1
|
Rizo-Téllez SA, Sekheri M, Filep JG. Myeloperoxidase: Regulation of Neutrophil Function and Target for Therapy. Antioxidants (Basel) 2022; 11:antiox11112302. [PMID: 36421487 PMCID: PMC9687284 DOI: 10.3390/antiox11112302] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/04/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
Neutrophils, the most abundant white blood cells in humans, are critical for host defense against invading pathogens. Equipped with an array of antimicrobial molecules, neutrophils can eradicate bacteria and clear debris. Among the microbicide proteins is the heme protein myeloperoxidase (MPO), stored in the azurophilic granules, and catalyzes the formation of the chlorinating oxidant HOCl and other oxidants (HOSCN and HOBr). MPO is generally associated with killing trapped bacteria and inflicting collateral tissue damage to the host. However, the characterization of non-enzymatic functions of MPO suggests additional roles for this protein. Indeed, evolving evidence indicates that MPO can directly modulate the function and fate of neutrophils, thereby shaping immunity. These actions include MPO orchestration of neutrophil trafficking, activation, phagocytosis, lifespan, formation of extracellular traps, and MPO-triggered autoimmunity. This review scrutinizes the multifaceted roles of MPO in immunity, focusing on neutrophil-mediated host defense, tissue damage, repair, and autoimmunity. We also discuss novel therapeutic approaches to target MPO activity, expression, or MPO signaling for the treatment of inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Salma A. Rizo-Téllez
- Department of Pathology and Cell Biology, University of Montreal, Montreal, QC H3T 1J4, Canada
- Research Center, Maisonneuve-Rosemont Hospital, Montreal, QC H1T 2M4, Canada
| | - Meriem Sekheri
- Department of Pathology and Cell Biology, University of Montreal, Montreal, QC H3T 1J4, Canada
- Research Center, Maisonneuve-Rosemont Hospital, Montreal, QC H1T 2M4, Canada
| | - János G. Filep
- Department of Pathology and Cell Biology, University of Montreal, Montreal, QC H3T 1J4, Canada
- Research Center, Maisonneuve-Rosemont Hospital, Montreal, QC H1T 2M4, Canada
- Correspondence: ; Tel.: +1-514-252-3400 (ext. 4662)
| |
Collapse
|
2
|
Valadez-Cosmes P, Raftopoulou S, Mihalic ZN, Marsche G, Kargl J. Myeloperoxidase: Growing importance in cancer pathogenesis and potential drug target. Pharmacol Ther 2021; 236:108052. [PMID: 34890688 DOI: 10.1016/j.pharmthera.2021.108052] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/24/2021] [Accepted: 12/02/2021] [Indexed: 02/07/2023]
Abstract
Myeloperoxidase is a heme-peroxidase which makes up approximately 5% of the total dry cell weight of neutrophils where it is predominantly found in the primary (azurophilic) granules. Other cell types, such as monocytes and certain macrophage subpopulations also contain myeloperoxidase, but to a much lesser extent. Initially, the function of myeloperoxidase had been mainly associated with its ability as a catalyzer of reactive oxidants that help to clear pathogens. However, over the past years non-canonical functions of myeloperoxidase have been described both in health and disease. Attention has been specially focused on inflammatory diseases, in which an exacerbate infiltration of leukocytes can favor a poorly-controlled production and release of myeloperoxidase and its oxidants. There is compelling evidence that myeloperoxidase derived oxidants contribute to tissue damage and the development and propagation of acute and chronic vascular inflammation. Recently, neutrophils have attracted much attention within the large diversity of innate immune cells that are part of the tumor microenvironment. In particular, neutrophil-derived myeloperoxidase may play an important role in cancer development and progression. This review article aims to provide a comprehensive overview of the roles of myeloperoxidase in the development and progression of cancer. We propose future research approaches and explore prospects of inhibiting myeloperoxidase as a strategy to fight against cancer.
Collapse
Affiliation(s)
- Paulina Valadez-Cosmes
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Sofia Raftopoulou
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Zala Nikita Mihalic
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Gunther Marsche
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Julia Kargl
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Graz, Austria.
| |
Collapse
|
3
|
Genome-Wide RNAi Screening Identifies Novel Pathways/Genes Involved in Oxidative Stress and Repurposable Drugs to Preserve Cystic Fibrosis Airway Epithelial Cell Integrity. Antioxidants (Basel) 2021; 10:antiox10121936. [PMID: 34943039 PMCID: PMC8750174 DOI: 10.3390/antiox10121936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/23/2021] [Accepted: 11/27/2021] [Indexed: 12/20/2022] Open
Abstract
Recurrent infection-inflammation cycles in cystic fibrosis (CF) patients generate a highly oxidative environment, leading to progressive destruction of the airway epithelia. The identification of novel modifier genes involved in oxidative stress susceptibility in the CF airways might contribute to devise new therapeutic approaches. We performed an unbiased genome-wide RNAi screen using a randomized siRNA library to identify oxidative stress modulators in CF airway epithelial cells. We monitored changes in cell viability after a lethal dose of hydrogen peroxide. Local similarity and protein-protein interaction network analyses uncovered siRNA target genes/pathways involved in oxidative stress. Further mining against public drug databases allowed identifying and validating commercially available drugs conferring oxidative stress resistance. Accordingly, a catalog of 167 siRNAs able to confer oxidative stress resistance in CF submucosal gland cells targeted 444 host genes and multiple circuitries involved in oxidative stress. The most significant processes were related to alternative splicing and cell communication, motility, and remodeling (impacting cilia structure/function, and cell guidance complexes). Other relevant pathways included DNA repair and PI3K/AKT/mTOR signaling. The mTOR inhibitor everolimus, the α1-adrenergic receptor antagonist doxazosin, and the Syk inhibitor fostamatinib significantly increased the viability of CF submucosal gland cells under strong oxidative stress pressure. Thus, novel therapeutic strategies to preserve airway cell integrity from the harsh oxidative milieu of CF airways could stem from a deep understanding of the complex consequences of oxidative stress at the molecular level, followed by a rational repurposing of existing "protective" drugs. This approach could also prove useful to other respiratory pathologies.
Collapse
|
4
|
Arnhold J. The Dual Role of Myeloperoxidase in Immune Response. Int J Mol Sci 2020; 21:E8057. [PMID: 33137905 PMCID: PMC7663354 DOI: 10.3390/ijms21218057] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/25/2020] [Accepted: 10/28/2020] [Indexed: 12/14/2022] Open
Abstract
The heme protein myeloperoxidase (MPO) is a major constituent of neutrophils. As a key mediator of the innate immune system, neutrophils are rapidly recruited to inflammatory sites, where they recognize, phagocytose, and inactivate foreign microorganisms. In the newly formed phagosomes, MPO is involved in the creation and maintenance of an alkaline milieu, which is optimal in combatting microbes. Myeloperoxidase is also a key component in neutrophil extracellular traps. These helpful properties are contrasted by the release of MPO and other neutrophil constituents from necrotic cells or as a result of frustrated phagocytosis. Although MPO is inactivated by the plasma protein ceruloplasmin, it can interact with negatively charged components of serum and the extracellular matrix. In cardiovascular diseases and many other disease scenarios, active MPO and MPO-modified targets are present in atherosclerotic lesions and other disease-specific locations. This implies an involvement of neutrophils, MPO, and other neutrophil products in pathogenesis mechanisms. This review critically reflects on the beneficial and harmful functions of MPO against the background of immune response.
Collapse
Affiliation(s)
- Jürgen Arnhold
- Institute of Medical Physics and Biophysics, Medical Faculty, Leipzig University, 04 107 Leipzig, Germany
| |
Collapse
|
5
|
Vergnano M, Mockenhaupt M, Benzian-Olsson N, Paulmann M, Grys K, Mahil SK, Chaloner C, Barbosa IA, August S, Burden AD, Choon SE, Cooper H, Navarini AA, Reynolds NJ, Wahie S, Warren RB, Wright A, Huffmeier U, Baum P, Visvanathan S, Barker JN, Smith CH, Capon F. Loss-of-Function Myeloperoxidase Mutations Are Associated with Increased Neutrophil Counts and Pustular Skin Disease. Am J Hum Genet 2020; 107:539-543. [PMID: 32758448 PMCID: PMC7477255 DOI: 10.1016/j.ajhg.2020.06.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023] Open
Abstract
The identification of disease alleles underlying human autoinflammatory diseases can provide important insights into the mechanisms that maintain neutrophil homeostasis. Here, we focused our attention on generalized pustular psoriasis (GPP), a potentially life-threatening disorder presenting with cutaneous and systemic neutrophilia. Following the whole-exome sequencing of 19 unrelated affected individuals, we identified a subject harboring a homozygous splice-site mutation (c.2031-2A>C) in MPO. This encodes myeloperoxidase, an essential component of neutrophil azurophil granules. MPO screening in conditions phenotypically related to GPP uncovered further disease alleles in one subject with acral pustular psoriasis (c.2031-2A>C;c.2031-2A>C) and in two individuals with acute generalized exanthematous pustulosis (c.1705C>T;c.2031-2A>C and c.1552_1565del;c.1552_1565del). A subsequent analysis of UK Biobank data demonstrated that the c.2031-2A>C and c.1705C>T (p.Arg569Trp) disease alleles were also associated with increased neutrophil abundance in the general population (p = 5.1 × 10-6 and p = 3.6 × 10-5, respectively). The same applied to three further deleterious variants that had been genotyped in the cohort, with two alleles (c.995C>T [p.Ala332Val] and c.752T>C [p.Met251Thr]) yielding p values < 10-10. Finally, treatment of healthy neutrophils with an MPO inhibitor (4-Aminobenzoic acid hydrazide) increased cell viability and delayed apoptosis, highlighting a mechanism whereby MPO mutations affect granulocyte numbers. These findings identify MPO as a genetic determinant of pustular skin disease and neutrophil abundance. Given the recent interest in the development of MPO antagonists for the treatment of neurodegenerative disease, our results also suggest that the pro-inflammatory effects of these agents should be closely monitored.
Collapse
Affiliation(s)
- Marta Vergnano
- Department of Medical and Molecular Genetics, School of Basic and Medical Biosciences, King's College London, London SE1 9RT, UK; St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London SE1 9RT, UK
| | - Maja Mockenhaupt
- Department of Dermatology, Medical Centre-University of Freiburg, Freiburg 79106, Germany
| | - Natashia Benzian-Olsson
- Department of Medical and Molecular Genetics, School of Basic and Medical Biosciences, King's College London, London SE1 9RT, UK
| | - Maren Paulmann
- Department of Dermatology, Medical Centre-University of Freiburg, Freiburg 79106, Germany
| | - Katarzyna Grys
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London SE1 9RT, UK
| | - Satveer K Mahil
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London SE1 9RT, UK
| | - Charlotte Chaloner
- Department of Medical and Molecular Genetics, School of Basic and Medical Biosciences, King's College London, London SE1 9RT, UK
| | - Ines A Barbosa
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London SE1 9RT, UK
| | | | - A David Burden
- Department of Dermatology, University of Glasgow, Glasgow G12 8QQ, UK
| | - Siew-Eng Choon
- Department of Dermatology, Sultanah Aminah Hospital, Clinical School Johor Bahru, Monash University, Malaysia
| | - Hywel Cooper
- Portsmouth Dermatology Centre, St Marys Hospital, Portsmouth PO3 6AD, UK
| | - Alex A Navarini
- Department of Dermatology & Allergy, University Hospital of Basel, Basel 4031, Switzerland
| | - Nick J Reynolds
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK and Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne NE2 4LP, UK
| | - Shyamal Wahie
- Department of Dermatology, University Hospital of North Durham, Durham DH1 5TW, UK
| | - Richard B Warren
- Dermatology Centre, Salford Royal NHS Foundation Trust, Manchester NIHR Biomedical Research Centre, University of Manchester, Manchester M6 8HD, UK
| | - Andrew Wright
- Centre for Skin Sciences, St Lukes Hospital, Bradford BD5 0NA, UK
| | - Ulrike Huffmeier
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Patrick Baum
- Boehringer-Ingelheim International GmbH, Biberach 88397, Germany
| | | | - Jonathan N Barker
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London SE1 9RT, UK
| | - Catherine H Smith
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London SE1 9RT, UK
| | - Francesca Capon
- Department of Medical and Molecular Genetics, School of Basic and Medical Biosciences, King's College London, London SE1 9RT, UK.
| |
Collapse
|
6
|
Baliou S, Kyriakopoulos AM, Spandidos DA, Zoumpourlis V. Role of taurine, its haloamines and its lncRNA TUG1 in both inflammation and cancer progression. On the road to therapeutics? (Review). Int J Oncol 2020; 57:631-664. [PMID: 32705269 PMCID: PMC7384849 DOI: 10.3892/ijo.2020.5100] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 07/14/2020] [Indexed: 12/11/2022] Open
Abstract
For one century, taurine is considered as an end product of sulfur metabolism. In this review, we discuss the beneficial effect of taurine, its haloamines and taurine upregulated gene 1 (TUG1) long non‑coding RNA (lncRNA) in both cancer and inflammation. We outline how taurine or its haloamines (N‑Bromotaurine or N‑Chlorotaurine) can induce robust and efficient responses against inflammatory diseases, providing insight into their molecular mechanisms. We also provide information about the use of taurine as a therapeutic approach to cancer. Taurine can be combined with other chemotherapeutic drugs, not only mediating durable responses in various malignancies, but also circumventing the limitations met from chemotherapeutic drugs, thus improving the therapeutic outcome. Interestingly, the lncRNA TUG1 is regarded as a promising therapeutic approach, which can overcome acquired resistance of cancer cells to selected strategies. In this regard, we can translate basic knowledge about taurine and its TUG1 lncRNA into potential therapeutic options directed against specific oncogenic signaling targets, thereby bridging the gap between bench and bedside.
Collapse
Affiliation(s)
| | | | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, Heraklion 71003, Greece
| | | |
Collapse
|
7
|
Zhang C, Tan Z, Xie Y, Zhao Y, Huang TY, Lu Z, Luo H, Can D, Xu H, Zhang YW, Zhang X. Appoptosin Mediates Lesions Induced by Oxidative Stress Through the JNK-FoxO1 Pathway. Front Aging Neurosci 2019; 11:243. [PMID: 31551758 PMCID: PMC6737070 DOI: 10.3389/fnagi.2019.00243] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/20/2019] [Indexed: 01/07/2023] Open
Abstract
Oxidative stress is a common feature of neurodegenerative diseases and plays an important role in disease progression. Appoptosin is a pro-apoptotic protein that contributes to the pathogenesis of neurodegenerative diseases such as Alzheimer's disease and progressive supranuclear palsy. However, whether appoptosin mediates oxidative stress-induced neurotoxicity has yet to be determined. Here, we observe that appoptosin protein levels are induced by hydrogen peroxide (H2O2) exposure through the inhibition of proteasomal appoptosin degradation. Furthermore, we demonstrate that overexpression of appoptosin induces apoptosis through the JNK-FoxO1 pathway. Importantly, knockdown of appoptosin can ameliorate H2O2-induced JNK activation and apoptosis in primary neurons. Thus, we propose that appoptosin functions as an upstream regulator of the JNK-FoxO1 pathway, contributing to cell death in response to oxidative stress during neurodegeneration.
Collapse
Affiliation(s)
- Cuilin Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Pharmaceutical Sciences, School of Medicine, Institute of Neuroscience, Xiamen University, Xiamen, China.,The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Zhenqiu Tan
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Pharmaceutical Sciences, School of Medicine, Institute of Neuroscience, Xiamen University, Xiamen, China
| | - Yongzhuang Xie
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Pharmaceutical Sciences, School of Medicine, Institute of Neuroscience, Xiamen University, Xiamen, China
| | - Yingjun Zhao
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Pharmaceutical Sciences, School of Medicine, Institute of Neuroscience, Xiamen University, Xiamen, China
| | - Timothy Y Huang
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Zhaoping Lu
- Fujian Provincial Maternity and Children's Hospital of Fujian Medical University, Fuzhou, China
| | - Hong Luo
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Pharmaceutical Sciences, School of Medicine, Institute of Neuroscience, Xiamen University, Xiamen, China
| | - Dan Can
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Pharmaceutical Sciences, School of Medicine, Institute of Neuroscience, Xiamen University, Xiamen, China
| | - Huaxi Xu
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Yun-Wu Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Pharmaceutical Sciences, School of Medicine, Institute of Neuroscience, Xiamen University, Xiamen, China
| | - Xian Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Pharmaceutical Sciences, School of Medicine, Institute of Neuroscience, Xiamen University, Xiamen, China
| |
Collapse
|
8
|
Emerging Roles of Redox-Mediated Angiogenesis and Oxidative Stress in Dermatoses. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2304018. [PMID: 31178954 PMCID: PMC6501144 DOI: 10.1155/2019/2304018] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/14/2019] [Accepted: 03/14/2019] [Indexed: 12/24/2022]
Abstract
Angiogenesis is the process of new vessel formation, which sprouts from preexisting vessels. This process is highly complex and primarily involves several key steps, including stimulation of endothelial cells by growth factors, degradation of the extracellular matrix by proteolytic enzymes, migration and proliferation of endothelial cells, and capillary tube formation. Currently, it is considered that multiple cytokines play a vital role in this process, which consist of proangiogenic factors (e.g., vascular endothelial growth factor, fibroblast growth factors, and angiopoietins) and antiangiogenic factors (e.g., endostatin, thrombospondin, and angiostatin). Angiogenesis is essential for most physiological events, such as body growth and development, tissue repair, and wound healing. However, uncontrolled neovascularization may contribute to angiogenic disorders. In physiological conditions, the above promoters and inhibitors function in a coordinated way to induce and sustain angiogenesis within a limited period of time. Conversely, the imbalance between proangiogenic and antiangiogenic factors could cause pathological angiogenesis and trigger several diseases. With insights into the molecular mechanisms of angiogenesis, increasing reports have shown that a close relationship exists between angiogenesis and oxidative stress (OS) in both physiological and pathological conditions. OS, an imbalance between prooxidant and antioxidant systems, is a cause and consequence of many vascular complains and serves as one of the biomarkers for these diseases. Furthermore, emerging evidence supports that OS and angiogenesis play vital roles in many dermatoses, such as psoriasis, atopic dermatitis, and skin tumor. This review summarizes recent findings on the role of OS as a trigger of angiogenesis in skin disorders, highlights newly identified mechanisms, and introduces the antiangiogenic and antioxidant therapeutic strategies.
Collapse
|
9
|
Myeloperoxidase in the inflamed colon: A novel target for treating inflammatory bowel disease. Arch Biochem Biophys 2018; 645:61-71. [DOI: 10.1016/j.abb.2018.03.012] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 03/08/2018] [Accepted: 03/12/2018] [Indexed: 12/17/2022]
|
10
|
ROS feedback regulates the microRNA-19-targeted inhibition of the p47phox-mediated LPS-induced inflammatory response. Biochem Biophys Res Commun 2017; 489:361-368. [PMID: 28479245 DOI: 10.1016/j.bbrc.2017.05.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 05/03/2017] [Indexed: 12/20/2022]
Abstract
In acute lung injury/acute respiratory distress syndrome (ALI/ARDS), pathogenesis is associated with the regulation of macrophage-generated oxidative stress, and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX)-derived reactive oxygen species(ROS) are key to regulating oxidative stress. In the present study, we found that miR-19 inhibited the expression of p47phox in macrophages, resulting in the alleviation of the lipopolysaccharides(LPS)-induced inflammatory response. In a mouse LPS-induced model of lung injury, miR-19-deficient murine lung tissue was more susceptible to inflammatory responses and exhibited a higher infiltration rate, a higher number of inflammatory cells in the lungs, a higher level of inflammatory cytokines in the Bronchoalveolar lavage fluid (BALF), and more severe pathological damage in lung tissues. Moreover, following stimulation with LPS, p47phox was expressed at lower levels in miR-19-deficient murine pulmonary inflammatory cells than in those in wild-type rats. In LPS-treated Raw264.7 macrophages, miR-19 mimics blocking the down-regulation of LPS-induced p47phox expression, the accumulation of ROS, and the release of inflammatory cytokines. When siRNA was used to interfere with p47phox expression following stimulation with LPS, a lower level of ROS-mediated inflammatory cytokines were released. We found that the accumulation of ROS inhibited the LPS-induced release of inflammatory cytokines, the upregulation of miR-19 and the down-regulation of LPS-induced p47phox expression. Finally, we constructed a p47phox 3'UTR luciferase reporter plasmid to provide direct confirmation that miR-19 targets p47phox expression. The results of this study indicate the presence of a mechanism by which miR-19 regulates oxidative stress in macrophages. These data also provide potential targets for studies aimed at developing therapies for ARDS.
Collapse
|
11
|
Epigallocatechin-3-gallate Sensitizes Human 786-O Renal Cell Carcinoma Cells to TRAIL-Induced Apoptosis. Cell Biochem Biophys 2016; 72:157-64. [PMID: 25539708 DOI: 10.1007/s12013-014-0428-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising anticancer agent. Epigallocatechin-3-gallate (EGCG) is a polyphenolic constituent of green tea. In this study, potentiating effect of EGCG on TRAIL-induced apoptosis human renal carcinoma cell line 786-O which is relatively resistant to TRAIL was examined, and the possible mechanism was investigated. Here, we show that co-treatment with EGCG and TRAIL induced significantly more profound apoptosis in 786-O cells. Treatment of 786-O cells with EGCG and TRAIL downregulated c-FLIP, Mcl-1, and Bcl-2 proteins in a caspase-dependent pathway. Moreover, we found that pretreatment with NAC markedly inhibited the expression levels of c-FLIP, Mcl-1, and Bcl-2 downregulated by the combinatory treatment, suggesting that the regulating effect of EGCG on these above apoptosis-relevant molecules was partially mediated by generation of ROS. Taken together, the present study demonstrates that EGCG sensitizes human 786-O renal cell carcinoma cells to TRAIL-induced apoptosis by downregulation of c-FLIP, Mcl-1, and Bcl-2.
Collapse
|
12
|
Droeser RA, Mechera R, Däster S, Weixler B, Kraljević M, Delko T, Güth U, Stadlmann S, Terracciano L, Singer G. MPO density in primary cancer biopsies of ovarian carcinoma enhances the indicative value of IL-17 for chemosensitivity. BMC Cancer 2016; 16:639. [PMID: 27531373 PMCID: PMC4988007 DOI: 10.1186/s12885-016-2673-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 08/03/2016] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Cancer of the ovary is mostly discovered at a late stage and cannot be removed by surgery alone. Therefore surgery is usually followed by adjuvant chemotherapy. However, few reliable biomarkers exist to predict response to chemotherapy of ovarian cancer. Previously, we could demonstrate that IL-17 density is indicative for chemosensitivity. This study focuses on the predictive value of myeloperoxidase (MPO) concerning response to chemotherapy of ovarian cancer. METHODS Biopsies of mostly high-grade primary serous ovarian carcinomas and their matched recurrences were stained with MPO after fixation in formalin and embedding in paraffin. For this staining the technique of tissue-microarray was used. Recurrence within 6 months of the completion of platinum-based chemotherapy was defined as chemoresistance as previously publised. Data for MPO could be analyzed in 92 biopsies. RESULTS MPO and IL-17 positive immune cells correlated significantly in biopsies of primary and recurrent carcinomas (r s = 0.41; p = 0.004 and r s = 0.40; p = 0.007, respectively). MPO expression alone did not predict response to chemotherapy, but in multivariate cox regression analysis including age, residual disease, number of chemotherapy cycles, FIGO classification and combined categorized MPO and IL-17 cell densities of primary cancer biopsies, the combination of both immune markers was an independent prognostic factor for recurrence-free survival (p = 0.013, HR = .23, 95CI = 0.07-0.73). There was no chemoresistant patient in the subgroup of MPO + IL-17+, neither in primary nor in recurrent cancer biopsies. CONCLUSIONS High MPO positive cell density enhances the indicative value of IL-17 for response to chemotherapy in ovarian carcinoma. Although, these results have to be validated in a larger cohort.
Collapse
Affiliation(s)
- Raoul A Droeser
- Department of Surgery, University Hospital Basel, Spitalstrasse 21, 4031, Basel, Switzerland. .,Institute for Surgical Research and Hospital Management ICFS, Hebelstrasse 20, 4031, Basel, Switzerland.
| | - Robert Mechera
- Department of Surgery, University Hospital Basel, Spitalstrasse 21, 4031, Basel, Switzerland
| | - Silvio Däster
- Department of Surgery, University Hospital Basel, Spitalstrasse 21, 4031, Basel, Switzerland
| | - Benjamin Weixler
- Department of Surgery, University Hospital Basel, Spitalstrasse 21, 4031, Basel, Switzerland
| | - Marko Kraljević
- Department of Surgery, University Hospital Basel, Spitalstrasse 21, 4031, Basel, Switzerland
| | - Tarik Delko
- Department of Surgery, University Hospital Basel, Spitalstrasse 21, 4031, Basel, Switzerland
| | - Uwe Güth
- Department of Gynecology and Obstetrics, Kantonsspital Winterthur, Brauerstrasse 15, 8400, Winterthur, Switzerland.,Department of Gynecology and Obstetrics, University Hospital Basel, Spitalstrasse 21, 4031, Basel, Switzerland
| | - Sylvia Stadlmann
- Institute of Pathology, Kantonsspital Baden AG, Im Ergel 1, 5404, Baden, Switzerland.,Institute of Pathology, University Hospital Basel, Schönbeinstrasse 40, 4031, Basel, Switzerland
| | - Luigi Terracciano
- Institute of Pathology, University Hospital Basel, Schönbeinstrasse 40, 4031, Basel, Switzerland
| | - Gad Singer
- Institute of Pathology, Kantonsspital Baden AG, Im Ergel 1, 5404, Baden, Switzerland.,Institute of Pathology, University Hospital Basel, Schönbeinstrasse 40, 4031, Basel, Switzerland
| |
Collapse
|
13
|
Song T, Yin H, Chen J, Huang L, Jiang J, He T, Huang H, Hu X. Survival advantage depends on cecal volume rather than cecal length in a mouse model of cecal ligation and puncture. J Surg Res 2016; 203:476-82. [PMID: 27363658 DOI: 10.1016/j.jss.2016.03.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 03/07/2016] [Accepted: 03/09/2016] [Indexed: 10/22/2022]
Abstract
BACKGROUND Cecal ligation and puncture (CLP) is the most commonly used model to simulate human polymicrobial sepsis. However, the severity of CLP is difficult to be standardized across different laboratories. The aim of the present study was to evaluate the influence of ligated cecal volume and length on mortality in mouse CLP model. METHODS Cecal length and volume were measured from 120 Kunming mice subjected to CLP or sham operation. According to cecal volume, mice were divided into three groups, volume0.0∼0.2 (0.0 cm(3)-0.2 cm(3)), volume0.2∼0.4 (0.2 cm(3)-0.4 cm(3)), and volume>0.4 (larger than 0.4 cm(3)). The contents of cytokines, including interleukin-1β, interleukin-6, and TNF-α, were measured at 3 h after surgery. The blood bacterial load and oxidative stress indicators (including malondialdehyde and superoxide dismutase) were measured at 12 h after surgery. RESULTS There was no significant difference on 72-h survival rate between the mice with cecum longer than 2 cm and shorter than 2 cm. Compared to the other volume groups, volume>0.4 group showed significantly increased blood bacterial load, malondialdehyde levels in lung and liver, and pro-inflammatory cytokines in serum. Surprisingly, the survival rate in volume>0.4 (0%) group showed significant difference from those of volume0.0∼0.2 group (40%) and volume0.2∼0.4 group (40%). CONCLUSIONS The mice in volume>0.4 group have much serious inflammatory reaction and are easier to die. As the proportion of volume>0.4 mice is near 20%, it can have large influence on most of the related studies using this CLP model.
Collapse
Affiliation(s)
- Tianzhang Song
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China; Education Ministry Key Laboratory for Tropical Disease Control Research, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hongling Yin
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China; Education Ministry Key Laboratory for Tropical Disease Control Research, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jintao Chen
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangdong, China
| | - Lilin Huang
- Department of Dermatology and Venereology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Juan Jiang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China; Education Ministry Key Laboratory for Tropical Disease Control Research, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Tailong He
- Department of Dermatology and Venereology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Huaiqiu Huang
- Department of Dermatology and Venereology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Xuchu Hu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China; Education Ministry Key Laboratory for Tropical Disease Control Research, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
14
|
Lung Neutrophilia in Myeloperoxidase Deficient Mice during the Course of Acute Pulmonary Inflammation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:5219056. [PMID: 26998194 PMCID: PMC4779540 DOI: 10.1155/2016/5219056] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 01/11/2016] [Accepted: 01/14/2016] [Indexed: 11/18/2022]
Abstract
Systemic inflammation accompanying diseases such as sepsis affects primarily lungs and induces their failure. This remains the most common cause of sepsis induced mortality. While neutrophils play a key role in pulmonary failure, the mechanisms remain incompletely characterized. We report that myeloperoxidase (MPO), abundant enzyme in neutrophil granules, modulates the course of acute pulmonary inflammatory responses induced by intranasal application of lipopolysaccharide. MPO deficient mice had significantly increased numbers of airway infiltrated neutrophils compared to wild-type mice during the whole course of lung inflammation. This was accompanied by higher levels of RANTES in bronchoalveolar lavage fluid from the MPO deficient mice. Other markers of lung injury and inflammation, which contribute to recruitment of neutrophils into the inflamed lungs, including total protein and other selected proinflammatory cytokines did not significantly differ in bronchoalveolar lavage fluid from the wild-type and the MPO deficient mice. Interestingly, MPO deficient neutrophils revealed a decreased rate of cell death characterized by phosphatidylserine surface expression. Collectively, the importance of MPO in regulation of pulmonary inflammation, independent of its putative microbicidal functions, can be potentially linked to MPO ability to modulate the life span of neutrophils and to affect accumulation of chemotactic factors at the inflammatory site.
Collapse
|
15
|
Hornos Carneiro MF, Barbosa F. Gold nanoparticles: A critical review of therapeutic applications and toxicological aspects. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2016; 19:129-48. [PMID: 27282429 DOI: 10.1080/10937404.2016.1168762] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Gold (Au) compounds have been utilized as effective therapeutic agents for the treatment of some inflammatory diseases such as rheumatoid arthritis. However, Au compound use has become limited due to associated high incidence of side effects. Recent development of nanomaterials for therapeutic use with Au-containing drugs is improving the beneficial actions and reducing toxic properties of these agents. Lower toxicity in conjunction with anti-inflammatory and antiangiogenic effects was reported to occur with gold nanoparticles (AuNP) treatment. However, despite this therapeutic potential, safety of AuNP remains to be determined, since the balance between therapeutic properties and development of adverse effects is not well established. Several variables that drive this benefit-risk balance, including physicochemical characteristics of nanoparticles such as size, shape, surface area, and chemistry, are poorly described in the scientific literature. Moreover, therapeutic and toxicological data were obtained employing nonstandardized or poorly described protocols with different experimental settings (animal species/cell type, route and time of exposure). In contrast, effective and safe application of AuNP may be established only after elucidation of various physicochemical properties of each specific AuNP, and determination of respective kinetics and interaction of compound with target tissue. This critical review conveys the state of the art, the therapeutic use, and adverse effects mediated by AuNP, with primary emphasis on anti-inflammatory and antiangiogenic potential, highlighting the limitations/gaps in the scientific literature concerning important points: (i) selection of experimental designs (in vitro and in vivo models) and (ii) consideration of different physicochemical properties of AuNP that are often disregarded in many scientific publications. In addition, prospects and future needs for research in this area are provided.
Collapse
Affiliation(s)
- Maria Fernanda Hornos Carneiro
- a Laboratório de Toxicologia e Essencialidade de Metais, Faculdade de Ciências Farmacêuticas de Ribeirão Preto , Universidade de São Paulo , Ribeirão Preto , São Paulo , Brazil
| | - Fernando Barbosa
- a Laboratório de Toxicologia e Essencialidade de Metais, Faculdade de Ciências Farmacêuticas de Ribeirão Preto , Universidade de São Paulo , Ribeirão Preto , São Paulo , Brazil
| |
Collapse
|
16
|
Tengvall S, Che KF, Lindén A. Interleukin-26: An Emerging Player in Host Defense and Inflammation. J Innate Immun 2015. [PMID: 26202572 DOI: 10.1159/000434646] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The production of interleukin (IL)-26 was initially attributed to T cells, and in particular to Th17 cells. However, more recent findings indicate IL-26 production in natural killer (NK) cells, macrophages and fibroblast-like cells as well. It is known that IL-26 binds to the IL-20R1/IL-10R2 receptor complex on certain target cells, where it causes specific intracellular signaling and the secretion of IL-1β, IL-8 and TNF-α. In line with this type of proinflammatory role, IL-26 also increases chemotaxis of human neutrophils. Interestingly, high levels of IL-26 are present even in normal human airways, and endotoxin exposure further enhances these levels; this indicates involvement in antibacterial host defense. Studies on acute inflammatory disorders are few but there are studies showing the involvement of IL-26 in rheumatoid arthritis and inflammatory bowel disease. In conclusion, IL-26 is emerging as a potentially important player in host defense and may also be a pathogenic factor in the chronic inflammatory disorders of humans.
Collapse
Affiliation(s)
- Sara Tengvall
- Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | | | | |
Collapse
|
17
|
Liu W, Wu H, Chen L, Wen Y, Kong X, Gao WQ. Park7 interacts with p47(phox) to direct NADPH oxidase-dependent ROS production and protect against sepsis. Cell Res 2015; 25:691-706. [PMID: 26021615 DOI: 10.1038/cr.2015.63] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 03/24/2015] [Accepted: 04/07/2015] [Indexed: 01/05/2023] Open
Abstract
Inappropriate inflammation responses contribute to mortality during sepsis. Through Toll-like receptors (TLRs), reactive oxygen species (ROS) produced by NADPH oxidase could modulate the inflammation responses. Parkinson disease (autosomal recessive, early onset) 7 (Park7) has a cytoprotective role by eliminating ROS. However, whether Park7 could modulate inflammation responses and mortality in sepsis is unclear. Here, we show that, compared with wild-type mice, Park7(-/-) mice had significantly increased mortality and bacterial burdens in sepsis model along with markedly decreased systemic and local inflammation, and drastically impaired macrophage phagocytosis and bacterial killing abilities. Surprisingly, LPS and phorbol-12-myristate-13-acetate stimulation failed to induce ROS and proinflammatory cytokine production in Park7(-/-) macrophages and Park7-deficient RAW264.7 cells. Through its C-terminus, Park7 binds to p47(phox), a subunit of the NADPH oxidase, to promote NADPH oxidase-dependent production of ROS. Restoration of Park7 expression rescues ROS production and improves survival in LPS-induced sepsis. Together, our study shows that Park7 has a protective role against sepsis by controlling macrophage activation, NADPH oxidase activation and inflammation responses.
Collapse
Affiliation(s)
- Wenjun Liu
- State Key Laboratory for Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Hailong Wu
- State Key Laboratory for Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Lili Chen
- State Key Laboratory for Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yankai Wen
- State Key Laboratory for Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xiaoni Kong
- State Key Laboratory for Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Wei-Qiang Gao
- State Key Laboratory for Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
18
|
Abstract
It is a need to define the line between pathological and physiological functions of reactive oxygen species (ROS) in order to understand their beneficial role over their injurious consequences.
Collapse
Affiliation(s)
- Arun Kumar Sharma
- Department of Pharmacology
- Amity Institute of Pharmacy
- Amity University
- Noida-201303
- India
| | - Gourav Taneja
- Department of Pharmacology
- Amity Institute of Pharmacy
- Amity University
- Noida-201303
- India
| | - Deepa Khanna
- Department of Pharmacology
- Rajendra Institute of Technology and Sciences
- Sirsa-125 055
- India
| | - Satyendra K. Rajput
- Department of Pharmacology
- Amity Institute of Pharmacy
- Amity University
- Noida-201303
- India
| |
Collapse
|
19
|
Panis C, Herrera ACSA, Aranome AMF, Victorino VJ, Michelleti PL, Morimoto HK, Cecchini AL, Simão ANC, Cecchini R. Clinical insights from adiponectin analysis in breast cancer patients reveal its anti-inflammatory properties in non-obese women. Mol Cell Endocrinol 2014; 382:190-196. [PMID: 24095646 DOI: 10.1016/j.mce.2013.09.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 09/24/2013] [Indexed: 11/20/2022]
Abstract
Adiponectin is a cytokine reported as a determinant of poor prognosis in women with breast cancer. However, because data regarding its role in breast cancer have been obtained primarily from studies employing overweight or obese women, the adiponectin profile in non-obese women is poorly understood. In this study, we determined adiponectin levels in plasma from non-obese women with breast cancer and investigated a possible correlation with systemic inflammatory status. We determined the plasma adiponectin levels as well as biochemical and oxidative stress parameters in 80 women. Our results revealed that plasma adiponectin levels were affected by chemotherapy, estrogen receptor status, and disease progression. Adiponectin was positively correlated with antioxidant levels, without affecting either the metastatic behavior of disease or patient outcome. These findings highlight adiponectin as a novel player in the endocrine signaling that modulates the oxidative inflammatory response in human breast cancer, and contribute to the understanding of the role of adiponectin in pathological conditions in non-obese women.
Collapse
Affiliation(s)
- C Panis
- Laboratory of Physiopathology and Free Radicals, Department of General Pathology, State University of Londrina, Londrina, Paraná, Brazil.
| | - A C S A Herrera
- Laboratory of Physiopathology and Free Radicals, Department of General Pathology, State University of Londrina, Londrina, Paraná, Brazil
| | - A M F Aranome
- Laboratory of Physiopathology and Free Radicals, Department of General Pathology, State University of Londrina, Londrina, Paraná, Brazil
| | | | - P L Michelleti
- Laboratory of Physiopathology and Free Radicals, Department of General Pathology, State University of Londrina, Londrina, Paraná, Brazil
| | - H K Morimoto
- Universitary Hospital, Department of Pharmacy, State University of Londrina, Londrina, Paraná, Brazil
| | - A L Cecchini
- Laboratory of Physiopathology and Free Radicals, Department of General Pathology, State University of Londrina, Londrina, Paraná, Brazil
| | - A N C Simão
- Universitary Hospital, Department of Pharmacy, State University of Londrina, Londrina, Paraná, Brazil
| | - R Cecchini
- Laboratory of Physiopathology and Free Radicals, Department of General Pathology, State University of Londrina, Londrina, Paraná, Brazil
| |
Collapse
|
20
|
Droeser RA, Hirt C, Eppenberger-Castori S, Zlobec I, Viehl CT, Frey DM, Nebiker CA, Rosso R, Zuber M, Amicarella F, Iezzi G, Sconocchia G, Heberer M, Lugli A, Tornillo L, Oertli D, Terracciano L, Spagnoli GC. High myeloperoxidase positive cell infiltration in colorectal cancer is an independent favorable prognostic factor. PLoS One 2013; 8:e64814. [PMID: 23734221 PMCID: PMC3667167 DOI: 10.1371/journal.pone.0064814] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 04/17/2013] [Indexed: 01/11/2023] Open
Abstract
Background Colorectal cancer (CRC) infiltration by adaptive immune system cells correlates with favorable prognosis. The role of the innate immune system is still debated. Here we addressed the prognostic impact of CRC infiltration by neutrophil granulocytes (NG). Methods A TMA including healthy mucosa and clinically annotated CRC specimens (n = 1491) was stained with MPO and CD15 specific antibodies. MPO+ and CD15+ positive immune cells were counted by three independent observers. Phenotypic profiles of CRC infiltrating MPO+ and CD15+ cells were validated by flow cytometry on cell suspensions derived from enzymatically digested surgical specimens. Survival analysis was performed by splitting randomized data in training and validation subsets. Results MPO+ and CD15+ cell infiltration were significantly correlated (p<0.0001; r = 0.76). However, only high density of MPO+ cell infiltration was associated with significantly improved survival in training (P = 0.038) and validation (P = 0.002) sets. In multivariate analysis including T and N stage, vascular invasion, tumor border configuration and microsatellite instability status, MPO+ cell infiltration proved an independent prognostic marker overall (P = 0.004; HR = 0.65; CI:±0.15) and in both training (P = 0.048) and validation (P = 0.036) sets. Flow-cytometry analysis of CRC cell suspensions derived from clinical specimens showed that while MPO+ cells were largely CD15+/CD66b+, sizeable percentages of CD15+ and CD66b+ cells were MPO−. Conclusions High density MPO+ cell infiltration is a novel independent favorable prognostic factor in CRC.
Collapse
Affiliation(s)
- Raoul A Droeser
- Department of Surgery, University Hospital Basel, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
El Kebir D, Filep JG. Modulation of Neutrophil Apoptosis and the Resolution of Inflammation through β2 Integrins. Front Immunol 2013; 4:60. [PMID: 23508943 PMCID: PMC3589696 DOI: 10.3389/fimmu.2013.00060] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 02/21/2013] [Indexed: 01/13/2023] Open
Abstract
Precise control of the neutrophil death program provides a balance between their defense functions and safe clearance, whereas impaired regulation of neutrophil death is thought to contribute to a wide range of inflammatory pathologies. Apoptosis is essential for neutrophil functional shutdown, removal of emigrated neutrophils, and timely resolution of inflammation. Neutrophils receive survival and pro-apoptosis cues from the inflammatory microenvironment and integrate these signals through surface receptors and common downstream mechanisms. Among these receptors are the leukocyte-specific membrane receptors β2 integrins that are best known for regulating adhesion and phagocytosis. Accumulating evidence indicate that outside-in signaling through the β2 integrin Mac-1 can generate contrasting cues in neutrophils, leading to promotion of their survival or apoptosis. Binding of Mac-1 to its ligands ICAM-1, fibrinogen, or the azurophilic granule enzyme myeloperoxidase suppresses apoptosis, whereas Mac-1-mediated phagocytosis of bacteria evokes apoptotic cell death. Mac-1 signaling is also target for the anti-inflammatory, pro-resolving mediators, including lipoxin A4, aspirin-triggered lipoxin A4, and resolvin E1. This review focuses on molecular mechanisms underlying Mac-1 regulation of neutrophil apoptosis and highlights recent advances how hierarchy of survival and pro-apoptosis signals can be harnessed to facilitate neutrophil apoptosis and the resolution of inflammation.
Collapse
Affiliation(s)
- Driss El Kebir
- Department of Pathology and Cell Biology, University of Montreal and Research Center, Maisonneuve-Rosemont Hospital Montreal, QC, Canada
| | | |
Collapse
|
22
|
Inflammation and oxidative stress in angiogenesis and vascular disease. J Mol Med (Berl) 2013; 91:323-8. [PMID: 23430240 DOI: 10.1007/s00109-013-1007-3] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 01/29/2013] [Accepted: 01/31/2013] [Indexed: 01/24/2023]
Abstract
Recent evidence suggests that processes of inflammation and angiogenesis are interconnected, especially in human pathologies. Newly formed blood vessels enable the continuous recruitment of inflammatory cells, which release a variety of proangiogenic cytokines, chemokines, and growth factors and further promote angiogenesis. These series of positive feedback loops ultimately create a vicious cycle that exacerbates inflammation, transforming it into the chronic process. Recently, this concept of reciprocity of angiogenesis and inflammation has been expanded to include oxidative stress as a novel mechanistic connection between inflammation-driven oxidation and neovascularization. Production of reactive oxygen species results from activation of immune cells by proinflammatory stimuli. As oxidative stress can lead to chronic inflammation by activating a variety of transcription factors including NF-κB, AP-1, and PPAR-γ, inflammation itself has a reciprocal relationship with oxidative stress. This review discusses the recent findings in the area bridging neovascularization and oxidation and highlights novel mechanisms of inflammation- and oxidative stress-driven angiogenesis.
Collapse
|
23
|
Nussbaum C, Klinke A, Adam M, Baldus S, Sperandio M. Myeloperoxidase: a leukocyte-derived protagonist of inflammation and cardiovascular disease. Antioxid Redox Signal 2013; 18:692-713. [PMID: 22823200 DOI: 10.1089/ars.2012.4783] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
SIGNIFICANCE The heme-enzyme myeloperoxidase (MPO) is one of the major neutrophil bactericidal proteins and is stored in large amounts inside azurophilic granules of neutrophils. Upon cell activation, MPO is released and extracellular MPO has been detected in a wide range of acute and chronic inflammatory conditions. Recent ADVANCES AND CRITICAL ISSUES: Apart from its role during infection, MPO has emerged as a critical modulator of inflammation throughout the last decade and is currently discussed in the initiation and propagation of cardiovascular diseases. MPO-derived oxidants (e.g., hypochlorous acid) interfere with various cell functions and contribute to tissue injury. Recent data also suggest that MPO itself exerts proinflammatory properties independent of its catalytic activity. Despite advances in unraveling the complex action of MPO and MPO-derived oxidants, further research is warranted to determine the precise nature and biological role of MPO in inflammation. FUTURE DIRECTIONS The identification of MPO as a central player in inflammation renders this enzyme an attractive prognostic biomarker and a potential target for therapeutic interventions. A better understanding of the (patho-) physiology of MPO is essential for the development of successful treatment strategies in acute and chronic inflammatory diseases.
Collapse
Affiliation(s)
- Claudia Nussbaum
- Walter Brendel Centre for Experimental Medicine, Ludwig-Maximilians-University Munich, Munich, Germany.
| | | | | | | | | |
Collapse
|
24
|
Pilz M, Holinka J, Vavken P, Marian B, Krepler P. Taurine chloramine induces apoptosis in human osteosarcoma cell lines. J Orthop Res 2012; 30:2046-51. [PMID: 22674504 DOI: 10.1002/jor.22161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 05/09/2012] [Indexed: 02/04/2023]
Abstract
Although combination of surgery with chemotherapy has noticeably improved the survival rate of osteosarcoma patients, the application of anticancer drugs is still associated with significant adverse reactions, for instance acquisition of drug-resistant phenotypes, necessitating the development of new chemotherapeutical agents. Therefore, the aim of this study was to research, if taurine chloramine (NCT) induces apoptosis in the osteosarcoma cell lines HOS, MG-63, and SAOS-2. Proliferation of osteosarcoma cells was detected with the "EZ4U Cell Proliferation and Cyotoxicity Assay" showing a time- and dose-dependent cytotoxic effect of NCT on these cell lines. After 3 h of incubation all cell lines showed significantly less cells at 5.5 mM NCT solutions, after 6 h at concentrations of 1.1 and 2.2 mM. Acridine-orange fluorescence nuclear staining showed characteristic features of apoptosis. DNA fragmentation was detected via ELISA, showing significant results for HOS and MG-63 after 6 h at an NCT concentration of 3.3 mM. Results of JC-1 mitochondrial FACS analysis presented a significant increase in apoptotic cells after 6 h at 3.3 mM for the tested cell lines. Summarized, the results of this study indicate that NCT is a promising agent in osteosarcoma therapy.
Collapse
Affiliation(s)
- Magdalena Pilz
- Department of Hospital Hygiene, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria.
| | | | | | | | | |
Collapse
|
25
|
Kim YS, Kim EA, Park KG, Lee SJ, Kim MS, Sohn HY, Lee TJ. Dioscin sensitizes cells to TRAIL-induced apoptosis through downregulation of c-FLIP and Bcl-2. Oncol Rep 2012; 28:1910-6. [PMID: 22895655 DOI: 10.3892/or.2012.1962] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 07/12/2012] [Indexed: 11/06/2022] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has received attention as a potential anticancer drug, because it induces apoptosis in a wide variety of cancer cells but not in most normal human cell types. Here, we showed that co-treatment with subtoxic doses of dioscin and TRAIL-induced apoptosis in Caki human renal cancer cells. Treatment of Caki cells with dioscin downregulated c-FLIPL and Bcl-2 proteins in a dose-dependent manner. Dioscin-induced decrease in c-FLIPL protein levels may be caused by the increased protein instability. We also found that dioscin induced downregulation of Bcl-2 at the transcriptional level. Pretreatment with NAC slightly inhibited the expression levels of c-FLIPL downregulated by the treatment of dioscin, suggesting that dioscin is partially dependent on the generation of ROS for downregulation of c-FLIPL. Taken together, the present study demonstrates that dioscin enhances TRAIL-induced apoptosis in human renal cancer cells by downregulation of c-FLIPL and Bcl-2.
Collapse
Affiliation(s)
- Yong-Sik Kim
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan, Chungnam 330-090, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
26
|
Hayashi T, Morishita Y, Khattree R, Misumi M, Sasaki K, Hayashi I, Yoshida K, Kajimura J, Kyoizumi S, Imai K, Kusunoki Y, Nakachi K. Evaluation of systemic markers of inflammation in atomic-bomb survivors with special reference to radiation and age effects. FASEB J 2012; 26:4765-73. [PMID: 22872680 DOI: 10.1096/fj.12-215228] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Past exposure to atomic bomb (A-bomb) radiation has exerted various long-lasting deleterious effects on the health of survivors. Some of these effects are seen even after >60 yr. In this study, we evaluated the subclinical inflammatory status of 442 A-bomb survivors, in terms of 8 inflammation-related cytokines or markers, comprised of plasma levels of reactive oxygen species (ROS), interleukin (IL)-6, tumor necrosis factor α (TNF-α), C-reactive protein (CRP), IL-4, IL-10, and immunoglobulins, and erythrocyte sedimentation rate (ESR). The effects of past radiation exposure and natural aging on these markers were individually assessed and compared. Next, to assess the biologically significant relationship between inflammation and radiation exposure or aging, which was masked by the interrelationship of those cytokines/markers, we used multivariate statistical analyses and evaluated the systemic markers of inflammation as scores being calculated by linear combinations of selected cytokines and markers. Our results indicate that a linear combination of ROS, IL-6, CRP, and ESR generated a score that was the most indicative of inflammation and revealed clear dependences on radiation dose and aging that were found to be statistically significant. The results suggest that collectively, radiation exposure, in conjunction with natural aging, may enhance the persistent inflammatory status of A-bomb survivors.
Collapse
Affiliation(s)
- Tomonori Hayashi
- Department of Radiobiology/Molecular Epidemiology, Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami Ward, Hiroshima 732-0815 Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Lee SJ, Kim EA, Song KS, Kim MJ, Lee DH, Kwon TK, Lee TJ. Antimycin A sensitizes cells to TRAIL-induced apoptosis through upregulation of DR5 and downregulation of c-FLIP and Bcl-2. Int J Oncol 2012; 41:1425-30. [PMID: 22842544 DOI: 10.3892/ijo.2012.1575] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 07/02/2012] [Indexed: 11/06/2022] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has been the focus as a potential anticancer drug, because it induces apoptosis in a wide variety of cancer cells but not in most normal human cell types. In this study, we showed that combination treatment with sub-toxic doses of antimycin A (AMA), an inhibitor of electron transport, plus TRAIL induced apoptosis in human renal cancer cells, but not in normal tubular kidney cells. Treatment of Caki cells with AMA upregulated the death receptor 5 (DR5) protein and downregulated c-FLIP and Bcl-2 proteins in a dose-dependent manner. AMA-induced decrease of c-FLIPL and c-FLIPs protein levels which were caused by increased protein instability, which was confirmed by the result showing that treatment with a protein biosynthesis inhibitor, CHX, accelerated degradation of c-FLIPL and c-FLIPs proteins caused by AMA treatment. We also found that AMA induced upregulation of DR5 and downregulation of Bcl-2 at the transcriptional level. Pretreatment with N-acetyl-l-cysteine (NAC) partly recovered the expression levels of c-FLIPL and c-FLIPs proteins were downregulated by the AMA treatment, suggesting that AMA appears to be partially dependent on the generation of ROS for downregulation of c-FLIPL and c-FLIPs. Collectively, this study demonstrates that AMA enhances TRAIL-induced apoptosis in human renal cancer cells by upregulation of DR5 as well as downregulation of c-FLIP and Bcl-2. Furthermore, this study shows that AMA markedly increases sensitivity to cisplatin in Caki human renal cancer cells.
Collapse
Affiliation(s)
- Sung-Jun Lee
- Department of Anatomy, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
28
|
Milot E, Filep JG. Regulation of neutrophil survival/apoptosis by Mcl-1. ScientificWorldJournal 2011; 11:1948-62. [PMID: 22125448 PMCID: PMC3217587 DOI: 10.1100/2011/131539] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 10/11/2011] [Indexed: 12/14/2022] Open
Abstract
Neutrophil granulocytes have the shortest lifespan among leukocytes in the circulation and die via apoptosis. At sites of infection or tissue injury, prolongation of neutrophil lifespan is critical for effective host defense. Apoptosis of inflammatory neutrophils and their clearance are critical control points for termination of the inflammatory response. Evasion of neutrophil apoptosis aggravates local injury and leads to persistent tissue damage. The short-lived prosurvival Bcl-2 family protein, Mcl-1 (myeloid cell leukemia-1), is instrumental in controlling apoptosis and consequently neutrophil lifespan in response to rapidly changing environmental cues during inflammation. This paper will focus on multiple levels of control of Mcl-1 expression and function and will discuss targeting Mcl-1 as a potential therapeutic strategy to enhance the resolution of inflammation through accelerating neutrophil apoptosis.
Collapse
Affiliation(s)
- Eric Milot
- Department of Medicine, Research Center Maisonneuve-Rosemont Hospital, University of Montreal, 5415 Boulevard de l'Assomption, Montreal, QC, Canada H1T 2M4
| | | |
Collapse
|
29
|
Rashmi R, Schnulle PM, Maddox AC, Armbrecht ES, Koenig JM. Flice inhibitory protein is associated with the survival of neonatal neutrophils. Pediatr Res 2011; 70:327-31. [PMID: 21691254 PMCID: PMC3166417 DOI: 10.1203/pdr.0b013e3182290062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Neonatal polymorphonuclear leukocytes (PMN) exhibit delayed apoptosis both constitutively and under inflammatory conditions, and evidence has linked PMN longevity to the presence of antiapoptotic proteins. Activation of the survival-associated transcription factor, nuclear factor kappa B (NF-κB), promotes the synthesis of several antiapoptotic proteins including Flice inhibitory protein (FLIP). Neonatal and adult PMN were compared in this study to test the hypothesis that FLIP modulates age-related apoptosis. Expression of the short isoform, FLIP-S, was prominent at baseline and persisted during spontaneous apoptosis in neonatal PMN, whereas basal expression was lower and decreased under the same conditions in adult PMN. Stable FLIP-S expression in neonatal PMN was associated with a relative resistance to apoptosis in response to the protein synthesis inhibitor, cycloheximide (CHX), or the NF-κB inhibitor, gliotoxin. In contrast, similar treatment of adult PMN promoted greater overall apoptosis accompanied by FLIP degradation. Nuclear levels of phosphorylated p65, a critical NF-κB dimer, were relatively robust in neonatal PMN under basal conditions or after stimulation with TNF-α, a cytokine that induces FLIP. In conclusion, persistent FLIP-S expression is involved in the longevity of neonatal PMN, and our data suggest a contribution of NF-κB signaling and related survival mechanisms.
Collapse
Affiliation(s)
- Ramachandran Rashmi
- Department of Pediatrics, St. Louis University School of Medicine, St. Louis, MO 63104, USA
| | | | | | | | | |
Collapse
|
30
|
Qi H, Takano H, Kato Y, Wu Q, Ogata C, Zhu B, Murata Y, Nakamura Y. Hydrogen [corrected] peroxide-dependent photocytotoxicity by phloxine B, a xanthene-type food colorant. Biochim Biophys Acta Gen Subj 2011; 1810:704-12. [PMID: 21565256 DOI: 10.1016/j.bbagen.2011.04.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 04/14/2011] [Accepted: 04/25/2011] [Indexed: 11/30/2022]
Abstract
BACKGROUND Phloxine B (PhB; 2',4',5',7'-tetrabromo-4,5,6,7-tetrachloro-fluorescein), an artificial xanthene colorant, has been used as a red coloring agent in drugs and cosmetics as well as foods in some countries. However, little effort has been devoted to the study of this colorant as a potentially useful medicinal agent. METHODS We investigated the daily light-induced photocytotoxicity of PhB in two human leukemia cells, HL-60 and Jurkat, and its underlying mechanisms by in vitro experiments using antioxidants. REUSLTS AND CONCLUSIONS: PhB inhibited cell proliferation more preferentially to HL-60 cells than to Jurkat cells. Co-treatment of catalase completely blocked the photocytotoxicity by PhB in HL-60 cells, whereas the effect of histidine was only partial, suggesting that hydrogen peroxide (H(2)O(2)), rather than singlet oxygen, might be a prerequisite for the PhB-induced HL-60 cell death. Actually, PhB produced a significant amount of H(2)O(2) in the media as well as in the cells in concentration- and light-dependent manners. Furthermore, methionine, a hypochlorous acid (HOCl) scavenger, also significantly attenuated the cytotoxicity in HL-60 cells, but not in Jurkat cells, indicating the involvement of myeloperoxidase (MPO)-dependent hypohalous acid formation during the photocytotoxicity. In vitro experiments revealed that halogenated tyrosine was generated from the reaction of bovine serum albumin with PhB and HL-60 cell lysate. The present findings suggested that PhB induced a differential photodynamic action in the MPO-containing leukemia cells through an H(2)O(2)-dependent mechanism. GENERAL SIGNIFICANCE Our findings provide new insights into the molecular mechanisms underlying the PhB-induced apoptosis and also evaluated PhB as a promising PDT agent.
Collapse
Affiliation(s)
- Hang Qi
- Department of Biofunctional Chemistry, Division of Bioscience, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Peroxiredoxin-2 protects against 6-hydroxydopamine-induced dopaminergic neurodegeneration via attenuation of the apoptosis signal-regulating kinase (ASK1) signaling cascade. J Neurosci 2011; 31:247-61. [PMID: 21209210 DOI: 10.1523/jneurosci.4589-10.2011] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The peroxiredoxin (PRX) family of antioxidant enzymes helps maintain the intracellular reducing milieu and suppresses apoptosis in non-neuronal cells. However, whether PRX can inhibit neuronal apoptosis through specific signaling mechanisms remains poorly understood. Induction of PRX2, the most abundant neuronal PRX, occurs in Parkinson's disease (PD) patient brains, but its functional impact is unclear. In the present study, we used the dopaminergic (DA) toxin 6-hydroxydopamine (6-OHDA) to model PD and explore the protective effect and mechanisms of PRX on DA neurons. Of the 2-cysteine PRXs that were tested in MN9D DA neurons, endogenous PRX2 was most beneficial to cell survival. Lentivirus-mediated PRX2 overexpression conferred marked in vitro and in vivo neuroprotection against 6-OHDA toxicity in DA neurons, and preserved motor functions involving the dopamine system in mouse. In addition to its role as an antioxidant enzyme, PRX2 exhibited anti-apoptotic effects in DA neurons via suppression of apoptosis signal-regulating kinase (ASK1)-dependent activation of the c-Jun N-terminal kinase/c-Jun and p38 pro-death pathways, which are also activated in DA neurons of postmortem PD brains. PRX2 inhibited 6-OHDA-induced ASK1 activation by modulating the redox status of the endogenous ASK1 inhibitor thioredoxin (Trx). PRX2 overexpression maintained Trx in a reduced state by inhibiting the cysteine thiol-disulfide exchange, thereby preventing its dissociation from ASK1. This study describes a previously undefined mechanism by which redox-sensitive molecules signal via apoptotic pathways in response to PD-relevant toxic stress in DA neurons. Our results also suggest that PRX2 and ASK1 may be potential targets for neuroprotective intervention in PD.
Collapse
|
32
|
Bulua AC, Simon A, Maddipati R, Pelletier M, Park H, Kim KY, Sack MN, Kastner DL, Siegel RM. Mitochondrial reactive oxygen species promote production of proinflammatory cytokines and are elevated in TNFR1-associated periodic syndrome (TRAPS). ACTA ACUST UNITED AC 2011; 208:519-33. [PMID: 21282379 PMCID: PMC3058571 DOI: 10.1084/jem.20102049] [Citation(s) in RCA: 659] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
ROS generated by mitochondrial respiration are needed for optimal proinflammatory cytokine production in healthy cells, and are elevated in cells from patients with an autoinflammatory disorder. Reactive oxygen species (ROS) have an established role in inflammation and host defense, as they kill intracellular bacteria and have been shown to activate the NLRP3 inflammasome. Here, we find that ROS generated by mitochondrial respiration are important for normal lipopolysaccharide (LPS)-driven production of several proinflammatory cytokines and for the enhanced responsiveness to LPS seen in cells from patients with tumor necrosis factor receptor-associated periodic syndrome (TRAPS), an autoinflammatory disorder caused by missense mutations in the type 1 TNF receptor (TNFR1). We find elevated baseline ROS in both mouse embryonic fibroblasts and human immune cells harboring TRAPS-associated TNFR1 mutations. A variety of antioxidants dampen LPS-induced MAPK phosphorylation and inflammatory cytokine production. However, gp91phox and p22phox reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunits are dispensable for inflammatory cytokine production, indicating that NADPH oxidases are not the source of proinflammatory ROS. TNFR1 mutant cells exhibit altered mitochondrial function with enhanced oxidative capacity and mitochondrial ROS generation, and pharmacological blockade of mitochondrial ROS efficiently reduces inflammatory cytokine production after LPS stimulation in cells from TRAPS patients and healthy controls. These findings suggest that mitochondrial ROS may be a novel therapeutic target for TRAPS and other inflammatory diseases.
Collapse
Affiliation(s)
- Ariel C Bulua
- Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutesof Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Jang JH, Lee TJ, Yang ES, Min DS, Kim YH, Kim SH, Choi YH, Park JW, Choi KS, Kwon TK. Compound C sensitizes Caki renal cancer cells to TRAIL-induced apoptosis through reactive oxygen species-mediated down-regulation of c-FLIPL and Mcl-1. Exp Cell Res 2010; 316:2194-203. [DOI: 10.1016/j.yexcr.2010.04.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 04/27/2010] [Accepted: 04/28/2010] [Indexed: 11/30/2022]
|
34
|
Human myeloperoxidase in innate and acquired immunity. Arch Biochem Biophys 2010; 500:92-106. [DOI: 10.1016/j.abb.2010.04.008] [Citation(s) in RCA: 187] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 04/07/2010] [Accepted: 04/12/2010] [Indexed: 12/12/2022]
|
35
|
Lee TJ, Um HJ, Min DS, Park JW, Choi KS, Kwon TK. Withaferin A sensitizes TRAIL-induced apoptosis through reactive oxygen species-mediated up-regulation of death receptor 5 and down-regulation of c-FLIP. Free Radic Biol Med 2009; 46:1639-49. [PMID: 19345731 DOI: 10.1016/j.freeradbiomed.2009.03.022] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Revised: 03/09/2009] [Accepted: 03/21/2009] [Indexed: 01/16/2023]
Abstract
Withaferin A (Wit A) has reportedly shown cytotoxicity in a variety of tumor cell lines. Here, we show that cotreatment with subtoxic doses of Wit A and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis in human renal cancer cells, Caki cells, but not in human normal mesangial cells. Moreover, the combined treatment with Wit A and TRAIL dramatically induces apoptosis in various cancer cell types, suggesting that this combined treatment might offer an attractive strategy for safely treating human cancers. Treatment of Caki cells with Wit A up-regulated death receptor 5 (DR5) in a C/EBP homologous protein (CHOP)-dependent manner. Interestingly, a Wit A-induced increase in ROS levels preceded the up-regulation of CHOP and DR5. The involvement of ROS in CHOP-mediated DR5 up-regulation was confirmed by the result that pretreatment with an antioxidant, NAC or catalase, inhibited Wit A-induced up-regulation of both CHOP and DR5. We also found that Wit A treatment down-regulated c-FLIP via NF-kappaB-mediated transcriptional control as well as ROS signaling pathways. Taken together, our results show that DR5 up-regulation and c-FLIP down-regulation contribute to the sensitizing effect of Wit A on TRAIL-mediated apoptosis in cancer cells.
Collapse
Affiliation(s)
- Tae-Jin Lee
- Department of Immunology, School of Medicine, Keimyung University, 194 Dong San-Dong Jung-Gu, Taegu 700-712, South Korea
| | | | | | | | | | | |
Collapse
|
36
|
El Kebir D, József L, Pan W, Wang L, Petasis NA, Serhan CN, Filep JG. 15-epi-lipoxin A4 inhibits myeloperoxidase signaling and enhances resolution of acute lung injury. Am J Respir Crit Care Med 2009; 180:311-9. [PMID: 19483113 DOI: 10.1164/rccm.200810-1601oc] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
RATIONALE Apoptosis is essential for removal of neutrophils from inflamed tissues and efficient resolution of inflammation. Myeloperoxidase (MPO), abundantly expressed in neutrophils, not only generates cytotoxic oxidants but also signals through the beta(2) integrin Mac-1 to rescue neutrophils from constitutive apoptosis, thereby prolonging inflammation. OBJECTIVES Because aspirin-triggered 15-epi-lipoxin A(4) (15-epi-LXA(4)) modulates Mac-1 expression, we investigated the impact of 15-epi-LXA(4) on MPO suppression of neutrophil apoptosis and MPO-mediated neutrophil-dependent acute lung injury. METHODS Human neutrophils were cultured with MPO with or without 15-epi-LXA(4) to investigate development of apoptosis. Acute lung injury was produced by intratracheal injection of carrageenan plus MPO or intraperitoneal injection of live Escherichia coli in mice, and the animals were treated with 15-epi-LXA(4) at the peak of inflammation. MEASUREMENTS AND MAIN RESULTS 15-Epi-LXA(4) through down-regulation of Mac-1 expression promoted apoptosis of human neutrophils by attenuating MPO-induced activation of extracellular signal-regulated kinase and Akt-mediated phosphorylation of Bad and by reducing expression of the antiapoptotic protein Mcl-1, thereby aggravating mitochondrial dysfunction. The proapoptotic effect of 15-epi-LXA(4) was dominant over MPO-mediated effects even when it was added at 4 hours post MPO. In mice, treatment with 15-epi-LXA(4) accelerated the resolution of established carrageenan plus MPO-evoked as well as E. coli-induced neutrophil-dependent pulmonary inflammation through redirecting neutrophils to caspase-mediated cell death and facilitating their removal by macrophages. CONCLUSIONS These results demonstrate that aspirin-triggered 15-epi-LXA(4) enhances resolution of inflammation by overriding the powerful antiapoptosis signal from MPO, thereby demonstrating a hitherto unrecognized mechanism by which aspirin promotes resolution of inflammation.
Collapse
Affiliation(s)
- Driss El Kebir
- Research Center, Maisonneuve-Rosemont Hospital, Montréal, Quebec
| | | | | | | | | | | | | |
Collapse
|
37
|
El Kebir D, József L, Pan W, Filep JG. Myeloperoxidase Delays Neutrophil Apoptosis Through CD11b/CD18 Integrins and Prolongs Inflammation. Circ Res 2008; 103:352-9. [DOI: 10.1161/01.res.0000326772.76822.7a] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Polymorphonuclear neutrophil granulocytes have a central role in innate immunity and their programmed cell death and removal are critical for efficient resolution of acute inflammation. Myeloperoxidase (MPO), a heme protein abundantly expressed in neutrophils, is generally associated with killing of bacteria and oxidative tissue injury. Because MPO also binds to neutrophils, we investigated whether MPO could affect the lifespan of neutrophils. Here, we report that MPO independent of its catalytic activity through signaling via the adhesion molecule CD11b/CD18 rescued human neutrophils from constitutive apoptosis and prolonged their life span. MPO evoked a transient concurrent activation of extracellular signal-regulated kinase and Akt, leading to phosphorylation of Bad at both Ser112 and Ser136, prevention of mitochondrial dysfunction, and subsequent activation of caspase-3. Consistently, pharmacological inhibition of extracellular signal-regulated kinase, Akt, or caspase-3 reversed the antiapoptosis action of MPO. Acute increases in plasma MPO delayed murine neutrophil apoptosis assayed ex vivo. In a mouse model of self-resolving inflammation, MPO also prolonged the duration of carrageenan-induced acute lung injury, as evidenced by enhanced alveolar permeability and accumulation of neutrophils parallel with suppression of neutrophil apoptosis. Our results indicate that MPO functions as a survival signal for neutrophils and thereby contribute to prolongation of inflammation.
Collapse
Affiliation(s)
- Driss El Kebir
- From the Research Center, Maisonneuve-Rosemont Hospital and Department of Pathology and Cell Biology, University of Montréal, Quebec, Canada
| | - Levente József
- From the Research Center, Maisonneuve-Rosemont Hospital and Department of Pathology and Cell Biology, University of Montréal, Quebec, Canada
| | - Wanling Pan
- From the Research Center, Maisonneuve-Rosemont Hospital and Department of Pathology and Cell Biology, University of Montréal, Quebec, Canada
| | - János G. Filep
- From the Research Center, Maisonneuve-Rosemont Hospital and Department of Pathology and Cell Biology, University of Montréal, Quebec, Canada
| |
Collapse
|