1
|
Bando K, Tanaka Y, Takahashi T, Sugawara S, Mizoguchi I, Endo Y. Histamine acts via H4-receptor stimulation to cause augmented inflammation when lipopolysaccharide is co-administered with a nitrogen-containing bisphosphonate. Inflamm Res 2022; 71:1603-1617. [DOI: 10.1007/s00011-022-01650-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 06/22/2022] [Accepted: 09/14/2022] [Indexed: 11/28/2022] Open
|
2
|
Dib K, El Banna A, Radulescu C, Lopez Campos G, Sheehan G, Kavanagh K. Histamine Produced by Gram-Negative Bacteria Impairs Neutrophil's Antimicrobial Response by Engaging the Histamine 2 Receptor. J Innate Immun 2022; 15:153-173. [PMID: 35858582 PMCID: PMC10643892 DOI: 10.1159/000525536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/12/2022] [Indexed: 11/19/2022] Open
Abstract
We found that histamine (10-9 M) did not have any effect on the in vitro capture of Escherichia coli by neutrophils but accelerated its intracellular killing. In contrast, histamine (10-6 M) delayed the capture of Escherichia coli by neutrophils and reduced the amounts of pHrodo zymosan particles inside acidic mature phagosomes. Histamine acted through the H4R and the H2R, which are coupled to the Src family tyrosine kinases or the cAMP/protein kinase A pathway, respectively. The protein kinase A inhibitor H-89 abrogated the delay in bacterial capture induced by histamine (10-6 M) and the Src family tyrosine kinase inhibitor PP2 blocked histamine (10-9 M) induced acceleration of bacterial intracellular killing and tyrosine phosphorylation of proteins. To investigate the role of histamine in pathogenicity, we designed an Acinetobacter baumannii strain deficient in histamine production (hdc::TOPO). Galleria mellonella larvae inoculated with the wild-type Acinetobacter baumannii ATCC 17978 strain (1.1 × 105 CFU) died rapidly (100% death within 40 h) but not when inoculated with the Acinetobacter baumannii hdc::TOPO mutant (10% mortality). The concentration of histamine rose in the larval haemolymph upon inoculation of the wild type but not the Acinetobacter baumannii hdc::TOPO mutant, such concentration of histamine blocks the ability of hemocytes from Galleria mellonella to capture Candida albicans in vitro. Thus, bacteria-producing histamine, by maintaining high levels of histamine, may impair neutrophil phagocytosis by hijacking the H2R.
Collapse
Affiliation(s)
- Karim Dib
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Amal El Banna
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Clara Radulescu
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Guillermo Lopez Campos
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Gerard Sheehan
- Department of Biology, Maynooth University, Maynooth, Ireland
| | - Kevin Kavanagh
- Department of Biology, Maynooth University, Maynooth, Ireland
| |
Collapse
|
3
|
Tuli JF, Ramezanpour M, Cooksley C, Psaltis AJ, Wormald P, Vreugde S. Association between mucosal barrier disruption by Pseudomonas aeruginosa exoproteins and asthma in patients with chronic rhinosinusitis. Allergy 2021; 76:3459-3469. [PMID: 34033126 DOI: 10.1111/all.14959] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 04/22/2021] [Accepted: 05/04/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Chronic rhinosinusitis (CRS) is a common chronic respiratory condition, frequently associated with asthma and affecting the majority of cystic fibrosis (CF) patients. Pseudomonas aeruginosa infections and biofilms have been implicated in recalcitrant CRS. One of the mechanisms of action for bacteria in CRS and CF is mucosal barrier disruption by secreted products that contribute to the inflammation. However, the role of biofilm and planktonic forms of P. aeruginosa in this process is not known. The aim is to determine the effect of P. aeruginosa exoproteins isolated from CF and non-CF CRS patients on the mucosal barrier. METHODS Exoproteins from 40 P. aeruginosa isolates were collected in planktonic and biofilm forms and applied to air-liquid interface (ALI) cultures of primary human nasal epithelial cells (HNECs). Mucosal barrier integrity was evaluated by transepithelial electrical resistance (TEER), passage of FITC-dextrans and immunofluorescence of tight junction proteins. Cytotoxicity assays were performed to measure cell viability, and IL-6 ELISA was carried out to evaluate pro-inflammatory effects. RESULTS Planktonic exoproteins from 20/40 (50%) clinical isolates had a significant detrimental effect on the barrier and significantly increased IL-6 production. Barrier disruption was characterized by a reduced TEER, increased permeability of FITC-dextrans and discontinuous immunolocalization of tight junction proteins and was significantly more prevalent in isolates harvested from patients with comorbid asthma (P < .05). CONCLUSION Exoproteins from planktonic P. aeruginosa clinical isolates from asthmatic CRS patients have detrimental effects on the mucosal barrier and induce IL-6 production potentially contributing to the mucosal inflammation in CRS patients.
Collapse
Affiliation(s)
- Jannatul Ferdoush Tuli
- Department of Surgery‐Otolaryngology, Head and Neck Surgery University of Adelaide Adelaide South Australia Australia
- Central Adelaide Local Health Network The Queen Elizabeth Hospital Woodville South South Australia Australia
| | - Mahnaz Ramezanpour
- Department of Surgery‐Otolaryngology, Head and Neck Surgery University of Adelaide Adelaide South Australia Australia
- Central Adelaide Local Health Network The Queen Elizabeth Hospital Woodville South South Australia Australia
| | - Clare Cooksley
- Department of Surgery‐Otolaryngology, Head and Neck Surgery University of Adelaide Adelaide South Australia Australia
- Central Adelaide Local Health Network The Queen Elizabeth Hospital Woodville South South Australia Australia
| | - Alkis James Psaltis
- Department of Surgery‐Otolaryngology, Head and Neck Surgery University of Adelaide Adelaide South Australia Australia
- Central Adelaide Local Health Network The Queen Elizabeth Hospital Woodville South South Australia Australia
| | - Peter‐John Wormald
- Department of Surgery‐Otolaryngology, Head and Neck Surgery University of Adelaide Adelaide South Australia Australia
- Central Adelaide Local Health Network The Queen Elizabeth Hospital Woodville South South Australia Australia
| | - Sarah Vreugde
- Department of Surgery‐Otolaryngology, Head and Neck Surgery University of Adelaide Adelaide South Australia Australia
- Central Adelaide Local Health Network The Queen Elizabeth Hospital Woodville South South Australia Australia
| |
Collapse
|
4
|
Chadha J, Harjai K, Chhibber S. Revisiting the virulence hallmarks of Pseudomonas aeruginosa: a chronicle through the perspective of quorum sensing. Environ Microbiol 2021; 24:2630-2656. [PMID: 34559444 DOI: 10.1111/1462-2920.15784] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 12/15/2022]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen and the leading cause of mortality among immunocompromised patients in clinical setups. The hallmarks of virulence in P. aeruginosa encompass six biologically competent attributes that cumulatively drive disease progression in a multistep manner. These multifaceted hallmarks lay the principal foundation for rationalizing the complexities of pseudomonal infections. They include factors for host colonization and bacterial motility, biofilm formation, production of destructive enzymes, toxic secondary metabolites, iron-chelating siderophores and toxins. This arsenal of virulence hallmarks is fostered and stringently regulated by the bacterial signalling system called quorum sensing (QS). The central regulatory functions of QS in controlling the timely expression of these virulence hallmarks for adaptation and survival drive the disease outcome. This review describes the intricate mechanisms of QS in P. aeruginosa and its role in shaping bacterial responses, boosting bacterial fitness. We summarize the virulence hallmarks of P. aeruginosa, relating them with the QS circuitry in clinical infections. We also examine the role of QS in the development of drug resistance and propose a novel antivirulence therapy to combat P. aeruginosa infections. This can prove to be a next-generation therapy that may eventually become refractory to the use of conventional antimicrobial treatments.
Collapse
Affiliation(s)
- Jatin Chadha
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Kusum Harjai
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Sanjay Chhibber
- Department of Microbiology, Panjab University, Chandigarh, India
| |
Collapse
|
5
|
Boehm T, Karer M, Matzneller P, Buchtele N, Ratzinger F, Petroczi K, Schoergenhofer C, Schwameis M, Burgmann H, Zeitlinger M, Jilma B. Human diamine oxidase is readily released from activated neutrophils ex vivo and in vivo but is rarely elevated in bacteremic patients. Int J Immunopathol Pharmacol 2021; 34:2058738420954945. [PMID: 32997559 PMCID: PMC7533923 DOI: 10.1177/2058738420954945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
During human diamine oxidase (DAO) ELISA development we noticed that in serum DAO concentrations appear to be higher when compared to plasma. Neutrophils contain DAO in the specific granules and we hypothesized that DAO is released from neutrophils during serum coagulation. If activation of neutrophils can release DAO, its concentrations might be elevated in vivo after lipopolysaccharide (LPS) administration and in bacteremic patients. Using blood from healthy volunteers DAO concentrations were measured ex vivo in serum, citrate, EDTA and heparin plasma over several hours and after activation of neutrophils. Lipopolysaccharide and granulocyte-colony stimulating factor (G-CSF) were administered to 15 and 8 healthy volunteers, respectively and DAO concentrations were measured at different timepoints. DAO antigen levels were also determined in three different subcohorts of patients with culture-proven bacteremia and high C-reactive protein (CRP) levels. DAO concentrations were elevated in a time-dependent manner in serum but not in EDTA or citrate plasma (P < 0.01). Neutrophil activation using phorbol myristate acetate (PMA) and zymosan dose-dependently caused DAO concentrations to be elevated more than 10-fold at both 22°C and 37°C (both P-values <0.001). Administration of LPS to healthy volunteers released DAO from neutrophils (P < 0.001). Of the 55 different bacteremic patients selected from three independent cohorts only 3 (5.4%) showed highly elevated DAO concentrations. Serum DAO concentrations do not accurately reflect circulating enzyme levels but coagulation-induced neutrophil activation and consequently DAO release. Only a few bacteremic patients show high DAO concentrations able to degrade histamine rapidly.
Collapse
Affiliation(s)
- Thomas Boehm
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Matthias Karer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Peter Matzneller
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Nina Buchtele
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Franz Ratzinger
- Division of Medical and Chemical Laboratory Diagnostics, Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Karin Petroczi
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | | | - Michael Schwameis
- Department of Emergency Medicine, Medical University of Vienna, Vienna, Austria
| | - Heinz Burgmann
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Markus Zeitlinger
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Bernd Jilma
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
6
|
Wang Y, Cao Q, Cao Q, Gan J, Sun N, Yang CG, Bae T, Wu M, Lan L. Histamine activates HinK to promote the virulence of Pseudomonas aeruginosa. Sci Bull (Beijing) 2021; 66:1101-1118. [PMID: 36654344 DOI: 10.1016/j.scib.2021.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/25/2020] [Accepted: 12/28/2020] [Indexed: 01/20/2023]
Abstract
During infections, bacteria stimulate host cells to produce and release histamine, which is a key mediator of vital cellular processes in animals. However, the mechanisms underlying the bacterial cell's ability to sense and respond to histamine are poorly understood. Herein, we show that HinK, a LysR-type transcriptional regulator, is required to evoke responses to histamine in Pseudomonas aeruginosa, an important human pathogen. HinK directly binds to and activates the promoter of genes involved in histamine uptake and metabolism, iron acquisition, and Pseudomonas quinolone signal (PQS) biosynthesis. The transcriptional regulatory activity of HinK is induced when histamine is present, and it occurs when HinK binds with imidazole-4-acetic acid (ImAA), a histamine metabolite whose production in P. aeruginosa depends on the HinK-activated histamine uptake and utilization operon hinDAC-pa0222. Importantly, the inactivation of HinK inhibits diverse pathogenic phenotypes of P. aeruginosa. These results suggest that histamine acts as an interkingdom signal and provide insights into the mechanism used by pathogenic bacteria to exploit host regulatory signals to promote virulence.
Collapse
Affiliation(s)
- Yaya Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Qiao Cao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; College of Life Science, Northwest University, Xi'an 710069, China
| | - Qin Cao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianhua Gan
- State Key Laboratory of Genetic Engineering, Shanghai Public Health Clinical Center, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 201438, China
| | - Ning Sun
- The State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Cai-Guang Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Taeok Bae
- Department of Microbiology and Immunology, Indiana University School of Medicine-Northwest, Gary IN 46408, USA
| | - Min Wu
- Department of Biomedical Sciences, University of North Dakota, Grand Forks ND 58203-9037, USA
| | - Lefu Lan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; NMPA Key Laboratory for Testing Technology of Pharmaceutical Microbiology, Shanghai Institute for Food and Drug Control, Shanghai 201203, China.
| |
Collapse
|
7
|
Morin F, Singh N, Mdzomba JB, Dumas A, Pernet V, Vallières L. Conditional Deletions of Hdc Confirm Roles of Histamine in Anaphylaxis and Circadian Activity but Not in Autoimmune Encephalomyelitis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 206:2029-2037. [PMID: 33846226 DOI: 10.4049/jimmunol.2000719] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 03/01/2021] [Indexed: 12/12/2022]
Abstract
Histamine is best known for its role in allergies, but it could also be involved in autoimmune diseases such as multiple sclerosis. However, studies using experimental autoimmune encephalomyelitis (EAE), the most widely used animal model for multiple sclerosis, have reported conflicting observations and suggest the implication of a nonclassical source of histamine. In this study, we demonstrate that neutrophils are the main producers of histamine in the spinal cord of EAE mice. To assess the role of histamine by taking into account its different cellular sources, we used CRISPR-Cas9 to generate conditional knockout mice for the histamine-synthesizing enzyme histidine decarboxylase. We found that ubiquitous and cell-specific deletions do not affect the course of EAE. However, neutrophil-specific deletion attenuates hypothermia caused by IgE-mediated anaphylaxis, whereas neuron-specific deletion reduces circadian activity. In summary, this study refutes the role of histamine in EAE, unveils a role for neutrophil-derived histamine in IgE-mediated anaphylaxis, and establishes a new mouse model to re-explore the inflammatory and neurologic roles of histamine.
Collapse
MESH Headings
- Anaphylaxis/genetics
- Anaphylaxis/immunology
- Anaphylaxis/metabolism
- Animals
- Cells, Cultured
- Circadian Rhythm/immunology
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Histamine/immunology
- Histamine/metabolism
- Histidine Decarboxylase/genetics
- Histidine Decarboxylase/immunology
- Histidine Decarboxylase/metabolism
- Humans
- Kaplan-Meier Estimate
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Multiple Sclerosis/genetics
- Multiple Sclerosis/immunology
- Multiple Sclerosis/metabolism
- Neutrophils/cytology
- Neutrophils/immunology
- Neutrophils/metabolism
- Spinal Cord/immunology
- Spinal Cord/metabolism
- Mice
Collapse
Affiliation(s)
- Françoise Morin
- Neuroscience Unit, University Hospital Center of Quebec, Laval University, Quebec City, Quebec, Canada
| | - Noopur Singh
- Neuroscience Unit, University Hospital Center of Quebec, Laval University, Quebec City, Quebec, Canada
| | - Julius Baya Mdzomba
- Regenerative Medicine Unit, University Hospital Center of Quebec, Laval University, Quebec City, Quebec, Canada
| | - Aline Dumas
- Neuroscience Unit, University Hospital Center of Quebec, Laval University, Quebec City, Quebec, Canada
| | - Vincent Pernet
- Regenerative Medicine Unit, University Hospital Center of Quebec, Laval University, Quebec City, Quebec, Canada
- Department of Neurology, Inselspital Bern, University Hospital, University of Bern, Bern, Switzerland
| | - Luc Vallières
- Neuroscience Unit, University Hospital Center of Quebec, Laval University, Quebec City, Quebec, Canada;
| |
Collapse
|
8
|
Pseudomonas aeruginosa as a Model To Study Chemosensory Pathway Signaling. Microbiol Mol Biol Rev 2021; 85:85/1/e00151-20. [PMID: 33441490 DOI: 10.1128/mmbr.00151-20] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bacteria have evolved a variety of signal transduction mechanisms that generate different outputs in response to external stimuli. Chemosensory pathways are widespread in bacteria and are among the most complex signaling mechanisms, requiring the participation of at least six proteins. These pathways mediate flagellar chemotaxis, in addition to controlling alternative functions such as second messenger levels or twitching motility. The human pathogen Pseudomonas aeruginosa has four different chemosensory pathways that carry out different functions and are stimulated by signal binding to 26 chemoreceptors. Recent research employing a diverse range of experimental approaches has advanced enormously our knowledge on these four pathways, establishing P. aeruginosa as a primary model organism in this field. In the first part of this article, we review data on the function and physiological relevance of chemosensory pathways as well as their involvement in virulence, whereas the different transcriptional and posttranscriptional regulatory mechanisms that govern pathway function are summarized in the second part. The information presented will be of help to advance the understanding of pathway function in other organisms.
Collapse
|
9
|
Gusareva ES, Gaultier NPE, Premkrishnan BNV, Kee C, Lim SBY, Heinle CE, Purbojati RW, Nee AP, Lohar SR, Yanqing K, Kharkov VN, Drautz-Moses DI, Stepanov VA, Schuster SC. Taxonomic composition and seasonal dynamics of the air microbiome in West Siberia. Sci Rep 2020; 10:21515. [PMID: 33299064 PMCID: PMC7726148 DOI: 10.1038/s41598-020-78604-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 11/24/2020] [Indexed: 12/18/2022] Open
Abstract
Here, we describe taxonomical composition, as well as seasonal and diel dynamics of airborne microbial communities in West Siberia. A total of 78 airborne biomass samples from 39 time intervals were analysed, within a temperature range of 48 °C (26 °C to - 22 °C). We observed a 5-170-fold decrease in DNA yield extracted from the airborne biomass in winter compared to summer, nevertheless, yielding sufficient material for metagenomic analysis. The airborne microbial communities included Actinobacteria and Proteobacteria, Ascomycota and Basidiomycota fungi as major components, as well as some Streptophyta plants. In summer, bacterial and fungal plant pathogens, and wood-rotting saprophytes were predominant. In winter, Ascomycota moulds and cold-related or stress environment bacterial species were enriched, while the fraction of wood-rotting and mushroom-forming Basidiomycota fungi was largely reduced. As recently reported for the tropical climate, the airborne microbial communities performed a diel cycle in summer, however, in winter diel dynamics were not observed.
Collapse
Affiliation(s)
- Elena S Gusareva
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.
| | - Nicolas P E Gaultier
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Balakrishnan N V Premkrishnan
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Carmon Kee
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Serene Boon Yuean Lim
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Cassie E Heinle
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Rikky W Purbojati
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Ang Poh Nee
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Sachin R Lohar
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Koh Yanqing
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Vladimir N Kharkov
- Research Institute of Medical Genetics, Tomsk National Research Medical Centre, Russian Academy of Sciences, Tomsk, Russian Federation, 634050
| | - Daniela I Drautz-Moses
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Vadim A Stepanov
- Research Institute of Medical Genetics, Tomsk National Research Medical Centre, Russian Academy of Sciences, Tomsk, Russian Federation, 634050
| | - Stephan C Schuster
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.
| |
Collapse
|
10
|
High-Affinity Chemotaxis to Histamine Mediated by the TlpQ Chemoreceptor of the Human Pathogen Pseudomonas aeruginosa. mBio 2018; 9:mBio.01894-18. [PMID: 30425146 PMCID: PMC6234866 DOI: 10.1128/mbio.01894-18] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Genome analyses indicate that many bacteria possess an elevated number of chemoreceptors, suggesting that these species are able to perform chemotaxis to a wide variety of compounds. The scientific community is now only beginning to explore this diversity and to elucidate the corresponding physiological relevance. The discovery of histamine chemotaxis in the human pathogen Pseudomonas aeruginosa provides insight into tactic movements that occur within the host. Since histamine is released in response to bacterial pathogens, histamine chemotaxis may permit bacterial migration and accumulation at infection sites, potentially modulating, in turn, quorum-sensing-mediated processes and the expression of virulence genes. As a consequence, the modulation of histamine chemotaxis by signal analogues may result in alterations of the bacterial virulence. As the first report of bacterial histamine chemotaxis, this study lays the foundation for the exploration of the physiological relevance of histamine chemotaxis and its role in pathogenicity. Histamine is a key biological signaling molecule. It acts as a neurotransmitter in the central and peripheral nervous systems and coordinates local inflammatory responses by modulating the activity of different immune cells. During inflammatory processes, including bacterial infections, neutrophils stimulate the production and release of histamine. Here, we report that the opportunistic human pathogen Pseudomonas aeruginosa exhibits chemotaxis toward histamine. This chemotactic response is mediated by the concerted action of the TlpQ, PctA, and PctC chemoreceptors, which display differing sensitivities to histamine. Low concentrations of histamine were sufficient to activate TlpQ, which binds histamine with an affinity of 639 nM. To explore this binding, we resolved the high-resolution structure of the TlpQ ligand binding domain in complex with histamine. It has an unusually large dCACHE domain and binds histamine through a highly negatively charged pocket at its membrane distal module. Chemotaxis to histamine may play a role in the virulence of P. aeruginosa by recruiting cells at the infection site and consequently modulating the expression of quorum-sensing-dependent virulence genes. TlpQ is the first bacterial histamine receptor to be described and greatly differs from human histamine receptors, indicating that eukaryotes and bacteria have pursued different strategies for histamine recognition.
Collapse
|
11
|
Galkina SI, Fedorova NV, Ksenofontov AL, Stadnichuk VI, Baratova LA, Sud'Ina GF. Neutrophils as a source of branched-chain, aromatic and positively charged free amino acids. Cell Adh Migr 2018; 13:98-105. [PMID: 30359173 PMCID: PMC6527394 DOI: 10.1080/19336918.2018.1540903] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Neutrophils release branched-chain (valine, isoleucine, leucine), aromatic (tyrosine, phenylalanine) and positively charged free amino acids (arginine, ornithine, lysine, hydroxylysine, histidine) when adhere and spread onto fibronectin. In the presence of agents that impair cell spreading or adhesion (cytochalasin D, fMLP, nonadhesive substrate), neutrophils release the same amino acids, except for a sharp decrease in hydroxylysine and an increase in phenylalanine, indicating their special connection with cell adhesion. Plasma of patients with diabetes is characterized by an increased content of branched-chain and aromatic amino acids and a reduced ratio of arginine/ornithine compared to healthy human plasma. Our data showed that the secretion of neutrophils, regardless of their adhesion state, can contribute to this shift in the amino acid content. Abbreviations: BCAAs: branched-chain amino acids; Е2: 17β-estradiol; LPS: lipopolysaccharide from Salmonella enterica serovar Typhimurium; fMLP: N-formylmethionyl-leucyl-phenylalanine.
Collapse
Affiliation(s)
- Svetlana I Galkina
- a A. N. Belozersky Institute of Physico-Chemical Biology , Lomonosov Moscow State University , Moscow , Russia
| | - Natalia V Fedorova
- a A. N. Belozersky Institute of Physico-Chemical Biology , Lomonosov Moscow State University , Moscow , Russia
| | - Alexander L Ksenofontov
- a A. N. Belozersky Institute of Physico-Chemical Biology , Lomonosov Moscow State University , Moscow , Russia
| | | | - Ludmila A Baratova
- a A. N. Belozersky Institute of Physico-Chemical Biology , Lomonosov Moscow State University , Moscow , Russia
| | - Galina F Sud'Ina
- a A. N. Belozersky Institute of Physico-Chemical Biology , Lomonosov Moscow State University , Moscow , Russia
| |
Collapse
|
12
|
The Microbial Endocrinology of Pseudomonas aeruginosa: Inflammatory and Immune Perspectives. Arch Immunol Ther Exp (Warsz) 2018. [PMID: 29541797 DOI: 10.1007/s00005-018-0510-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Pseudomonas aeruginosa is a major pathogen responsible for both acute and chronic infection. Known as a colonising pathogen of the cystic fibrosis (CF) lung, it is implicated in other settings such as bronchiectasis. It has the ability to cause acute disseminated or localised infection particularly in the immunocompromised. Human hormones have been highlighted as potential regulators of bacterial virulence through crosstalk between analogous "quorum sensing" (QS) systems present in the bacteria that respond to mammalian hormones. Pseudomonas aeruginosa is known to utilise interconnected QS systems to coordinate its virulence and evade various aspects of the host immune system activated in response to infection. Several human hormones demonstrate an influence on P. aeruginosa growth and virulence. This inter-kingdom signalling, termed "microbial endocrinology" has important implications for host-microbe interaction during infection and, potentially opens up novel avenues for therapeutic intervention. This phenomenon, supported by the existence of sexual dichotomies in both microbial infection and chronic lung diseases such as CF is potentially explained by sex hormones and their influence on the infective process. This review summarises our current understanding of the microbial endocrinology of P. aeruginosa, including its endogenous QS systems and their intersection with human endocrinology, pathogenesis of infection and the host immune system.
Collapse
|
13
|
Recruitment of Neutrophils Mediated by Vγ2 γδ T Cells Deteriorates Liver Fibrosis Induced by Schistosoma japonicum Infection in C57BL/6 Mice. Infect Immun 2017; 85:IAI.01020-16. [PMID: 28507072 PMCID: PMC5520426 DOI: 10.1128/iai.01020-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 05/01/2017] [Indexed: 12/13/2022] Open
Abstract
Conventional adaptive T cell responses contribute to the pathogenesis of Schistosoma japonicum infection, leading to liver fibrosis. However, the role of gamma-delta (γδ) T cells in this disease is less clear. γδ T cells are known to secrete interleukin-17 (IL-17) in response to infection, exerting either protective or pathogenic functions. In the present study, mice infected with S. japonicum are used to characterize the role of γδ T cells. Combined with the infection of S. japonicum, an extremely significant increase in the percentage of neutrophils in the CD45+ cells was detected (from approximately 2.45% to 46.10% in blood and from 0.18% to 7.34% in spleen). Further analysis identified two different γδ T cell subsets that have different functions in the formation of granulomas in S. japonicum-infected mice. The Vγ1 T cells secrete gamma interferon (IFN-γ) only, while the Vγ2 T cells secrete both IL-17A and IFN-γ. Both subtypes lose the ability to secrete cytokine during the late stage of infection (12 weeks postinfection). When we depleted the Vγ2 T cells in infected mice, the percentage of neutrophils in blood and spleen decreased significantly, the liver fibrosis in the granulomas was reduced, and the level of IL-17A in the serum decreased (P < 0.05). These results suggest that during S. japonicum infection, Vγ2 T cells can recruit neutrophils and aggravate liver fibrosis by secreting IL-17A. This is the first report that a subset of γδ T cells plays a partial role in the pathological process of schistosome infection.
Collapse
|
14
|
Murphy MP, Caraher E. Residence in biofilms allows Burkholderia cepacia complex (Bcc) bacteria to evade the antimicrobial activities of neutrophil-like dHL60 cells. Pathog Dis 2015; 73:ftv069. [PMID: 26371179 DOI: 10.1093/femspd/ftv069] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2015] [Indexed: 12/14/2022] Open
Abstract
Bacteria of the Burkholderia cepacia complex (Bcc) persist in the airways of people with cystic fibrosis (CF) despite the continuous recruitment of neutrophils. Most members of Bcc are multidrug resistant and can form biofilms. As such, we sought to investigate whether biofilm formation plays a role in protecting Bcc bacteria from neutrophils. Using the neutrophil-like, differentiated cell line, dHL60, we have shown for the first time that Bcc biofilms are enhanced in the presence of these cells. Biofilm biomass was greater following culture in the presence of dHL60 cells than in their absence, likely the result of incorporating dHL60 cellular debris into the biofilm. Moreover, we have demonstrated that mature biofilms (cultured for up to 72 h) induced necrosis in the cells. Established biofilms also acted as a barrier to the migration of the cells and masked the bacteria from being recognized by the cells; dHL60 cells expressed less IL-8 mRNA and secreted significantly less IL-8 when cultured in the presence of biofilms, with respect to planktonic bacteria. Our findings provide evidence that biofilm formation can, at least partly, enable the persistence of Bcc bacteria in the CF airway and emphasize a requirement for anti-biofilm therapeutics.
Collapse
Affiliation(s)
- Mark P Murphy
- Centre for Microbial-Host Interactions, Institute of Technology Tallaght, Dublin 24, Ireland Centre of Applied Science for Health, Institute of Technology Tallaght, Dublin 24, Ireland
| | - Emma Caraher
- Centre for Microbial-Host Interactions, Institute of Technology Tallaght, Dublin 24, Ireland Centre of Applied Science for Health, Institute of Technology Tallaght, Dublin 24, Ireland
| |
Collapse
|
15
|
The role of CD1d-restricted NKT cells in the clearance of Pseudomonas aeruginosa from the lung is dependent on the host genetic background. Infect Immun 2015; 83:2557-65. [PMID: 25870224 DOI: 10.1128/iai.00015-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 03/27/2015] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is an important human opportunistic pathogen, accounting for a significant fraction of hospital-acquired lung infections. CD1d-restricted NKT cells comprise an unusual innate-like T cell subset that plays important roles in both bacterial and viral infections. Previous reports have differed in their conclusions regarding the role of NKT cells in clearance of P. aeruginosa from the lung. Since there is significant strain-dependent variation in NKT cell number and function among different inbred strains of mice, we investigated whether the role of NKT cells was dependent on the host genetic background. We found that NKT cells did indeed play a critical role in the clearance of P. aeruginosa from the lungs of BALB/c mice but that they played no discernible role in clearance from the lungs of C57BL/6 mice. We found that the strain-dependent role of NKT cells was associated with significant strain-dependent differences in cytokine production by lung NKT cells and that impaired clearance of P. aeruginosa in BALB/c CD1d(-/-) mice was associated with an increase in neutrophil influx to the lung and increased levels of proinflammatory cytokines and chemokines after infection. Finally, we found that the role of alveolar macrophages was also dependent on the genetic background. These data provide further support for a model in which the unusually high level of variability in NKT cell number and function among different genetic backgrounds may be an important contributor to infectious-disease susceptibility and pathology.
Collapse
|
16
|
Neumann D, Schneider EH, Seifert R. Analysis of Histamine Receptor Knockout Mice in Models of Inflammation. J Pharmacol Exp Ther 2013; 348:2-11. [DOI: 10.1124/jpet.113.204214] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
17
|
Bauer C, Kielian T, Wyatt TA, Romberger DJ, West WW, Gleason AM, Poole JA. Myeloid differentiation factor 88-dependent signaling is critical for acute organic dust-induced airway inflammation in mice. Am J Respir Cell Mol Biol 2013; 48:781-9. [PMID: 23492189 DOI: 10.1165/rcmb.2012-0479oc] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Organic dust exposure within agricultural environments results in airway diseases. Toll-like receptor 2 (TLR2) and TLR4 only partly account for the innate response to these complex dust exposures. To determine the central pathway in mediating complex organic dust-induced airway inflammation, this study targeted the common adaptor protein, myeloid differentiation factor 88 (MyD88), and investigated the relative contributions of receptors upstream from this adaptor. Wild-type, MyD88, TLR9, TLR4, IL-1 receptor I (RI), and IL-18R knockout (KO) mice were challenged intranasally with organic dust extract (ODE) or saline, according to an established protocol. Airway hyperresponsiveness (AHR) was assessed by invasive pulmonary measurements. Bronchoalveolar lavage fluid was collected to quantitate leukocyte influx and cytokine/chemokine (TNF-α, IL-6, chemokine [C-X-C motif] ligands [CXCL1 and CXCL2]) concentrations. Lung tissue was collected for histopathology. Lung cell apoptosis was determined by a terminal deoxynucleotidyl transferase dUTP nick-end labeling assay, and lymphocyte influx and intercellular adhesion molecule-1 (ICAM-1) expression were assessed by immunohistochemistry. ODE-induced AHR was significantly attenuated in MyD88 KO mice, and neutrophil influx and cytokine/chemokine production were nearly absent in MyD88 KO animals after ODE challenges. Despite a near-absent airspace inflammatory response, lung parenchymal inflammation was increased in MyD88 KO mice after repeated ODE exposures. ODE-induced epithelial-cell ICAM-1 expression was diminished in MyD88 KO mice. No difference was evident in the small degree of ODE-induced lung-cell apoptosis. Mice deficient in TLR9, TLR4, and IL-18R, but not IL-1IR, demonstrated partial protection against ODE-induced neutrophil influx and cytokine/chemokine production. Collectively, the acute organic dust-induced airway inflammatory response is highly dependent on MyD88 signaling, and is dictated, in part, by important contributions from upstream TLRs and IL-18R.
Collapse
Affiliation(s)
- Christopher Bauer
- Pulmonary, Critical Care, Sleep, and Allergy Division, Department of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Alcañiz L, Vega A, Chacón P, El Bekay R, Ventura I, Aroca R, Blanca M, Bergstralh DT, Monteseirin J. Histamine production by human neutrophils. FASEB J 2013; 27:2902-10. [PMID: 23572231 DOI: 10.1096/fj.12-223867] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Histamine is an important mediator in the development of allergic reactions. Only a small subset of human cell types is able to produce histamine. No previous studies have shown that human neutrophils are among them. The present work was undertaken to analyze whether human neutrophils produce histamine, and to determine what agonists are involved in histamine production by human neutrophils. The expression of histidine decarboxylase in human neutrophils was established by quantitative PCR, Western blotting, and flow cytometry analysis. The activity of the enzyme was determined by ELISA, which measured histamine in the culture supernatant of neutrophils stimulated with a set of classical agonists. Human neutrophils are bona fide histamine-producing cells. Neutrophils store ∼0.29 pg/cell and release ∼50% of the histamine content in an antigen-dependent manner and on stimulation with other neutrophil agonists. Basal expression of histidine decarboxylase, the rate-limiting enzyme in histamine production, is higher in neutrophils from patients with allergies than from healthy donors. Our results cannot be ascribed to cell contamination for several reasons. LPS failed to induce histamine release by basophils, whereas it induced histamine release by neutrophils; and we did not detect basophils, monocytes, or lymphocytes in our neutrophil preparations. Eosinophils, albeit detected, were only 0.001-0.004% of the final cell population, and they did not store or release histamine on antigen or LPS stimulation. Antigens to which patients with allergies were sensitized stimulated release of histamine from neutrophils. These observations represent a novel view of neutrophils as possible source of histamine in the allergic diseases.
Collapse
Affiliation(s)
- Lorena Alcañiz
- Servicio Regional de Inmunología y Alergia, Hospital Universitario Virgen Macarena, Seville, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Potera C. Common bacterium induces histamine production in neutrophils. ENVIRONMENTAL HEALTH PERSPECTIVES 2012; 120:A190. [PMID: 22548831 PMCID: PMC3346795 DOI: 10.1289/ehp.120-a190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
|