1
|
D’Aveni M, Notarantonio AB, Agbogan VA, Bertrand A, Fouquet G, Gastineau P, Garfa-Traoré M, De Carvalho M, Hermine O, Rubio MT, Zavala F. Mobilized Multipotent Hematopoietic Progenitors Promote Expansion and Survival of Allogeneic Tregs and Protect Against Graft Versus Host Disease. Front Immunol 2021; 11:607180. [PMID: 33643294 PMCID: PMC7907505 DOI: 10.3389/fimmu.2020.607180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/31/2020] [Indexed: 11/13/2022] Open
Abstract
Allogeneic Hematopoietic Stem Cell Transplantation (Allo-HSCT) is routinely performed with peripheral blood stem cells (PBSCs) mobilized by injection of G-CSF, a growth factor which not only modulates normal hematopoiesis but also induces diverse immature regulatory cells. Based on our previous evidence that G-CSF-mobilized multipotent hematopoietic progenitors (MPP) can increase survival and proliferation of natural regulatory T cells (Tregs) in autoimmune disorders, we addressed the question how these cells come into play in mice and humans in an alloimmune setting. Using a C57BL/6 mouse model, we demonstrate that mobilized MPP enhance the immunosuppressant effect exerted by Tregs, against alloreactive T lymphocytes, both in vitro and in vivo. They do so by migrating to sites of allopriming, interacting with donor Tregs and increasing their numbers, thus reducing the lethality of graft-versus-host disease (GVHD). Protection correlates likewise with increased allospecific Treg counts. Furthermore, we provide evidence for a phenotypically similar MPP population in humans, where it shares the capacity to promote selective Treg expansion in vitro. We postulate that G-CSF-mobilized MPPs might become a valuable cellular therapy to expand donor Tregs in vivo and prevent GVHD, thereby making allo-HSCT safer for the treatment of leukemia patients.
Collapse
Affiliation(s)
- Maud D’Aveni
- Université de Lorraine, CHRU Nancy, Hematology Department, Nancy, France
- Université de Lorraine, UMR 7365 CNRS, IMoPA, Nancy, France
| | - Anne-Béatrice Notarantonio
- Université de Lorraine, CHRU Nancy, Hematology Department, Nancy, France
- Université de Lorraine, UMR 7365 CNRS, IMoPA, Nancy, France
| | - Viviane A. Agbogan
- Department of Immunology, Infectiology and Haematology, Université de Paris, Inserm U1151, CNRS UMR 8253, Institut Necker Enfants Malades (INEM), Paris, France
| | - Allan Bertrand
- Université de Lorraine, UMR 7365 CNRS, IMoPA, Nancy, France
| | - Guillemette Fouquet
- Université de Paris, INSERM UMR 1163, Imagine Institute, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, Paris, France
| | - Pauline Gastineau
- Department of Immunology, Infectiology and Haematology, Université de Paris, Inserm U1151, CNRS UMR 8253, Institut Necker Enfants Malades (INEM), Paris, France
| | - Meriem Garfa-Traoré
- Université de Paris, SFR Necker-UMS 3633/US24-Structure Fédérative de Recherche Necker, Plateforme d’Imagerie Cellulaire, Paris, France
| | - Marcelo De Carvalho
- Université de Lorraine, UMR 7365 CNRS, IMoPA, Nancy, France
- Université de Lorraine, CHRU Nancy, Immunology Department, Nancy, France
| | - Olivier Hermine
- Université de Paris, INSERM UMR 1163, Imagine Institute, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, Paris, France
| | - Marie-Thérèse Rubio
- Université de Lorraine, CHRU Nancy, Hematology Department, Nancy, France
- Université de Lorraine, UMR 7365 CNRS, IMoPA, Nancy, France
| | - Flora Zavala
- Department of Immunology, Infectiology and Haematology, Université de Paris, Inserm U1151, CNRS UMR 8253, Institut Necker Enfants Malades (INEM), Paris, France
| |
Collapse
|
2
|
Korniotis S, D'Aveni M, Hergalant S, Letscher H, Tejerina E, Gastineau P, Agbogan VA, Gras C, Fouquet G, Rossignol J, Chèvre JC, Cagnard N, Rubio MT, Hermine O, Zavala F. Mobilized Multipotent Hematopoietic Progenitors Stabilize and Expand Regulatory T Cells to Protect Against Autoimmune Encephalomyelitis. Front Immunol 2020; 11:607175. [PMID: 33424854 PMCID: PMC7786289 DOI: 10.3389/fimmu.2020.607175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/19/2020] [Indexed: 12/14/2022] Open
Abstract
Achieving immunoregulation via in vivo expansion of Foxp3+ regulatory CD4+ T cells (Treg) remains challenging. We have shown that mobilization confers to multipotent hematopoietic progenitors (MPPs) the capacity to enhance Treg proliferation. Transcriptomic analysis of Tregs co-cultured with MPPs revealed enhanced expression of genes stabilizing the suppressive function of Tregs as well as the activation of IL-1β-driven pathways. Adoptive transfer of only 25,000 MPPs effectively reduced the development of experimental autoimmune encephalomyelitis (EAE), a pre-clinical model for multiple sclerosis (MS). Production of the pathogenic cytokines IL-17 and GM-CSF by spinal cord-derived CD4+ T-cells in MPP-protected recipients was reduced while Treg expansion was enhanced. Treg depletion once protection by MPPs was established, triggered disease relapse to the same level as in EAE mice without MPP injection. The key role of IL-1β was further confirmed in vivo by the lack of protection against EAE in recipients of IL-1β-deficient MPPs. Mobilized MPPs may thus be worth considering for cell therapy of MS either per se or for enrichment of HSC grafts in autologous bone marrow transplantation already implemented in patients with severe refractory multiple sclerosis.
Collapse
Affiliation(s)
- Sarantis Korniotis
- Université de Paris, Inserm U1151, CNRS UMR 8253, Institut Necker Enfants Malades (INEM), Paris, France
| | - Maud D'Aveni
- Université de Paris, INSERM UMR 1163, Institut Imagine, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, Paris, France.,Université de Lorraine, UMR 7365, IMoPA, Vandoeuvre-lès-Nancy, France.,Université de Lorraine, CHRU Nancy, Hematology Department, Nancy, France
| | | | - Hélène Letscher
- Université de Paris, Inserm U1151, CNRS UMR 8253, Institut Necker Enfants Malades (INEM), Paris, France
| | - Emmanuel Tejerina
- Université de Paris, Inserm U1151, CNRS UMR 8253, Institut Necker Enfants Malades (INEM), Paris, France
| | - Pauline Gastineau
- Université de Paris, Inserm U1151, CNRS UMR 8253, Institut Necker Enfants Malades (INEM), Paris, France
| | - Viviane A Agbogan
- Université de Paris, Inserm U1151, CNRS UMR 8253, Institut Necker Enfants Malades (INEM), Paris, France
| | - Christophe Gras
- Université de Paris, Inserm U1151, CNRS UMR 8253, Institut Necker Enfants Malades (INEM), Paris, France
| | - Guillemette Fouquet
- Université de Paris, INSERM UMR 1163, Institut Imagine, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, Paris, France
| | - Julien Rossignol
- Université de Paris, INSERM UMR 1163, Institut Imagine, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, Paris, France
| | - Jean-Claude Chèvre
- Université de Lorraine, Inserm U1256, NGERE, Vandoeuvre-lès-Nancy, France
| | | | - Marie-Thérèse Rubio
- Université de Lorraine, UMR 7365, IMoPA, Vandoeuvre-lès-Nancy, France.,Université de Lorraine, CHRU Nancy, Hematology Department, Nancy, France
| | - Olivier Hermine
- Université de Paris, INSERM UMR 1163, Institut Imagine, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, Paris, France
| | - Flora Zavala
- Université de Paris, Inserm U1151, CNRS UMR 8253, Institut Necker Enfants Malades (INEM), Paris, France
| |
Collapse
|
3
|
Brunet de la Grange P, Vlaski M, Duchez P, Chevaleyre J, Lapostolle V, Boiron JM, Praloran V, Ivanovic Z. Long-term repopulating hematopoietic stem cells and “side population” in human steady state peripheral blood. Stem Cell Res 2013; 11:625-33. [DOI: 10.1016/j.scr.2013.04.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 04/03/2013] [Indexed: 11/26/2022] Open
|
4
|
Chomel JC, Sorel N, Bonnet ML, Bertrand A, Brizard F, Roy L, Guilhot F, Turhan AG. Extensive analysis of the T315I substitution and detection of additional ABL mutations in progenitors and primitive stem cell compartment in a patient with tyrosine kinase inhibitor-resistant chronic myeloid leukemia. Leuk Lymphoma 2010; 51:2103-11. [DOI: 10.3109/10428194.2010.520774] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
5
|
Pierre-Louis O, Clay D, Brunet de la Grange P, Blazsek I, Desterke C, Guerton B, Blondeau C, Malfuson JV, Prat M, Bennaceur-Griscelli A, Lataillade JJ, Le Bousse-Kerdilès MC. Dual SP/ALDH Functionalities Refine the Human Hematopoietic Lin−CD34+CD38−Stem/Progenitor Cell Compartment. Stem Cells 2009; 27:2552-62. [DOI: 10.1002/stem.186] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
6
|
Bonig H, Priestley GV, Oehler V, Papayannopoulou T. Hematopoietic progenitor cells (HPC) from mobilized peripheral blood display enhanced migration and marrow homing compared to steady-state bone marrow HPC. Exp Hematol 2007; 35:326-34. [PMID: 17258081 PMCID: PMC1847625 DOI: 10.1016/j.exphem.2006.09.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Revised: 08/21/2006] [Accepted: 09/25/2006] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Faster engraftment of G-CSF-mobilized peripheral blood (MPB) transplants compared to steady-state bone marrow (ssBM) is well documented and clinically relevant. A number of different factors likely contribute to this outcome. In the present study we explored whether independent of cell number there are intrinsic differences in the efficiency of progenitor cell homing to marrow between MPB and ssBM. METHODS Mobilization was achieved by continuous infusion of G-CSF alone or in combination with other mobilizing agents. In vivo homing assays, in vitro migration assays, gene expression analysis, and flow cytometry were utilized to compare homing-related in vivo and in vitro properties of MPB and ssBM HPC. RESULTS Marrow homing of murine MPB HPC, generated by different mobilizing schemes, was reproducibly significantly superior to that of ssBM, in lethally irradiated as well as in nonirradiated hosts. This phenotype was independent of MMP9, selectins, and beta2- and alpha4-integrins. Superior homing was also observed for human MPB HPC transplanted into NOD/SCIDbeta2microglobulin(-/-) recipients. Inhibition of HPC migration abrogated the homing advantage of MPB but did not affect homing of ssBM HPC, whereas enhancement of motility by CD26 inhibition improved marrow homing only of ssBM HPC. Enhanced SDF-1-dependent chemotaxis and low CD26 expression on MPB HPC were identified as potential contributing factors. Significant contributions of the putative alternative SDF-1 receptor, RDC1, were unlikely based on gene expression data. CONCLUSION The data suggest increased motility as a converging endpoint of complex changes seen in MPB HPC which is likely responsible for their favorable homing.
Collapse
Affiliation(s)
- Halvard Bonig
- Department of Medicine/Hematology, University of Washington, Seattle, WA 98195, USA.
| | | | | | | |
Collapse
|