1
|
Kao PHN, Ch'ng JH, Chong KKL, Stocks CJ, Wong SL, Kline KA. Enterococcus faecalis suppresses Staphylococcus aureus-induced NETosis and promotes bacterial survival in polymicrobial infections. FEMS MICROBES 2023; 4:xtad019. [PMID: 37900578 PMCID: PMC10608956 DOI: 10.1093/femsmc/xtad019] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/09/2023] [Accepted: 10/10/2023] [Indexed: 10/31/2023] Open
Abstract
Enterococcus faecalis is an opportunistic pathogen that is frequently co-isolated with other microbes in wound infections. While E. faecalis can subvert the host immune response and promote the survival of other microbes via interbacterial synergy, little is known about the impact of E. faecalis-mediated immune suppression on co-infecting microbes. We hypothesized that E. faecalis can attenuate neutrophil-mediated responses in mixed-species infection to promote survival of the co-infecting species. We found that neutrophils control E. faecalis infection via phagocytosis, ROS production, and degranulation of azurophilic granules, but it does not trigger neutrophil extracellular trap formation (NETosis). However, E. faecalis attenuates Staphylococcus aureus-induced NETosis in polymicrobial infection by interfering with citrullination of histone, suggesting E. faecalis can actively suppress NETosis in neutrophils. Residual S. aureus-induced NETs that remain during co-infection do not impact E. faecalis, further suggesting that E. faecalis possess mechanisms to evade or survive NET-associated killing mechanisms. E. faecalis-driven reduction of NETosis corresponds with higher S. aureus survival, indicating that this immunomodulating effect could be a risk factor in promoting the virulence polymicrobial infection. These findings highlight the complexity of the immune response to polymicrobial infections and suggest that attenuated pathogen-specific immune responses contribute to pathogenesis in the mammalian host.
Collapse
Affiliation(s)
- Patrick Hsien-Neng Kao
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551
| | - Jun-Hong Ch'ng
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore 117456
- Department of Surgery Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597
- Infectious Disease Translational Research Program, National University Health System, Singapore 117545
| | - Kelvin K L Chong
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551
| | - Claudia J Stocks
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551
| | - Siu Ling Wong
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921
- Tan Tock Seng Hospital, National Healthcare Group, Singapore 308433
| | - Kimberly A Kline
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland 1211
| |
Collapse
|
2
|
Eisfeld AJ, Halfmann PJ, Wendler JP, Kyle JE, Burnum-Johnson KE, Peralta Z, Maemura T, Walters KB, Watanabe T, Fukuyama S, Yamashita M, Jacobs JM, Kim YM, Casey CP, Stratton KG, Webb-Robertson BJM, Gritsenko MA, Monroe ME, Weitz KK, Shukla AK, Tian M, Neumann G, Reed JL, van Bakel H, Metz TO, Smith RD, Waters KM, N'jai A, Sahr F, Kawaoka Y. Multi-platform 'Omics Analysis of Human Ebola Virus Disease Pathogenesis. Cell Host Microbe 2017; 22:817-829.e8. [PMID: 29154144 DOI: 10.1016/j.chom.2017.10.011] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/13/2017] [Accepted: 09/20/2017] [Indexed: 12/11/2022]
Abstract
The pathogenesis of human Ebola virus disease (EVD) is complex. EVD is characterized by high levels of virus replication and dissemination, dysregulated immune responses, extensive virus- and host-mediated tissue damage, and disordered coagulation. To clarify how host responses contribute to EVD pathophysiology, we performed multi-platform 'omics analysis of peripheral blood mononuclear cells and plasma from EVD patients. Our results indicate that EVD molecular signatures overlap with those of sepsis, imply that pancreatic enzymes contribute to tissue damage in fatal EVD, and suggest that Ebola virus infection may induce aberrant neutrophils whose activity could explain hallmarks of fatal EVD. Moreover, integrated biomarker prediction identified putative biomarkers from different data platforms that differentiated survivors and fatalities early after infection. This work reveals insight into EVD pathogenesis, suggests an effective approach for biomarker identification, and provides an important community resource for further analysis of human EVD severity.
Collapse
Affiliation(s)
- Amie J Eisfeld
- Department of Pathobiological Sciences, University of Wisconsin - Madison (UW-Madison), Madison, WI 53706, USA
| | - Peter J Halfmann
- Department of Pathobiological Sciences, University of Wisconsin - Madison (UW-Madison), Madison, WI 53706, USA
| | - Jason P Wendler
- Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory (PNNL), Richland, WA 99352, USA
| | - Jennifer E Kyle
- Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory (PNNL), Richland, WA 99352, USA
| | - Kristin E Burnum-Johnson
- Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory (PNNL), Richland, WA 99352, USA
| | - Zuleyma Peralta
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai (ISMMS), New York City, NY 10029, USA
| | - Tadashi Maemura
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science (IMS), University of Tokyo, Tokyo 108-8639, Japan
| | - Kevin B Walters
- Department of Pathobiological Sciences, University of Wisconsin - Madison (UW-Madison), Madison, WI 53706, USA
| | - Tokiko Watanabe
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science (IMS), University of Tokyo, Tokyo 108-8639, Japan
| | - Satoshi Fukuyama
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science (IMS), University of Tokyo, Tokyo 108-8639, Japan
| | - Makoto Yamashita
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science (IMS), University of Tokyo, Tokyo 108-8639, Japan
| | - Jon M Jacobs
- Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory (PNNL), Richland, WA 99352, USA
| | - Young-Mo Kim
- Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory (PNNL), Richland, WA 99352, USA
| | - Cameron P Casey
- Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory (PNNL), Richland, WA 99352, USA
| | - Kelly G Stratton
- Computing and Analytics Division, National Security Directorate, PNNL, Richland, WA 99352, USA
| | | | - Marina A Gritsenko
- Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory (PNNL), Richland, WA 99352, USA
| | - Matthew E Monroe
- Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory (PNNL), Richland, WA 99352, USA
| | - Karl K Weitz
- Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory (PNNL), Richland, WA 99352, USA
| | - Anil K Shukla
- Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory (PNNL), Richland, WA 99352, USA
| | - Mingyuan Tian
- Department of Chemical and Biological Engineering, UW-Madison, Madison, WI 53706, USA
| | - Gabriele Neumann
- Department of Pathobiological Sciences, University of Wisconsin - Madison (UW-Madison), Madison, WI 53706, USA
| | - Jennifer L Reed
- Department of Chemical and Biological Engineering, UW-Madison, Madison, WI 53706, USA
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai (ISMMS), New York City, NY 10029, USA; Icahn Institute for Genomics and Multiscale Biology, ISMMS, New York City, NY 10029, USA.
| | - Thomas O Metz
- Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory (PNNL), Richland, WA 99352, USA.
| | - Richard D Smith
- Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory (PNNL), Richland, WA 99352, USA.
| | - Katrina M Waters
- Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory (PNNL), Richland, WA 99352, USA.
| | - Alhaji N'jai
- Department of Pathobiological Sciences, University of Wisconsin - Madison (UW-Madison), Madison, WI 53706, USA; Department of Biological Sciences, Fourah Bay College, College of Medicine & Allied Health Sciences, University of Sierra Leone, Freetown, Sierra Leone
| | - Foday Sahr
- 34(th) Regimental Military Hospital at Wilberforce, Freetown, Sierra Leone.
| | - Yoshihiro Kawaoka
- Department of Pathobiological Sciences, University of Wisconsin - Madison (UW-Madison), Madison, WI 53706, USA; Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science (IMS), University of Tokyo, Tokyo 108-8639, Japan; International Research Center for Infectious Diseases, IMS, University of Tokyo, Tokyo 108-8639, Japan.
| |
Collapse
|
3
|
CD16 expression on monocytes in healthy individuals but not schistosome-infected patients is positively associated with levels of parasite-specific IgG and IgG1. PLoS Negl Trop Dis 2014; 8:e3049. [PMID: 25101623 PMCID: PMC4125298 DOI: 10.1371/journal.pntd.0003049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 06/16/2014] [Indexed: 02/06/2023] Open
Abstract
Human IgG1 antibody responses are associated with protection against Schistosoma haematobium infection and are now a target for schistosome vaccine development. This study aimed to investigate the relationship between total IgG and the IgG subclasses and the monocyte IgG receptor, known as FcγRIIIa or CD16, in schistosome exposed people. Systemic levels of schistosome-specific anti-adult worm total IgG and IgG subclass titres were measured by ELISA in 100 individuals from an S. haematobium endemic area in Zimbabwe and, using parametric statistical methods and regression analysis, related to the levels of CD16 expression on individuals' circulating monocytes, determined via flow cytometry. Monocyte CD16 expression rose with parasite-specific total IgG and IgG1 in healthy participants, but not in schistosome infected patients. Similar to parasite-specific IgG and IgG1, CD16 expression in healthy individuals is associated with protection against schistosome infection. This relationship indicates a mechanistic link between the innate and adaptive immune responses to helminth infection in protection against infection. Further understanding the elements of a protective immune response in schistosomiasis may aid in efforts to develop a protective vaccine against this disease. Schistosomiasis is a parasitic disease caused by the parasite Schistosoma spp. Over 240 million people are infected worldwide, mainly in Sub-Saharan Africa, but an efficacious, protective vaccine has yet to be found. Protection against schistosome infection in individuals living in endemic areas is mediated by antibodies. In particular, IgG1 antibody has been shown to be protective against infection in individuals living in endemic areas, and eliciting IgG1 production has become a cornerstone of vaccine development efforts. However, little is known about the mechanisms by which IgG1 induces protection. The cell surface molecule CD16 is an IgG antibody receptor expressed on monocytes and binds preferentially to IgG antibody subclasses. The work presented here thus investigates the relationship between IgG levels and the monocyte CD16 receptor in a population endemically exposed to infection with schistosomes. We present results linking CD16 expression with IgG1 levels, whereby uninfected individuals have a positive relationship between IgG1 and CD16 expression levels, while schistosome infected individuals did not show any statistically significant relationship between the two. Thus we provide evidence to suggest a mechanistic link between the innate and adaptive immune response in parasitic infection, associating monocyte CD16 expression with a protective immune response.
Collapse
|
4
|
Ackerman ME, Alter G. Opportunities to exploit non-neutralizing HIV-specific antibody activity. Curr HIV Res 2014; 11:365-77. [PMID: 24191934 DOI: 10.2174/1570162x113116660058] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 07/16/2013] [Accepted: 08/03/2013] [Indexed: 12/22/2022]
Abstract
Antibodies act as a nexus between innate and adaptive immunity: they provide a means to engage a spectrum of innate immune effector cells in order to clear viral particles and infected cells and prime antigen presentation. This functional landscape is remarkably complex, and depends on antibody isotype, subclass, and glycosylation; the expression levels and patterns of a suite of Fc receptors with both complementary and opposing activities; and a host of innate immune cells capable of differential responses to opsonized particles and present at different sites. In vivo, even neutralizing antibodies rely on their ability to act as molecular beacons and recruit innate immune effector cells in order to provide protection, and results from both human and macaque studies have implicated these effector functions in vaccinemediated protection. Thus, while enhancing effector function is a tractable handle for potentiating antibody-mediated protection from HIV infection, success will depend critically on leveraging understanding of the means by which antibodies with specific functional profiles could be elicited, which effector functions could provide optimal protection, and perhaps most critically, how to efficiently recruit the innate effector cells present at sites of infection.
Collapse
Affiliation(s)
- Margaret E Ackerman
- Ragon Institute of MGH, MIT, and Harvard University, Cambridge, MA 02139, USA.
| | | |
Collapse
|
6
|
Pane JA, Webster NL, Graham KL, Holloway G, Zufferey C, Coulson BS. Rotavirus acceleration of murine type 1 diabetes is associated with a T helper 1-dependent specific serum antibody response and virus effects in regional lymph nodes. Diabetologia 2013; 56:573-82. [PMID: 23238791 DOI: 10.1007/s00125-012-2798-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 11/16/2012] [Indexed: 01/16/2023]
Abstract
AIMS/HYPOTHESIS Rotavirus infection in at-risk children correlates with production of serum autoantibodies indicative of type 1 diabetes progression. Oral infection with rhesus monkey rotavirus (RRV) accelerates diabetes onset in mice. This relates to their rotavirus-specific serum antibody titre and local pro-inflammatory cytokine induction without pancreatic infection. Our aim was to further investigate the roles of serum antibodies and viral extra-intestinal spread in diabetes acceleration by rotavirus. METHODS Rotavirus-specific serum antibody production was detected by ELISA in diabetes-prone mice given either inactivated or low-dose RRV, in relation to their diabetes development. Serum anti-rotavirus antibody titres and infectious virus in lymph nodes were measured in mice given RRV or porcine rotavirus CRW-8. In lymph node cells, rotavirus antigen presence and immune activation were determined by flow cytometry, in conjunction with cytokine mRNA levels. RESULTS Acceleration of diabetes by RRV required virus replication, which correlated with antibody presence. CRW-8 induced similar specific total immunoglobulin and IgA titres to those induced by RRV, but did not accelerate diabetes. RRV alone elicited specific serum IgG antibodies with a T helper (Th)1 bias, spread to regional lymph nodes and activated antigen-presenting cells at these sites. RRV increased Th1-specific cytokine expression in pancreatic lymph nodes. Diabetes onset was more rapid in the RRV-infected mice with the greater Th1 bias. CONCLUSIONS/INTERPRETATION Acceleration of murine diabetes by rotavirus is virus strain-specific and associated with virus spread to regional lymph nodes, activation of antigen-presenting cells at these sites and induction of a Th1-dominated antibody and cytokine response.
Collapse
Affiliation(s)
- J A Pane
- Department of Microbiology and Immunology, Gate 11, Royal Parade, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | | | | | | | | | | |
Collapse
|
7
|
Dugast AS, Tonelli A, Berger CT, Ackerman ME, Sciaranghella G, Liu Q, Sips M, Toth I, Piechocka-Trocha A, Ghebremichael M, Alter G. Decreased Fc receptor expression on innate immune cells is associated with impaired antibody-mediated cellular phagocytic activity in chronically HIV-1 infected individuals. Virology 2011; 415:160-7. [PMID: 21565376 PMCID: PMC3112178 DOI: 10.1016/j.virol.2011.03.012] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 01/03/2011] [Accepted: 03/15/2011] [Indexed: 01/10/2023]
Abstract
In addition to neutralization, antibodies mediate other antiviral activities including antibody-dependent cellular phagocytosis (ADCP), antibody-dependent cellular cytotoxicity (ADCC), as well as complement deposition. While it is established that progressive HIV infection is associated with reduced ADCC and ADCP, the underlying mechanism for this loss of function is unknown. Here we report considerable changes in FcR expression over the course of HIV infection on both mDCs and monocytes, including elevated FcγRI expression in acute HIV infection and reduced expression of FcγRII and FcγRIIIa in chronic HIV infection. Furthermore, selective blockade of FcγRII alone was associated with a loss in ADCP activity, suggesting that FcγRII plays a central role in modulating ADCP. Overall, HIV infection is associated with a number of changes in FcR expression on phagocytic cells that are associated with changes in their ability to respond to antibody-opsonized targets, potentially contributing to a failure in viral clearance in progressive HIV-1 infection.
Collapse
Affiliation(s)
- Anne-Sophie Dugast
- Ragon Institute of Massachusetts General Hospital, Harvard University and Massachusetts Institute of Technology (former known as Partners AIDS Research Center of Massachusetts General Hospital) Boston, MA
| | - Andrew Tonelli
- Ragon Institute of Massachusetts General Hospital, Harvard University and Massachusetts Institute of Technology (former known as Partners AIDS Research Center of Massachusetts General Hospital) Boston, MA
| | - Christoph T. Berger
- Ragon Institute of Massachusetts General Hospital, Harvard University and Massachusetts Institute of Technology (former known as Partners AIDS Research Center of Massachusetts General Hospital) Boston, MA
| | - Margaret E. Ackerman
- Ragon Institute of Massachusetts General Hospital, Harvard University and Massachusetts Institute of Technology (former known as Partners AIDS Research Center of Massachusetts General Hospital) Boston, MA
| | - Gaia Sciaranghella
- Ragon Institute of Massachusetts General Hospital, Harvard University and Massachusetts Institute of Technology (former known as Partners AIDS Research Center of Massachusetts General Hospital) Boston, MA
| | - Qingquan Liu
- Ragon Institute of Massachusetts General Hospital, Harvard University and Massachusetts Institute of Technology (former known as Partners AIDS Research Center of Massachusetts General Hospital) Boston, MA
| | - Magdalena Sips
- Ragon Institute of Massachusetts General Hospital, Harvard University and Massachusetts Institute of Technology (former known as Partners AIDS Research Center of Massachusetts General Hospital) Boston, MA
| | - Ildiko Toth
- Ragon Institute of Massachusetts General Hospital, Harvard University and Massachusetts Institute of Technology (former known as Partners AIDS Research Center of Massachusetts General Hospital) Boston, MA
| | - Alicja Piechocka-Trocha
- Ragon Institute of Massachusetts General Hospital, Harvard University and Massachusetts Institute of Technology (former known as Partners AIDS Research Center of Massachusetts General Hospital) Boston, MA
| | - Musie Ghebremichael
- Ragon Institute of Massachusetts General Hospital, Harvard University and Massachusetts Institute of Technology (former known as Partners AIDS Research Center of Massachusetts General Hospital) Boston, MA
- Dana Farber Cancer Institute Boston, MA
| | - Galit Alter
- Ragon Institute of Massachusetts General Hospital, Harvard University and Massachusetts Institute of Technology (former known as Partners AIDS Research Center of Massachusetts General Hospital) Boston, MA
| |
Collapse
|