regulatory proteins in malignancy, and their dysregulation was shown to predict poor clinical prognosis. Although enhanced cytoskeletal activity is often associated with cancer progression, the expression of several inducers of actin polymerization is remarkably reduced in certain malignancies, and it is not completely clear how these changes promote tumorigenesis and metastases. The complexities involved in cytoskeletal induction of cancer progression therefore pose considerable difficulties for therapeutic intervention; it is not always clear which cytoskeletal regulator should be targeted in order to impede cancer progression, and whether this targeting may inadvertently enhance alternative invasive pathways which can aggravate tumor growth. The entire constellation of cytoskeletal machineries in eukaryotic cells are numerous and complex; the system is comprised of and regulated by hundreds of proteins, which could not be covered in a single review. Therefore, we will focus here on the actin cytoskeleton, which encompasses the biological machinery behind most of the key cellular functions altered in cancer, with specific emphasis on actin nucleating factors and nucleation-promoting factors. Finally, we discuss current therapeutic strategies for cancer which aim to target the cytoskeleton.
Collapse
Affiliation(s)
- G Biber
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - A Ben-Shmuel
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - B Sabag
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - M Barda-Saad
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel.
| |
Collapse
|
13
|
Thompson SB, Sandor AM, Lui V, Chung JW, Waldman MM, Long RA, Estin ML, Matsuda JL, Friedman RS, Jacobelli J. Formin-like 1 mediates effector T cell trafficking to inflammatory sites to enable T cell-mediated autoimmunity. eLife 2020; 9:58046. [PMID: 32510333 PMCID: PMC7308091 DOI: 10.7554/elife.58046] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 06/07/2020] [Indexed: 01/21/2023] Open
Abstract
Lymphocyte migration is essential for the function of the adaptive immune system, and regulation of T cell entry into tissues is an effective therapy in autoimmune diseases. Little is known about the specific role of cytoskeletal effectors that mediate mechanical forces and morphological changes essential for migration in complex environments. We developed a new Formin-like-1 (FMNL1) knock-out mouse model and determined that the cytoskeletal effector FMNL1 is selectively required for effector T cell trafficking to inflamed tissues, without affecting naïve T cell entry into secondary lymphoid organs. Here, we identify a FMNL1-dependent mechanism of actin polymerization at the back of the cell that enables migration of the rigid lymphocyte nucleus through restrictive barriers. Furthermore, FMNL1-deficiency impairs the ability of self-reactive effector T cells to induce autoimmune disease. Overall, our data suggest that FMNL1 may be a potential therapeutic target to specifically modulate T cell trafficking to inflammatory sites.
Collapse
Affiliation(s)
- Scott B Thompson
- Department of Biomedical Research, National Jewish Health, Denver, United States.,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States
| | - Adam M Sandor
- Department of Biomedical Research, National Jewish Health, Denver, United States.,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States
| | - Victor Lui
- Department of Biomedical Research, National Jewish Health, Denver, United States.,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States
| | - Jeffrey W Chung
- Department of Biomedical Research, National Jewish Health, Denver, United States.,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States.,Barbara Davis Center, University of Colorado School of Medicine, Aurora, United States
| | - Monique M Waldman
- Department of Biomedical Research, National Jewish Health, Denver, United States.,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States.,Barbara Davis Center, University of Colorado School of Medicine, Aurora, United States
| | - Robert A Long
- Department of Biomedical Research, National Jewish Health, Denver, United States.,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States
| | - Miriam L Estin
- Department of Biomedical Research, National Jewish Health, Denver, United States.,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States
| | - Jennifer L Matsuda
- Department of Biomedical Research, National Jewish Health, Denver, United States.,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States
| | - Rachel S Friedman
- Department of Biomedical Research, National Jewish Health, Denver, United States.,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States.,Barbara Davis Center, University of Colorado School of Medicine, Aurora, United States
| | - Jordan Jacobelli
- Department of Biomedical Research, National Jewish Health, Denver, United States.,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States.,Barbara Davis Center, University of Colorado School of Medicine, Aurora, United States
| |
Collapse
|
14
|
Higa N, Shinsato Y, Kamil M, Hirano T, Takajo T, Shimokawa M, Minami K, Yamamoto M, Kawahara K, Yonezawa H, Hirano H, Furukawa T, Yoshimoto K, Arita K. Formin-like 1 (FMNL1) Is Associated with Glioblastoma Multiforme Mesenchymal Subtype and Independently Predicts Poor Prognosis. Int J Mol Sci 2019; 20:ijms20246355. [PMID: 31861134 PMCID: PMC6940780 DOI: 10.3390/ijms20246355] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/11/2019] [Accepted: 12/14/2019] [Indexed: 12/18/2022] Open
Abstract
Glioblastoma multiforme (GBM), the most common primary malignant brain tumor in adults, is characterized by rapid proliferation, aggressive migration, and invasion into normal brain tissue. Formin proteins have been implicated in these processes. However, the role of formin-like 1 (FMNL1) in cancer remains unclear. We studied FMNL1 expression in glioblastoma samples using immunohistochemistry. We sought to analyze the correlation between FMNL1 expression, clinicopathologic variables, and patient survival. Migration and invasion assays were used to verify the effect of FMNL1 on glioblastoma cell lines. Microarray data were downloaded from The Cancer Genome Atlas and analyzed using gene set enrichment analysis (GSEA). FMNL1 was an independent predictor of poor prognosis in a cohort of 217 glioblastoma multiforme cases (p < 0.001). FMNL1 expression was significantly higher in the mesenchymal subtype. FMNL1 upregulation and downregulation were associated with mesenchymal and proneural markers in the GSEA, respectively. These data highlight the important role of FMNL1 in the neural-to-mesenchymal transition. Conversely, FMNL1 downregulation suppressed glioblastoma multiforme cell migration and invasion via DIAPH1 and GOLGA2, respectively. FMNL1 downregulation also suppressed actin fiber assembly, induced morphological changes, and diminished filamentous actin. FMNL1 is a promising therapeutic target and a useful biomarker for GBM progression.
Collapse
Affiliation(s)
- Nayuta Higa
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan (H.Y.); (H.H.); (K.Y.)
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan; (Y.S.); (T.H.); (M.S.); (K.M.); (M.Y.); (K.K.)
| | - Yoshinari Shinsato
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan; (Y.S.); (T.H.); (M.S.); (K.M.); (M.Y.); (K.K.)
| | - Muhammad Kamil
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan (H.Y.); (H.H.); (K.Y.)
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan; (Y.S.); (T.H.); (M.S.); (K.M.); (M.Y.); (K.K.)
- Department of Neurosurgery, Faculty of Medicine, Airlangga University, Surabaya 60132, Indonesia
| | - Takuro Hirano
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan; (Y.S.); (T.H.); (M.S.); (K.M.); (M.Y.); (K.K.)
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Tomoko Takajo
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan (H.Y.); (H.H.); (K.Y.)
| | - Michiko Shimokawa
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan; (Y.S.); (T.H.); (M.S.); (K.M.); (M.Y.); (K.K.)
| | - Kentaro Minami
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan; (Y.S.); (T.H.); (M.S.); (K.M.); (M.Y.); (K.K.)
| | - Masatatsu Yamamoto
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan; (Y.S.); (T.H.); (M.S.); (K.M.); (M.Y.); (K.K.)
| | - Kohichi Kawahara
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan; (Y.S.); (T.H.); (M.S.); (K.M.); (M.Y.); (K.K.)
| | - Hajime Yonezawa
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan (H.Y.); (H.H.); (K.Y.)
| | - Hirofumi Hirano
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan (H.Y.); (H.H.); (K.Y.)
| | - Tatsuhiko Furukawa
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan; (Y.S.); (T.H.); (M.S.); (K.M.); (M.Y.); (K.K.)
- Center for the Research of Advanced Diagnosis and Therapy of Cancer, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
- Correspondence: ; Tel.: +81-99-275-5490
| | - Koji Yoshimoto
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan (H.Y.); (H.H.); (K.Y.)
| | - Kazunori Arita
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan (H.Y.); (H.H.); (K.Y.)
| |
Collapse
|
15
|
Yang XY, Liao JJ, Xue WR. FMNL1 down-regulation suppresses bone metastasis through reducing TGF-β1 expression in non-small cell lung cancer (NSCLC). Biomed Pharmacother 2019; 117:109126. [PMID: 31387165 DOI: 10.1016/j.biopha.2019.109126] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/04/2019] [Accepted: 06/12/2019] [Indexed: 12/25/2022] Open
Abstract
Approximately 40% of patients with non-small cell lung cancer (NSCLC) develop bone metastasis. The formin protein formin-like 1 (FMNL1) plays a key role in the pathogenic processes of hematopoietic malignancies, and has been reported to be associated with the progression of multiple types of cancer. In the study, we found that FMNL1 expression was markedly up-regulated in primary NSCLC samples, and stronger expression of FNML1 was detected in bone metastasis. Reducing FMNL1 expression significantly suppressed cell proliferation in NSCLC cells. We also investigated the functional effects of FMNL1 knockdown on the inhibition of migration and invasion by meditating the expression of epithelial to mesenchymal transition (EMT)-associated signals in NSCLC cells. The transforming growth factor-β1 (TGF-β1)/SMADs signaling pathway was repressed in FMNL1-knockdown NSCLC cells. Further studies indicated that additional treatment with TGF-β1 could markedly abrogate FMNL1 knockdown-induced suppression of migration and invasion in NSCLC cells. In addition, NSCLC cell-induced osteoclastogenesis was also inhibited by FMNL1 deletion, as evidenced by the down-regulated expression of tartrate-resistant acid phosphatase (TRAP) and NFATc1. In vivo studies confirmed the results that FMNL1 knockdown markedly limited tumor growth. Importantly, decreasing FMNL1 reduced bone metastasis ability in vivo. Therefore, our results demonstrated that suppressing FMNL1 expression could inhibit bone metastasis in NSCLC through blocking TGF-β1 signaling, and FMNL1 might be a novel target for developing effective therapeutic strategy to limit the bone metastasis of NSCLC.
Collapse
Affiliation(s)
- Xing-Yi Yang
- Doppler Ultrasonic Department, Fenyang College of Shanxi Medical University, Fenyang, 032200, China
| | - Jun-Jie Liao
- Department of Radiology, Huizhou City People's Hospital of Guangdong Province, Huizhou, 516001, China
| | - Wu-Rong Xue
- Department of Image, CT Room, Yulin Xingyuan Hospital, Yulin, 719000, China.
| |
Collapse
|
16
|
Cui F, Ji Y, Wang M, Gao F, Li Y, Li X. miR-143 inhibits proliferation and metastasis of nasopharyngeal carcinoma cells via targeting FMNL1 based on clinical and radiologic findings. J Cell Biochem 2019; 120:16427-16434. [PMID: 31001854 DOI: 10.1002/jcb.28709] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/10/2019] [Accepted: 01/14/2019] [Indexed: 01/04/2023]
Abstract
Mounting evidence has reported that microRNA-143 (miR-143) is involved in the development of multiple cancers. To investigate the underlying mechanisms of miR-143 regulating proliferation and metastasis in nasopharyngeal carcinoma (NPC) cells, we evaluated the levels of miR-143 and formin-like protein 1 (FMNL1) in NPC tissues. The results of qRT-PCR and Western blot analysis showed that the expression of miR-143 was decreased, while FMNL1 was increased in NPC tissues. The expression of miR-143 was significantly elevated in NPC cells compared with that of human nasopharyngeal epithelial cells. The results of MiRcode prediction, dual-luciferase reporter, and Western blot analysis assays indicated that miR-143 negatively regulated the expression of FMNL1 (r2 = 0.4365P = 0.0001). Overexperssion of miR-143 or FMNL1 knockdown inhibited cell proliferation, migration, and invasion in NPC cells (P < 0.05). Ectopic expression of FMNL1 undermined the inhibition effect of miR-143 on proliferation, migration, and invasion in NPC cells. The findings of this study revealed that miR-143 functioned as a tumor suppressor and inhibited the NPC progression by targeting FMNL1.
Collapse
Affiliation(s)
- Fusheng Cui
- CT/MRI Department, Xingtai People's Hospital, Hebei, China
| | - Yuqing Ji
- Ear-Nose-Throat Department, Xingtai People's Hospital, Hebei, China
| | - Man Wang
- Ear-Nose-Throat Department, Xingtai People's Hospital, Hebei, China
| | - Fengxiao Gao
- CT/MRI Department, Xingtai People's Hospital, Hebei, China
| | - Yongcai Li
- CT/MRI Department, Xingtai People's Hospital, Hebei, China
| | - Xueshen Li
- CT/MRI Department, Xingtai People's Hospital, Hebei, China
| |
Collapse
|
17
|
Miller EW, Blystone SD. The carboxy-terminus of the formin FMNL1ɣ bundles actin to potentiate adenocarcinoma migration. J Cell Biochem 2019; 120:14383-14404. [PMID: 30977161 DOI: 10.1002/jcb.28694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 02/25/2019] [Accepted: 02/28/2019] [Indexed: 12/31/2022]
Abstract
The formin family of proteins contributes to spatiotemporal control of actin cytoskeletal rearrangements during motile cell activities. The FMNL subfamily exhibits multiple mechanisms of linear actin filament formation and organization. Here we report novel actin-modifying functions of FMNL1 in breast adenocarcinoma migration models. FMNL1 is required for efficient cell migration and its three isoforms exhibit distinct localization. Suppression of FMNL1 protein expression results in a significant impairment of cell adhesion, migration, and invasion. Overexpression of FMNL1ɣ, but not FMNL1β or FMNL1α, enhances cell adhesion independent of the FH2 domain and FMNL1ɣ rescues migration in cells depleted of all three endogenous isoforms. While FMNL1ɣ inhibits actin assembly in vitro, it facilitates bundling of filamentous actin independent of the FH2 domain. The unique interactions of FMNL1ɣ with filamentous actin provide a new understanding of formin domain functions and its effect on motility of diverse cell types suggest a broader role than previously realized.
Collapse
Affiliation(s)
- Eric W Miller
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York
| | - Scott D Blystone
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York
| |
Collapse
|
18
|
Durand-Onaylı V, Haslauer T, Härzschel A, Hartmann TN. Rac GTPases in Hematological Malignancies. Int J Mol Sci 2018; 19:ijms19124041. [PMID: 30558116 PMCID: PMC6321480 DOI: 10.3390/ijms19124041] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 12/22/2022] Open
Abstract
Emerging evidence suggests that crosstalk between hematologic tumor cells and the tumor microenvironment contributes to leukemia and lymphoma cell migration, survival, and proliferation. The supportive tumor cell-microenvironment interactions and the resulting cellular processes require adaptations and modulations of the cytoskeleton. The Rac subfamily of the Rho family GTPases includes key regulators of the cytoskeleton, with essential functions in both normal and transformed leukocytes. Rac proteins function downstream of receptor tyrosine kinases, chemokine receptors, and integrins, orchestrating a multitude of signals arising from the microenvironment. As such, it is not surprising that deregulation of Rac expression and activation plays a role in the development and progression of hematological malignancies. In this review, we will give an overview of the specific contribution of the deregulation of Rac GTPases in hematologic malignancies.
Collapse
Affiliation(s)
- Valerie Durand-Onaylı
- Department of Internal Medicine III with Hematology, Medical Oncology, Hemostaseology, Infectious Disease, Rheumatology, Oncologic Center, Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University, Cancer Cluster Salzburg, 5020 Salzburg, Austria.
| | - Theresa Haslauer
- Department of Internal Medicine III with Hematology, Medical Oncology, Hemostaseology, Infectious Disease, Rheumatology, Oncologic Center, Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University, Cancer Cluster Salzburg, 5020 Salzburg, Austria.
| | - Andrea Härzschel
- Department of Internal Medicine III with Hematology, Medical Oncology, Hemostaseology, Infectious Disease, Rheumatology, Oncologic Center, Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University, Cancer Cluster Salzburg, 5020 Salzburg, Austria.
| | - Tanja Nicole Hartmann
- Department of Internal Medicine III with Hematology, Medical Oncology, Hemostaseology, Infectious Disease, Rheumatology, Oncologic Center, Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University, Cancer Cluster Salzburg, 5020 Salzburg, Austria.
- Department of Hematology, Oncology and Stem Cell Transplantation, Faculty of Medicine and Medical Center, University of Freiburg, 79106 Freiburg, Germany.
| |
Collapse
|
19
|
Chen WH, Cai MY, Zhang JX, Wang FW, Tang LQ, Liao YJ, Jin XH, Wang CY, Guo L, Jiang YG, Ren CP, Mai HQ, Zeng MS, Kung HF, Qian CN, Xie D. FMNL1 mediates nasopharyngeal carcinoma cell aggressiveness by epigenetically upregulating MTA1. Oncogene 2018; 37:6243-6258. [PMID: 30013189 DOI: 10.1038/s41388-018-0351-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 03/26/2018] [Accepted: 05/14/2018] [Indexed: 11/09/2022]
Abstract
It has been suggested that formin-like protein 1 (FMNL1) plays an important role in the pathogenic process of several hematopoietic malignancies. In this study, we performed a series of in vivo and in vitro assays to elucidate the biological functions of FMNL1 and underlying mechanisms in human nasopharyngeal carcinoma (NPC) pathogenesis. Herein, we report that high expression of FMNL1 in NPC is positively associated with an aggressive disease and/or poor patient survival. Ectopic overexpression of FMNL1 in NPC cells substantially promoted cell invadopodia formation, epithelial-mesenchymal transition (EMT) and invasiveness, whereas depletion of FMNL1 potently suppressed NPC cells invadopodia formation, EMT, and invasive/metastatic capacities. We further show that FMNL1 could enhance NPC cell aggressiveness by increasing a key downstream target, the metastasis-associated protein 1 (MTA1) gene. Importantly, ectopic overexpression of FMNL1 in NPC cells markedly improved the binding of HDAC1 with Profilin2 in the cytoplasm and suppressed the enrichment of HDAC1 on the promoter of MTA1 and thereby, leading to an increased MTA1 transcription and expression. Furthermore, in addition to the amplification of FMNL1 gene, decreased level of miR-16 in NPCs is another critical mechanism to upregulate FMNL1 expression. These results, collectively, provide first-line of evidences that high expression of FMNL1, resulted from decreased miR-16 and/or MTA1 amplification, has a potent oncogenic role to drive the development and aggressive process of NPC by upregulating MTA1, and FMNL1 might be employed as a new prognostic biomarker and therapeutic target for human NPC.
Collapse
Affiliation(s)
- Wen-Hui Chen
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Oncology, the First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Mu-Yan Cai
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jia-Xing Zhang
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Oncology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Feng-Wei Wang
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Lin-Quan Tang
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Nasopharyngeal Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yi-Ji Liao
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiao-Han Jin
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Chen-Yuan Wang
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ling Guo
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Nasopharyngeal Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yi-Guo Jiang
- The State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Cai-Ping Ren
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine; Key Laboratory for Carcinogenesis of Chinese Ministry of Health, School of Basic Medical Science, Central South University, Changsha, China
| | - Hai-Qiang Mai
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Nasopharyngeal Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Mu-Sheng Zeng
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hsiang-Fu Kung
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, the Chinese University of Hong Kong, Hong Kong, China
| | - Chao-Nan Qian
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Nasopharyngeal Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Dan Xie
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
20
|
Thompson SB, Wigton EJ, Krovi SH, Chung JW, Long RA, Jacobelli J. The Formin mDia1 Regulates Acute Lymphoblastic Leukemia Engraftment, Migration, and Progression in vivo. Front Oncol 2018; 8:389. [PMID: 30294591 PMCID: PMC6158313 DOI: 10.3389/fonc.2018.00389] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 08/30/2018] [Indexed: 12/31/2022] Open
Abstract
Leukemias typically arise in the bone marrow and then spread to the blood and into other tissues. To disseminate into tissues, leukemia cells migrate into the blood stream and then exit the circulation by migrating across vascular endothelial barriers. Formin proteins regulate cytoskeletal remodeling and cell migration of normal and malignant cells. The Formin mDia1 is highly expressed in transformed lymphocytes and regulates lymphocyte migration. However, the role of mDia1 in regulating leukemia progression in vivo is unknown. Here, we investigated how mDia1 mediates the ability of leukemia cells to migrate and disseminate in vivo. For these studies, we used a mouse model of Bcr-Abl pre-B cell acute lymphoblastic leukemia. Our data showed that mDia1-deficient leukemia cells have reduced chemotaxis and ability to complete transendothelial migration in vitro. In vivo, mDia1 deficiency reduced the ability of leukemia cells to engraft in recipient mice. Furthermore, leukemia dissemination to various tissues and leukemia progression were inhibited by mDia1 depletion. Finally, mDia1 depletion in leukemia cells resulted in prolonged survival of recipient mice in a leukemia transfer model. Overall, our data show that the Formin mDia1 mediates leukemia cell migration, and drives leukemia engraftment and progression in vivo, suggesting that targeting mDia1 could provide a new method for treatment of leukemia.
Collapse
Affiliation(s)
- Scott B Thompson
- Department of Biomedical Research, National Jewish Health, Denver, CO, United States.,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Eric J Wigton
- Department of Biomedical Research, National Jewish Health, Denver, CO, United States.,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Sai Harsha Krovi
- Department of Biomedical Research, National Jewish Health, Denver, CO, United States.,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Jeffrey W Chung
- Department of Biomedical Research, National Jewish Health, Denver, CO, United States.,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Robert A Long
- Department of Biomedical Research, National Jewish Health, Denver, CO, United States.,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Jordan Jacobelli
- Department of Biomedical Research, National Jewish Health, Denver, CO, United States.,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
21
|
Zhang H, Wang Z, Fu X, Sun Y, Mi Z, Yu G, Sun L, Wang N, Wang C, Zhao Q, Pan Q, Yue Z, Liu H, Zhang F. A pathway-based association analysis identified FMNL1-MAP3K14 as susceptibility genes for leprosy. Exp Dermatol 2018; 27:245-250. [PMID: 29283461 DOI: 10.1111/exd.13490] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2017] [Indexed: 02/04/2023]
Abstract
The nuclear transcription factor-κB (NF-κB) plays a pivotal role in controlling both innate and adaptive immunity and regulates the expressions of many immunological mediators. Abundant evidences have showed the importance of NF-κB pathway in the host immune responses against Mycobacterium leprae in the development of leprosy. However, no particular association study between leprosy and NF-κB pathway-related gene polymorphisms was reported. Here, we performed a large-scale and two-stage candidate association study to investigate the association between 94 NF-κB pathway-related genes and leprosy. Our results showed that rs58744688 was significantly associated with leprosy (P = 7.57 × 10-7 , OR = 1.12) by combining the previous genomewide association data sets and four independent validation sample series, consisting of a total of 4631 leprosy cases and 6413 healthy controls. This founding implicated that MAP3K14 and FMNL1 were susceptibility genes for leprosy, which suggested the involvement of macrophage targeting and NF-κB pathway in the development of leprosy.
Collapse
Affiliation(s)
- Huimin Zhang
- Binzhou Medical University, Yantai, Shandong, China
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Shandong Provincial Key Laboratory for Dermatovenereology, Jinan, Shandong, China
| | - Zhenzhen Wang
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Shandong Provincial Key Laboratory for Dermatovenereology, Jinan, Shandong, China
| | - Xi'an Fu
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Shandong Provincial Key Laboratory for Dermatovenereology, Jinan, Shandong, China
- School of Medicine, Shandong University, Jinan, Shandong, China
| | - Yonghu Sun
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Shandong Provincial Key Laboratory for Dermatovenereology, Jinan, Shandong, China
| | - Zihao Mi
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Shandong Provincial Key Laboratory for Dermatovenereology, Jinan, Shandong, China
| | - Gongqi Yu
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Shandong Provincial Key Laboratory for Dermatovenereology, Jinan, Shandong, China
- School of Medicine and Life Science, University of Jinan-Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Lele Sun
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Shandong Provincial Key Laboratory for Dermatovenereology, Jinan, Shandong, China
| | - Na Wang
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Shandong Provincial Key Laboratory for Dermatovenereology, Jinan, Shandong, China
- School of Medicine, Shandong University, Jinan, Shandong, China
| | - Chuan Wang
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Shandong Provincial Key Laboratory for Dermatovenereology, Jinan, Shandong, China
| | - Qing Zhao
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Shandong Provincial Key Laboratory for Dermatovenereology, Jinan, Shandong, China
- School of Medicine, Shandong University, Jinan, Shandong, China
| | - Qing Pan
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Shandong Provincial Key Laboratory for Dermatovenereology, Jinan, Shandong, China
| | - Zhenhua Yue
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Shandong Provincial Key Laboratory for Dermatovenereology, Jinan, Shandong, China
- School of Medicine, Shandong University, Jinan, Shandong, China
| | - Hong Liu
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Shandong Provincial Key Laboratory for Dermatovenereology, Jinan, Shandong, China
- Shandong Provincial Hospital for Skin Diseases, Shandong University, Jinan, Shandong, China
| | - Furen Zhang
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Shandong Provincial Key Laboratory for Dermatovenereology, Jinan, Shandong, China
- School of Medicine, Shandong University, Jinan, Shandong, China
- School of Medicine and Life Science, University of Jinan-Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Shandong Provincial Hospital for Skin Diseases, Shandong University, Jinan, Shandong, China
- National Clinical Key Project of Dermatology and Venereology, Jinan, Shandong, China
| |
Collapse
|
22
|
Formin like 1 expression is increased on CD4+ T lymphocytes in spontaneous autoimmune uveitis. J Proteomics 2017; 154:102-108. [DOI: 10.1016/j.jprot.2016.12.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 12/22/2016] [Accepted: 12/27/2016] [Indexed: 12/27/2022]
|
23
|
Overexpression of Hiwi Inhibits the Growth and Migration of Chronic Myeloid Leukemia Cells. Cell Biochem Biophys 2017; 73:117-24. [PMID: 25701408 DOI: 10.1007/s12013-015-0651-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Chronic myeloid leukemia (CML) is a hematopoietic malignancy characterized by dysregulated growth and proliferation of hematopoietic stem/progenitor cells in bone marrow and excessive expansion of hematopoietic compartments in peripheral blood. Expression deletion of Hiwi, a human Piwi homolog, has been reported to be implicated in leukemogenesis. We here explored Hiwi's role in CML pathogenesis by determining how and whether its forced overexpression could affect CML cell growth and migration. The present results showed that lentivirus-mediated overexpression of Hiwi significantly suppressed cell proliferation and induced obvious apoptosis in K562 cells, a CML line cell line. Tumors in BALB/c nude mice generated by the K562 cells expressing Hiwi were much smaller than those formed by the control cells. Like in vitro, Hiwi upregulation induced cell apoptosis in the tumor tissues in vivo. Additionally, Hiwi elevation suppressed K562 cell migration and inhibited the activity and expression of matrix metalloproteinase-2 and -9. In summary, our study demonstrates that Hiwi overexpression inhibits CML cell growth and migration, providing insights into its role in CML pathogenesis.
Collapse
|
24
|
Péladeau C, Heibein A, Maltez MT, Copeland SJ, Copeland JW. A specific FMNL2 isoform is up-regulated in invasive cells. BMC Cell Biol 2016; 17:32. [PMID: 27578625 PMCID: PMC5006604 DOI: 10.1186/s12860-016-0110-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 08/23/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Formins are a highly conserved family of cytoskeletal remodeling proteins. A growing body of evidence suggests that formins play key roles in the progression and spread of a variety of cancers. There are 15 human formin proteins and of these the Diaphanous-Related Formins (DRFs) are the best characterized. Included in the DRFs are the Formin-Like proteins, FMNL1, 2 & 3, each of which have been strongly implicated in driving tumorigenesis and metastasis of specific tumors. In particular, increased FMNL2 expression correlates with increased invasiveness of colorectal cancer (CRC) in vivo and for a variety of CRC cell-lines in vitro. FMNL2 expression is also required for invasive cell motility in other cancer cell-lines. There are multiple alternatively spliced isoforms of FMNL2 and it is predicted that the encoded proteins will differ in their regulation, subcellular localization and in their ability to regulate cytoskeletal dynamics. RESULTS Using RT-PCR we identified four FMNL2 isoforms expressed in CRC and melanoma cell-lines. We find that a previously uncharacterized FMNL2 isoform is predominantly expressed in a variety of melanoma and CRC cell lines; this isoform is also more effective in driving 3D motility. Building on previous reports, we also show that FMNL2 is required for invasion in A375 and WM266.4 melanoma cells. CONCLUSIONS Taken together, these results suggest that FMNL2 is likely to be generally required in melanoma cells for invasion, that a specific isoform of FMNL2 is up-regulated in invasive CRC and melanoma cells and this isoform is the most effective at facilitating invasion.
Collapse
Affiliation(s)
- Christine Péladeau
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Allan Heibein
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Melissa T Maltez
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Sarah J Copeland
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - John W Copeland
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
25
|
Wang ZQ, Faddaoui A, Bachvarova M, Plante M, Gregoire J, Renaud MC, Sebastianelli A, Guillemette C, Gobeil S, Macdonald E, Vanderhyden B, Bachvarov D. BCAT1 expression associates with ovarian cancer progression: possible implications in altered disease metabolism. Oncotarget 2016; 6:31522-43. [PMID: 26372729 PMCID: PMC4741622 DOI: 10.18632/oncotarget.5159] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 08/28/2015] [Indexed: 12/17/2022] Open
Abstract
Previously, we have identified the branched chain amino-acid transaminase 1 (BCAT1) gene as notably hypomethylated in low-malignant potential (LMP) and high-grade (HG) serous epithelial ovarian tumors, compared to normal ovarian tissues. Here we show that BCAT1 is strongly overexpressed in both LMP and HG serous epithelial ovarian tumors, which probably correlates with its hypomethylated status. Knockdown of the BCAT1 expression in epithelial ovarian cancer (EOC) cells led to sharp decrease of cell proliferation, migration and invasion and inhibited cell cycle progression. BCAT1 silencing was associated with the suppression of numerous genes and pathways known previously to be implicated in ovarian tumorigenesis, and the induction of some tumor suppressor genes (TSGs). Moreover, BCAT1 suppression resulted in downregulation of numerous genes implicated in lipid production and protein synthesis, suggesting its important role in controlling EOC metabolism. Further metabolomic analyses were indicative for significant depletion of most amino acids and different phospho- and sphingolipids following BCAT1 knockdown. Finally, BCAT1 suppression led to significantly prolonged survival time in xenograft model of advanced peritoneal EOC. Taken together, our findings provide new insights about the functional role of BCAT1 in ovarian carcinogenesis and identify this transaminase as a novel EOC biomarker and putative EOC therapeutic target.
Collapse
Affiliation(s)
- Zhi-Qiang Wang
- Department of Molecular Medicine, Laval University, Québec PQ, Canada.,Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec PQ, Canada
| | - Adnen Faddaoui
- Department of Molecular Medicine, Laval University, Québec PQ, Canada.,Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec PQ, Canada
| | | | - Marie Plante
- Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec PQ, Canada.,Department of Obstetrics and Gynecology, Laval University, Québec PQ, Canada
| | - Jean Gregoire
- Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec PQ, Canada.,Department of Obstetrics and Gynecology, Laval University, Québec PQ, Canada
| | - Marie-Claude Renaud
- Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec PQ, Canada.,Department of Obstetrics and Gynecology, Laval University, Québec PQ, Canada
| | - Alexandra Sebastianelli
- Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec PQ, Canada.,Department of Obstetrics and Gynecology, Laval University, Québec PQ, Canada
| | - Chantal Guillemette
- Centre de recherche du CHU de Québec, CHUL, Québec PQ, Canada.,Faculty of Pharmacy, Laval University, Québec PQ, Canada
| | - Stéphane Gobeil
- Department of Molecular Medicine, Laval University, Québec PQ, Canada.,Centre de recherche du CHU de Québec, CHUL, Québec PQ, Canada
| | - Elizabeth Macdonald
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Barbara Vanderhyden
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Dimcho Bachvarov
- Department of Molecular Medicine, Laval University, Québec PQ, Canada.,Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec PQ, Canada
| |
Collapse
|
26
|
Photo-enhancement of macrophage phagocytic activity via Rac1-mediated signaling pathway: Implications for bacterial infection. Int J Biochem Cell Biol 2016; 78:206-216. [PMID: 27345261 DOI: 10.1016/j.biocel.2016.06.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 05/12/2016] [Accepted: 06/19/2016] [Indexed: 11/20/2022]
Abstract
Phagocytosis and the subsequent destruction of invading pathogens by macrophages are indispensable steps in host immune responses to microbial infections. Low-power laser irradiation (LPLI) has been found to exert photobiological effects on immune responses, but the signaling mechanisms underlying this photobiomodulation of phagocytosis remains largely unknown. Here, we demonstrated for the first time that LPLI enhanced the phagocytic activity of macrophages by stimulating the activation of Rac1. The overexpression of constitutively activated Rac1 clearly enhanced LPLI-induced phagocytosis, whereas the overexpression of dominant negative Rac1 exerted the opposite effect. The phosphorylation of cofilin was involved in the effects of LPLI on phagocytosis, which was regulated by the membrane translocation and activation of Rac1. Furthermore, the photoactivation of Rac1 was dependent on the Src/PI3K/Vav1 pathway. The inhibition of the Src/PI3K pathway significantly suppressed LPLI-induced actin polymerization and phagocytosis enhancement. Additionally, LPLI-treated mice exhibited increased survival and a decreased organ bacterial load when challenged with Listeria monocytogenes, indicating that LPLI enhanced macrophage phagocytosis in vivo. These findings highlight the important roles of the Src/PI3K/Vav1/Rac1/cofilin pathway in regulating macrophage phagocytosis and provide a potential strategy for treating phagocytic deficiency via LPLI.
Collapse
|
27
|
Ferreira ACDS, de-Freitas-Junior JCM, Morgado-Díaz JA, Ridley AJ, Klumb CE. Dual inhibition of histone deacetylases and phosphoinositide 3-kinases: effects on Burkitt lymphoma cell growth and migration. J Leukoc Biol 2016; 99:569-78. [PMID: 26561567 DOI: 10.1189/jlb.2a0415-162r] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 10/19/2015] [Indexed: 02/04/2023] Open
Abstract
Burkitt lymphoma is a highly aggressive non-Hodgkin lymphoma that is characterized by MYC deregulation. Recently, the PI3K pathway has emerged as a cooperative prosurvival mechanism in Burkitt lymphoma. Despite the highly successful results of treatment that use high-dose chemotherapy regimens in pediatric Burkitt lymphoma patients, the survival rate of pediatric patients with progressive or recurrent disease is low. PI3Ks are also known to regulate cell migration, and abnormal cell migration may contribute to cancer progression and dissemination in Burkitt lymphoma. Little is known about Burkitt lymphoma cell migration, but the cooperation between MYC and PI3K in Burkitt lymphoma pathogenesis suggests that a drug combination could be used to target the different steps involved in Burkitt lymphoma cell dissemination and disease progression. The aim of this study was to investigate the effects of the histone deacetylase inhibitor suberoylanilide hydroxamic acid combined with the PI3K inhibitor LY294002 on Burkitt lymphoma cell growth and migration. The combination enhanced the cell growth inhibition and cell-cycle arrest induced by the PI3K inhibitor or histone deacetylase inhibitor individually. Moreover, histone deacetylase inhibitor/PI3K inhibitor cotreatment suppressed Burkitt lymphoma cell migration and decreased cell polarization, Akt and ERK1/2 phosphorylation, and leads to RhoB induction. In summary, the histone deacetylase inhibitor/PI3Ki combination inhibits cell proliferation and migration via alterations in PI3K signaling and histone deacetylase activity, which is involved in the acetylation of α-tubulin and the regulation of RhoB expression.
Collapse
Affiliation(s)
- Ana Carolina dos Santos Ferreira
- *Programa de Pesquisa em Hemato-Oncologia Molecular, Laboratório de Hemato-oncologia Celular e Molecular, and Programa de Biologia Celular, Laboratório de Biologia Estrutural-Instituto Nacional de Câncer, Rio de Janeiro, Brazil; and Randall Division of Cell and Molecular Biophysics, King's College London, United Kingdom
| | - Julio Cesar Madureira de-Freitas-Junior
- *Programa de Pesquisa em Hemato-Oncologia Molecular, Laboratório de Hemato-oncologia Celular e Molecular, and Programa de Biologia Celular, Laboratório de Biologia Estrutural-Instituto Nacional de Câncer, Rio de Janeiro, Brazil; and Randall Division of Cell and Molecular Biophysics, King's College London, United Kingdom
| | - Jose Andres Morgado-Díaz
- *Programa de Pesquisa em Hemato-Oncologia Molecular, Laboratório de Hemato-oncologia Celular e Molecular, and Programa de Biologia Celular, Laboratório de Biologia Estrutural-Instituto Nacional de Câncer, Rio de Janeiro, Brazil; and Randall Division of Cell and Molecular Biophysics, King's College London, United Kingdom
| | - Anne J Ridley
- *Programa de Pesquisa em Hemato-Oncologia Molecular, Laboratório de Hemato-oncologia Celular e Molecular, and Programa de Biologia Celular, Laboratório de Biologia Estrutural-Instituto Nacional de Câncer, Rio de Janeiro, Brazil; and Randall Division of Cell and Molecular Biophysics, King's College London, United Kingdom
| | - Claudete Esteves Klumb
- *Programa de Pesquisa em Hemato-Oncologia Molecular, Laboratório de Hemato-oncologia Celular e Molecular, and Programa de Biologia Celular, Laboratório de Biologia Estrutural-Instituto Nacional de Câncer, Rio de Janeiro, Brazil; and Randall Division of Cell and Molecular Biophysics, King's College London, United Kingdom
| |
Collapse
|
28
|
Chen S, Xing H, Li S, Yu J, Li H, Liu S, Tian Z, Tang K, Rao Q, Wang M, Wang J. Up-regulated A20 promotes proliferation, regulates cell cycle progression and induces chemotherapy resistance of acute lymphoblastic leukemia cells. Leuk Res 2015; 39:976-83. [PMID: 26159495 DOI: 10.1016/j.leukres.2015.06.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 05/14/2015] [Accepted: 06/06/2015] [Indexed: 01/17/2023]
Abstract
A20, also known as tumor necrosis factor-α (TNFα)-induced protein 3 (TNFAIP3), has been identified as a key regulator of cell survival in many solid tumors. However, little is known about the protein expression level and function of A20 in acute lymphoblastic leukemia (ALL). In this study, we found that A20 is up-regulated in ALL patients and several cell lines. Knockdown of A20 in Jurkat, Nalm-6, and Reh cells resulted in reduced cell proliferation, which was associated with cell cycle arrest. Phospho-ERK (p-ERK) was also down-regulated, while p53 and p21 were up-regulated in A20 knockdown cells. In addition, A20 knockdown induced apoptosis in Jurkat and Reh cells and enhanced the sensitivity of these cell lines to chemotherapeutic drugs. These results indicate that A20 may stimulate cell proliferation by regulating cell cycle progression. A20 inhibited apoptosis in some types of ALL cells, thereby enhancing their resistance to chemotherapy. This effect was abolished through A20 silencing. These findings suggest that A20 may contribute to the pathogenesis of ALL and that it may be used as a new therapeutic target for ALL treatment.
Collapse
Affiliation(s)
- Shuying Chen
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, PR China
| | - Haiyan Xing
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, PR China
| | - Shouyun Li
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, PR China
| | - Jing Yu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, PR China
| | - Huan Li
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, PR China
| | - Shuang Liu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, PR China
| | - Zheng Tian
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, PR China
| | - Kejing Tang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, PR China
| | - Qing Rao
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, PR China
| | - Min Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, PR China
| | - Jianxiang Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, PR China.
| |
Collapse
|
29
|
The structure of FMNL2-Cdc42 yields insights into the mechanism of lamellipodia and filopodia formation. Nat Commun 2015; 6:7088. [PMID: 25963737 PMCID: PMC4432619 DOI: 10.1038/ncomms8088] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 03/31/2015] [Indexed: 11/08/2022] Open
Abstract
Formins are actin polymerization factors that elongate unbranched actin filaments at the barbed end. Rho family GTPases activate Diaphanous-related formins through the relief of an autoregulatory interaction. The crystal structures of the N-terminal domains of human FMNL1 and FMNL2 in complex with active Cdc42 show that Cdc42 mediates contacts with all five armadillo repeats of the formin with specific interactions formed by the Rho-GTPase insert helix. Mutation of three residues within Rac1 results in a gain-of-function mutation for FMNL2 binding and reconstitution of the Cdc42 phenotype in vivo. Dimerization of FMNL1 through a parallel coiled coil segment leads to formation of an umbrella-shaped structure that—together with Cdc42—spans more than 15 nm in diameter. The two interacting FMNL–Cdc42 heterodimers expose six membrane interaction motifs on a convex protein surface, the assembly of which may facilitate actin filament elongation at the leading edge of lamellipodia and filopodia. FMNL formins polymerize actin filaments to generate cellular protrusions such as lamellipodia and filopodia at the leading edge of a cell. Here the authors provide detailed mechanistic insights into the formation of actin-based protrusions through GTPase dependent activation and membrane localization of FMNL1 and FMNL2.
Collapse
|
30
|
Machado-Neto JA, Lazarini M, Favaro P, de Melo Campos P, Scopim-Ribeiro R, Franchi Junior GC, Nowill AE, Lima PRM, Costa FF, Benichou S, Olalla Saad ST, Traina F. ANKHD1 silencing inhibits Stathmin 1 activity, cell proliferation and migration of leukemia cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:583-93. [PMID: 25523139 DOI: 10.1016/j.bbamcr.2014.12.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 11/29/2014] [Accepted: 12/10/2014] [Indexed: 12/30/2022]
Abstract
ANKHD1 is highly expressed in human acute leukemia cells and potentially regulates multiple cellular functions through its ankyrin-repeat domains. In order to identify interaction partners of the ANKHD1 protein and its role in leukemia cells, we performed a yeast two-hybrid system screen and identified SIVA, a cellular protein known to be involved in proapoptotic signaling pathways. The interaction between ANKHD1 and SIVA was confirmed by co-imunoprecipitation assays. Using human leukemia cell models and lentivirus-mediated shRNA approaches, we showed that ANKHD1 and SIVA proteins have opposing effects. While it is known that SIVA silencing promotes Stathmin 1 activation, increased cell migration and xenograft tumor growth, we showed that ANKHD1 silencing leads to Stathmin 1 inactivation, reduced cell migration and xenograft tumor growth, likely through the inhibition of SIVA/Stathmin 1 association. In addition, we observed that ANKHD1 knockdown decreases cell proliferation, without modulating apoptosis of leukemia cells, while SIVA has a proapoptotic function in U937 cells, but does not modulate proliferation in vitro. Results indicate that ANKHD1 binds to SIVA and has an important role in inducing leukemia cell proliferation and migration via the Stathmin 1 pathway. ANKHD1 may be an oncogene and participate in the leukemia cell phenotype.
Collapse
Affiliation(s)
- João Agostinho Machado-Neto
- Hematology and Hemotherapy Center-University of Campinas/Hemocentro-Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas 13083-878, São Paulo, Brazil
| | - Mariana Lazarini
- Hematology and Hemotherapy Center-University of Campinas/Hemocentro-Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas 13083-878, São Paulo, Brazil
| | - Patricia Favaro
- Hematology and Hemotherapy Center-University of Campinas/Hemocentro-Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas 13083-878, São Paulo, Brazil
| | - Paula de Melo Campos
- Hematology and Hemotherapy Center-University of Campinas/Hemocentro-Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas 13083-878, São Paulo, Brazil
| | - Renata Scopim-Ribeiro
- Hematology and Hemotherapy Center-University of Campinas/Hemocentro-Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas 13083-878, São Paulo, Brazil
| | - Gilberto Carlos Franchi Junior
- Integrated Center for Childhood Onco-Hematological Investigation, University of Campinas, Campinas 13083-878, São Paulo, Brazil
| | - Alexandre Eduardo Nowill
- Integrated Center for Childhood Onco-Hematological Investigation, University of Campinas, Campinas 13083-878, São Paulo, Brazil
| | - Paulo Roberto Moura Lima
- Hematology and Hemotherapy Center-University of Campinas/Hemocentro-Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas 13083-878, São Paulo, Brazil
| | - Fernando Ferreira Costa
- Hematology and Hemotherapy Center-University of Campinas/Hemocentro-Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas 13083-878, São Paulo, Brazil
| | | | - Sara Teresinha Olalla Saad
- Hematology and Hemotherapy Center-University of Campinas/Hemocentro-Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas 13083-878, São Paulo, Brazil
| | - Fabiola Traina
- Hematology and Hemotherapy Center-University of Campinas/Hemocentro-Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas 13083-878, São Paulo, Brazil.
| |
Collapse
|
31
|
Dhyani A, Machado-Neto JA, Favaro P, Saad STO. ANKHD1 represses p21 (WAF1/CIP1) promoter and promotes multiple myeloma cell growth. Eur J Cancer 2014; 51:252-9. [PMID: 25483783 DOI: 10.1016/j.ejca.2014.11.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 11/14/2014] [Indexed: 10/24/2022]
Abstract
ANKHD1 (Ankyrin repeat and KH domain-containing protein 1) is highly expressed and plays an important role in the proliferation and cell cycle progression of multiple myeloma (MM) cells. ANKHD1 downregulation modulates cell cycle gene expression and upregulates p21 irrespective of the TP53 mutational status of MM cell lines. The present study was aimed to investigate the role of ANKHD1 in MM in vitro clonogenicity and in vivo tumourigenicity, as well as the role of ANKHD1 in p21 transcriptional regulation. ANKHD1 silencing in MM cells resulted in significantly low no. of colonies formed and in slow migration as compared to control cells (p < 0.05). Furthermore, in xenograft MM mice models, tumour growth was visibly suppressed in mice injected with ANKHD1 silenced cells compared to the control group. There was a significant decrease in tumour volume (p = 0.006) as well as in weight (p = 0.02) in the group injected with silenced cells compared to those of the control group. Co-immunoprecipitation and chromatin immunoprecipitation (ChIP) assays confirmed the interaction between p21 and ANKHD1. Moreover, overexpression of ANKHD1 downregulated the activity of a p21 promoter in luciferase assays. Decrease in luciferase activity suggests a direct role of ANKHD1 in p21 transcriptional regulation. In addition confocal analysis after U266 cells were treated with Leptomycin B (LMB) for 24 h showed accumulation of ANKHD1 inside the nucleus as compared to untreated cells where ANKHD1 was found to be predominantly in cytoplasm. This suggests ANKHD1 might be shuttling between cytoplasm and nucleus. In conclusion, ANKHD1 promotes MM growth by repressing p21 a potent cell cycle regulator.
Collapse
Affiliation(s)
- Anamika Dhyani
- Hematology and Hemotherapy Center-University of Campinas/Hemocentro-Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, Brazil.
| | - João A Machado-Neto
- Hematology and Hemotherapy Center-University of Campinas/Hemocentro-Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, Brazil
| | - Patricia Favaro
- Department of Biological Sciences, Federal University of Sao Paulo, Diadema, São Paulo, Brazil
| | - Sara T Olalla Saad
- Hematology and Hemotherapy Center-University of Campinas/Hemocentro-Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, Brazil
| |
Collapse
|
32
|
Gauvin TJ, Young LE, Higgs HN. The formin FMNL3 assembles plasma membrane protrusions that participate in cell-cell adhesion. Mol Biol Cell 2014; 26:467-77. [PMID: 25428984 PMCID: PMC4310738 DOI: 10.1091/mbc.e14-07-1247] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
FMNL3 localizes broadly over the plasma membrane as discrete puncta, with particular enrichment in filopodia and ruffles and at cell–cell contacts. In addition, a population of FMNL3-containing vesicles of endocytic origin can fuse with the plasma membrane. FMNL3 suppression causes reductions in filopodia and cell–cell adhesion. FMNL3 is a vertebrate-specific formin protein previously shown to play a role in angiogenesis and cell migration. Here we define the cellular localization of endogenous FMNL3, the dynamics of GFP-tagged FMNL3 during cell migration, and the effects of FMNL3 suppression in mammalian culture cells. The majority of FMNL3 localizes in a punctate pattern, with >95% of these puncta being indistinguishable from the plasma membrane by fluorescence microscopy. A small number of dynamic cytoplasmic FMNL3 patches also exist, which enrich near cell–cell contact sites and fuse with the plasma membrane at these sites. These cytoplasmic puncta appear to be part of larger membranes of endocytic origin. On the plasma membrane, FMNL3 enriches particularly in filopodia and membrane ruffles and at nascent cell–cell adhesions. FMNL3-containing filopodia occur both at the cell–substratum interface and at cell–cell contacts, with the latter being 10-fold more stable. FMNL3 suppression by siRNA has two major effects: decrease in filopodia and compromised cell–cell adhesion in cells migrating as a sheet. Overall our results suggest that FMNL3 functions in assembly of actin-based protrusions that are specialized for cell–cell adhesion.
Collapse
Affiliation(s)
- Timothy J Gauvin
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Lorna E Young
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Henry N Higgs
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| |
Collapse
|
33
|
Li T, Belda-Palazón B, Ferrando A, Alepuz P. Fertility and polarized cell growth depends on eIF5A for translation of polyproline-rich formins in Saccharomyces cerevisiae. Genetics 2014; 197:1191-200. [PMID: 24923804 PMCID: PMC4125393 DOI: 10.1534/genetics.114.166926] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 06/05/2014] [Indexed: 01/15/2023] Open
Abstract
eIF5A is an essential and evolutionary conserved translation elongation factor, which has recently been proposed to be required for the translation of proteins with consecutive prolines. The binding of eIF5A to ribosomes occurs upon its activation by hypusination, a modification that requires spermidine, an essential factor for mammalian fertility that also promotes yeast mating. We show that in response to pheromone, hypusinated eIF5A is required for shmoo formation, localization of polarisome components, induction of cell fusion proteins, and actin assembly in yeast. We also show that eIF5A is required for the translation of Bni1, a proline-rich formin involved in polarized growth during shmoo formation. Our data indicate that translation of the polyproline motifs in Bni1 is eIF5A dependent and this translation dependency is lost upon deletion of the polyprolines. Moreover, an exogenous increase in Bni1 protein levels partially restores the defect in shmoo formation seen in eIF5A mutants. Overall, our results identify eIF5A as a novel and essential regulator of yeast mating through formin translation. Since eIF5A and polyproline formins are conserved across species, our results also suggest that eIF5A-dependent translation of formins could regulate polarized growth in such processes as fertility and cancer in higher eukaryotes.
Collapse
Affiliation(s)
- Tianlu Li
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universitat de València, E-46100 Burjassot, Valencia, Spain
| | - Borja Belda-Palazón
- Instituto de Biología Molecular y Celular de Plantas, Centro Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, 46022 Valencia, Spain
| | - Alejandro Ferrando
- Instituto de Biología Molecular y Celular de Plantas, Centro Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, 46022 Valencia, Spain
| | - Paula Alepuz
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universitat de València, E-46100 Burjassot, Valencia, Spain
| |
Collapse
|
34
|
Abstract
Formin proteins were recognized as effectors of Rho GTPases some 15 years ago. They contribute to different cellular actin cytoskeleton structures by their ability to polymerize straight actin filaments at the barbed end. While not all formins necessarily interact with Rho GTPases, a subgroup of mammalian formins, termed Diaphanous-related formins or DRFs, were shown to be activated by small GTPases of the Rho superfamily. DRFs are autoinhibited in the resting state by an N- to C-terminal interaction that renders the central actin polymerization domain inactive. Upon the interaction with a GTP-bound Rho, Rac, or Cdc42 GTPase, the C-terminal autoregulation domain is displaced from its N-terminal recognition site and the formin becomes active to polymerize actin filaments. In this review we discuss the current knowledge on the structure, activation, and function of formin-GTPase interactions for the mammalian formin families Dia, Daam, FMNL, and FHOD. We describe both direct and indirect interactions of formins with GTPases, which lead to formin activation and cytoskeletal rearrangements. The multifaceted function of formins as effector proteins of Rho GTPases thus reflects the diversity of the actin cytoskeleton in cells.
Collapse
Affiliation(s)
- Sonja Kühn
- Center of Advanced European Studies and Research (caesar); Group Physical Biochemistry; Bonn, Germany
| | - Matthias Geyer
- Center of Advanced European Studies and Research (caesar); Group Physical Biochemistry; Bonn, Germany
| |
Collapse
|
35
|
Machado-Neto JA, Lazarini M, Favaro P, Franchi GC, Nowill AE, Saad STO, Traina F. ANKHD1, a novel component of the Hippo signaling pathway, promotes YAP1 activation and cell cycle progression in prostate cancer cells. Exp Cell Res 2014; 324:137-45. [PMID: 24726915 DOI: 10.1016/j.yexcr.2014.04.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 03/31/2014] [Accepted: 04/02/2014] [Indexed: 10/25/2022]
Abstract
ANKHD1 is a multiple ankyrin repeat containing protein, recently identified as a novel member of the Hippo signaling pathway. The present study aimed to investigate the role of ANKHD1 in DU145 and LNCaP prostate cancer cells. ANKHD1 and YAP1 were found to be highly expressed in prostate cancer cells, and ANKHD1 silencing decreased cell growth, delayed cell cycle progression at the S phase, and reduced tumor xenograft growth. Moreover, ANKHD1 knockdown downregulated YAP1 expression and activation, and reduced the expression of CCNA2, a YAP1 target gene. These findings indicate that ANKHD1 is a positive regulator of YAP1 and promotes cell growth and cell cycle progression through Cyclin A upregulation.
Collapse
Affiliation(s)
- João Agostinho Machado-Neto
- Hematology and Hemotherapy Center, University of Campinas/Hemocentro-Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, São Paulo, Brazil
| | - Mariana Lazarini
- Hematology and Hemotherapy Center, University of Campinas/Hemocentro-Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, São Paulo, Brazil
| | - Patricia Favaro
- Hematology and Hemotherapy Center, University of Campinas/Hemocentro-Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, São Paulo, Brazil; Department of Biological Sciences, Federal University of São Paulo, Diadema, São Paulo, Brazil
| | - Gilberto Carlos Franchi
- Integrated Center for Childhood Onco-Hematological Investigation, University of Campinas, Campinas, São Paulo, Brazil
| | - Alexandre Eduardo Nowill
- Integrated Center for Childhood Onco-Hematological Investigation, University of Campinas, Campinas, São Paulo, Brazil
| | - Sara Teresinha Olalla Saad
- Hematology and Hemotherapy Center, University of Campinas/Hemocentro-Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, São Paulo, Brazil
| | - Fabiola Traina
- Hematology and Hemotherapy Center, University of Campinas/Hemocentro-Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, São Paulo, Brazil; Department of Internal Medicine, University of São Paulo at Ribeirão Preto Medical School, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
36
|
Gardberg M, Heuser VD, Iljin K, Kampf C, Uhlen M, Carpén O. Characterization of Leukocyte Formin FMNL1 Expression in Human Tissues. J Histochem Cytochem 2014; 62:460-470. [PMID: 24700756 DOI: 10.1369/0022155414532293] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Formins are cytoskeleton regulating proteins characterized by a common FH2 structural domain. As key players in the assembly of actin filaments, formins direct dynamic cytoskeletal processes that influence cell shape, movement and adhesion. The large number of formin genes, fifteen in the human, suggests distinct tasks and expression patterns for individual family members, in addition to overlapping functions. Several formins have been associated with invasive cell properties in experimental models, linking them to cancer biology. One example is FMNL1, which is considered to be a leukocyte formin and is known to be overexpressed in lymphomas. Studies on FMNL1 and many other formins have been hampered by a lack of research tools, especially antibodies suitable for staining paraffin-embedded formalin-fixed tissues. Here we characterize, using bioinformatics tools and a validated antibody, the expression pattern of FMNL1 in human tissues and study its subcellular distribution. Our results indicate that FMNL1 expression is not restricted to hematopoietic tissues and that neoexpression of FMNL1 can be seen in epithelial cancer.
Collapse
Affiliation(s)
- Maria Gardberg
- Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland (MG,VDH, OC)Medical Biotechnology, VTT Technical Research Centre of Finland, and Turku Centre for Biotechnology, University of Turku, Turku, Finland (KI)Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden (CK)Science for Life Laboratory and Albanova University Center Royal Institute of Technology, Stockholm, Sweden (MU)
| | - Vanina D Heuser
- Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland (MG,VDH, OC)Medical Biotechnology, VTT Technical Research Centre of Finland, and Turku Centre for Biotechnology, University of Turku, Turku, Finland (KI)Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden (CK)Science for Life Laboratory and Albanova University Center Royal Institute of Technology, Stockholm, Sweden (MU)
| | - Kristiina Iljin
- Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland (MG,VDH, OC)Medical Biotechnology, VTT Technical Research Centre of Finland, and Turku Centre for Biotechnology, University of Turku, Turku, Finland (KI)Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden (CK)Science for Life Laboratory and Albanova University Center Royal Institute of Technology, Stockholm, Sweden (MU)
| | - Caroline Kampf
- Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland (MG,VDH, OC)Medical Biotechnology, VTT Technical Research Centre of Finland, and Turku Centre for Biotechnology, University of Turku, Turku, Finland (KI)Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden (CK)Science for Life Laboratory and Albanova University Center Royal Institute of Technology, Stockholm, Sweden (MU)
| | - Mathias Uhlen
- Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland (MG,VDH, OC)Medical Biotechnology, VTT Technical Research Centre of Finland, and Turku Centre for Biotechnology, University of Turku, Turku, Finland (KI)Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden (CK)Science for Life Laboratory and Albanova University Center Royal Institute of Technology, Stockholm, Sweden (MU)
| | - Olli Carpén
- Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland (MG,VDH, OC)Medical Biotechnology, VTT Technical Research Centre of Finland, and Turku Centre for Biotechnology, University of Turku, Turku, Finland (KI)Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden (CK)Science for Life Laboratory and Albanova University Center Royal Institute of Technology, Stockholm, Sweden (MU)
| |
Collapse
|
37
|
Melo RDCC, Longhini AL, Bigarella CL, Baratti MO, Traina F, Favaro P, de Melo Campos P, Saad STO. CXCR7 is highly expressed in acute lymphoblastic leukemia and potentiates CXCR4 response to CXCL12. PLoS One 2014; 9:e85926. [PMID: 24497931 PMCID: PMC3908922 DOI: 10.1371/journal.pone.0085926] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 12/04/2013] [Indexed: 02/07/2023] Open
Abstract
Recently, a novel CXCL12-binding receptor, has been identified. This CXCL12-binding receptor commonly known as CXCR7 (CXC chemokine receptor 7), has lately, based on a novel nomenclature, has received the name ACKR3 (atypical chemokine receptor 3). In this study, we aimed to investigate the expression of CXCR7 in leukemic cells, as well as its participation in CXCL12 response. Interesting, we clearly demonstrated that CXCR7 is highly expressed in acute lymphoid leukemic cells compared with myeloid or normal hematopoietic cells and that CXCR7 contributed to T-acute lymphoid leukemic cell migration induced by CXCL12. Moreover, we showed that the cellular location of CXCR7 varied among T-lymphoid cells and this finding may be related to their migration capacity. Finally, we hypothesized that CXCR7 potentiates CXCR4 response and may contribute to the maintenance of leukemia by initiating cell recruitment to bone marrow niches that were once occupied by normal hematopoietic stem cells.
Collapse
Affiliation(s)
| | - Ana Leda Longhini
- Centro de Hematologia e Hemoterapia, Universidade de Campinas, Campinas, São Paulo, Brasil
| | | | - Mariana Ozello Baratti
- Centro de Hematologia e Hemoterapia, Universidade de Campinas, Campinas, São Paulo, Brasil
| | - Fabiola Traina
- Centro de Hematologia e Hemoterapia, Universidade de Campinas, Campinas, São Paulo, Brasil
| | - Patrícia Favaro
- Centro de Hematologia e Hemoterapia, Universidade de Campinas, Campinas, São Paulo, Brasil
- Departamento de Ciências Biológicas, Universidade Federal de São Paulo, Diadema, São Paulo, Brasil
| | - Paula de Melo Campos
- Centro de Hematologia e Hemoterapia, Universidade de Campinas, Campinas, São Paulo, Brasil
| | | |
Collapse
|