1
|
Karagiannidis I, Salataj E, Said Abu Egal E, Beswick EJ. G-CSF in tumors: Aggressiveness, tumor microenvironment and immune cell regulation. Cytokine 2021; 142:155479. [PMID: 33677228 DOI: 10.1016/j.cyto.2021.155479] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 12/14/2022]
Abstract
Granulocyte colony-stimulating factor (G-CSF) is a cytokine most well-known for maturation and mobilization of bone marrow neutrophils. Although it is used therapeutically to treat chemotherapy induced neutropenia, it is also highly expressed in some tumors. Case reports suggest that tumors expressing high levels of G-CSF are aggressive, more difficult to treat, and present with poor prognosis and high mortality rates. Research on this topic suggests that G-CSF has tumor-promoting effects on both tumor cells and the tumor microenvironment. G-CSF has a direct effect on tumor cells to promote tumor stem cell longevity and overall tumor cell proliferation and migration. Additionally, it may promote pro-tumorigenic immune cell phenotypes such as M2 macrophages, myeloid-derived suppressor cells, and regulatory T cells. Overall, the literature suggests a plethora of pro-tumorigenic activity that should be balanced with the therapeutic use. In this review, we present an overview of the multiple complex roles of G-CSF and G-CSFR in tumors and their microenvironment and discuss how clinical advances and strategies may open new therapeutic avenues.
Collapse
Affiliation(s)
- Ioannis Karagiannidis
- Division of Gastroenterology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, United States
| | - Eralda Salataj
- Institute of Molecular Biology and Biotechnology-Foundation for Research and Technology Hellas, Heraklion, Crete, Greece
| | - Erika Said Abu Egal
- Division of Gastroenterology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, United States
| | - Ellen J Beswick
- Division of Gastroenterology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, United States.
| |
Collapse
|
2
|
Llewellyn A, Foey A. Probiotic Modulation of Innate Cell Pathogen Sensing and Signaling Events. Nutrients 2017; 9:E1156. [PMID: 29065562 PMCID: PMC5691772 DOI: 10.3390/nu9101156] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/06/2017] [Accepted: 10/09/2017] [Indexed: 02/07/2023] Open
Abstract
There is a growing body of evidence documenting probiotic bacteria to have a beneficial effect to the host through their ability to modulate the mucosal immune system. Many probiotic bacteria can be considered to act as either immune activators or immune suppressors, which have appreciable influence on homeostasis, inflammatory- and suppressive-immunopathology. What is becoming apparent is the ability of these probiotics to modulate innate immune responses via direct or indirect effects on the signaling pathways that drive these activatory or suppressive/tolerogenic mechanisms. This review will focus on the immunomodulatory role of probiotics on signaling pathways in innate immune cells: from positive to negative regulation associated with innate immune cells driving gut mucosal functionality. Research investigations have shown probiotics to modulate innate functionality in many ways including, receptor antagonism, receptor expression, binding to and expression of adaptor proteins, expression of negative regulatory signal molecules, induction of micro-RNAs, endotoxin tolerisation and finally, the secretion of immunomodulatory proteins, lipids and metabolites. The detailed understanding of the immunomodulatory signaling effects of probiotic strains will facilitate strain-specific selective manipulation of innate cell signal mechanisms in the modulation of mucosal adjuvanticity, immune deviation and tolerisation in both healthy subjects and patients with inflammatory and suppressive pathology.
Collapse
Affiliation(s)
- Amy Llewellyn
- School of Biomedical & Healthcare Sciences, Plymouth University Peninsula Schools of Medicine & Dentistry, Drake Circus, Plymouth PL4 8AA, UK.
- Menzies School of Health Research, John Mathews Building (Building 58), Royal Darwin Hospital Campus, PO Box 41096, Casuarina NT0811, Australia.
| | - Andrew Foey
- School of Biomedical & Healthcare Sciences, Plymouth University Peninsula Schools of Medicine & Dentistry, Drake Circus, Plymouth PL4 8AA, UK.
| |
Collapse
|
3
|
Watters C, Fleming D, Bishop D, Rumbaugh KP. Host Responses to Biofilm. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 142:193-239. [PMID: 27571696 DOI: 10.1016/bs.pmbts.2016.05.007] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
From birth to death the human host immune system interacts with bacterial cells. Biofilms are communities of microbes embedded in matrices composed of extracellular polymeric substance (EPS), and have been implicated in both the healthy microbiome and disease states. The immune system recognizes many different bacterial patterns, molecules, and antigens, but these components can be camouflaged in the biofilm mode of growth. Instead, immune cells come into contact with components of the EPS matrix, a diverse, hydrated mixture of extracellular DNA (bacterial and host), proteins, polysaccharides, and lipids. As bacterial cells transition from planktonic to biofilm-associated they produce small molecules, which can increase inflammation, induce cell death, and even cause necrosis. To survive, invading bacteria must overcome the epithelial barrier, host microbiome, complement, and a variety of leukocytes. If bacteria can evade these initial cell populations they have an increased chance at surviving and causing ongoing disease in the host. Planktonic cells are readily cleared, but biofilms reduce the effectiveness of both polymorphonuclear neutrophils and macrophages. In addition, in the presence of these cells, biofilm formation is actively enhanced, and components of host immune cells are assimilated into the EPS matrix. While pathogenic biofilms contribute to states of chronic inflammation, probiotic Lactobacillus biofilms cause a negligible immune response and, in states of inflammation, exhibit robust antiinflammatory properties. These probiotic biofilms colonize and protect the gut and vagina, and have been implicated in improved healing of damaged skin. Overall, biofilms stimulate a unique immune response that we are only beginning to understand.
Collapse
Affiliation(s)
- C Watters
- Wound Infections Department, Naval Medical Research Center, Silver Spring, MD, United States
| | - D Fleming
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, United States; Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - D Bishop
- Wound Infections Department, Naval Medical Research Center, Silver Spring, MD, United States
| | - K P Rumbaugh
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, United States; Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States.
| |
Collapse
|
4
|
Chitohexaose protects against acetaminophen-induced hepatotoxicity in mice. Cell Death Dis 2016; 7:e2224. [PMID: 27171266 PMCID: PMC4917664 DOI: 10.1038/cddis.2016.131] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 04/05/2016] [Accepted: 04/07/2016] [Indexed: 12/11/2022]
Abstract
Acetaminophen (N-acetyl-para-aminophenol (APAP)) toxicity causes acute liver failure by inducing centrilobular hepatic damage as a consequence of mitochondrial oxidative stress. Sterile inflammation, triggered by hepatic damage, facilitates gut bacterial translocation leading to systemic inflammation; TLR4-mediated activation by LPS has been shown to have a critical role in APAP-mediated hepatotoxicity. In this study, we demonstrate significant protection mediated by chitohexaose (Chtx) in mice challenged with a lethal dose of APAP (400 mg/kg b.w.). Decreased mortality by Chtx was associated with reduced hepatic damage, increased peritoneal migration of neutrophils, decreased mRNA expression of IL-1β as well as inhibition of inflammasome activation in liver. Further, an alternate mouse model of co-administration of a sublethal doses of APAP (200 mg/kg b.w.) and LPS (5 mg/kg b.w.) operating synergistically and mediating complete mortality was developed. Overwhelming inflammation, characterized by increased inflammatory cytokines (TNF-α, IL-1β and so on) in liver as well as in circulation and mortality was demonstrable in this model. Also, Chtx administration mediated significant reversal of mortality in APAP+LPS co-administered mice, which was associated with reduced IL-1β in liver and plasma cytokines in this model. In conclusion, Chtx being a small molecular weight linear carbohydrate offers promise for clinical management of liver failure associated with APAP overdose.
Collapse
|
5
|
Meshkibaf S, Martins AJ, Henry GT, Kim SO. Protective role of G-CSF in dextran sulfate sodium-induced acute colitis through generating gut-homing macrophages. Cytokine 2015; 78:69-78. [PMID: 26687628 DOI: 10.1016/j.cyto.2015.11.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 10/19/2015] [Accepted: 11/29/2015] [Indexed: 02/07/2023]
Abstract
Granulocyte colony-stimulating factor (G-CSF) is a pleiotropic cytokine best known for its role in promoting the generation and function of neutrophils. G-CSF is also found to be involved in macrophage generation and immune regulation; however, its in vivo role in immune homeostasis is largely unknown. Here, we examined the role of G-CSF in dextran sulfate sodium (DSS)-induced acute colitis using G-CSF receptor-deficient (G-CSFR(-/-)) mice. Mice were administered with 1.5% DSS in drinking water for 5days, and the severity of colitis was measured for the next 5days. GCSFR(-/-) mice were more susceptible to DSS-induced colitis than G-CSFR(+/+) or G-CSFR(-/+) mice. G-CSFR(-/-) mice harbored less F4/80(+) macrophages, but a similar number of neutrophils, in the intestine. In vitro, bone marrow-derived macrophages prepared in the presence of both G-CSF and macrophage colony-stimulating factor (M-CSF) (G-BMDM) expressed higher levels of regulatory macrophage markers such as programmed death ligand 2 (PDL2), CD71 and CD206, but not in arginase I, transforming growth factor (TGF)-β, Ym1 (chitinase-like 3) and FIZZ1 (found in inflammatory zone 1), and lower levels of inducible nitric oxide synthase (iNOS), CD80 and CD86 than bone marrow-derived macrophages prepared in the presence of M-CSF alone (BMDM), in response to interleukin (IL)-4/IL-13 and lipopolysaccharide (LPS)/interferon (IFN)-γ, respectively. Adoptive transfer of G-BMDM, but not BMDM, protected G-CSFR(-/-) mice from DSS-induced colitis, and suppressed expression of tumor necrosis factor (TNF)-α, IL-1β and iNOS in the intestine. These results suggest that G-CSF plays an important role in preventing colitis, likely through populating immune regulatory macrophages in the intestine.
Collapse
Affiliation(s)
- Shahab Meshkibaf
- Department of Microbiology and Immunology and Infectious Diseases Research Group, Siebens-Drake Research Institute, University of Western Ontario, London, Ontario N6G 2V4, Canada; Center for Human Immunology, University of Western Ontario, London, Ontario N6G 2V4, Canada
| | - Andrew J Martins
- Department of Microbiology and Immunology and Infectious Diseases Research Group, Siebens-Drake Research Institute, University of Western Ontario, London, Ontario N6G 2V4, Canada
| | - Garth T Henry
- Department of Microbiology and Immunology and Infectious Diseases Research Group, Siebens-Drake Research Institute, University of Western Ontario, London, Ontario N6G 2V4, Canada
| | - Sung Ouk Kim
- Department of Microbiology and Immunology and Infectious Diseases Research Group, Siebens-Drake Research Institute, University of Western Ontario, London, Ontario N6G 2V4, Canada; Center for Human Immunology, University of Western Ontario, London, Ontario N6G 2V4, Canada.
| |
Collapse
|
6
|
Meshkibaf S, Fritz J, Gottschalk M, Kim SO. Preferential production of G-CSF by a protein-like Lactobacillus rhamnosus GR-1 secretory factor through activating TLR2-dependent signaling events without activation of JNKs. BMC Microbiol 2015; 15:238. [PMID: 26502905 PMCID: PMC4623291 DOI: 10.1186/s12866-015-0578-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 10/19/2015] [Indexed: 02/07/2023] Open
Abstract
Background Different species and strains of probiotic bacteria confer distinct immunological responses on immune cells. Lactobacillus rhamnosus GR-1 (GR-1) is a probiotic bacterial strain found in both the intestinal and urogenital tracts, and has immunomodulatory effects on several cell types including macrophages. However, detailed immunological responses and the signaling mechanism involved in the response are largely unknown. Results We examined the production of GR-1-induced cytokines/chemokines and signaling events in macrophages. Among 84 cytokines and chemokines examined, GR-1 discretely induced granulocyte colony-stimulating factor (G-CSF) mRNA at highest levels (>60-fold) without inducing other cytokines such as IL-1α, IL-1β, IL-6 and TNF-α (<5-fold). The toll-like receptor (TLR) 2/6-agonist PAM2CSK4, TLR2/1-agonist PAM3CSK4 and TLR4-agonist lipopolysaccharide induced all of these inflammatory cytokines at high levels (>50-fold). The TLR2 ligand lipoteichoic acid activated all mitogen-activated kinases, Akt and NF-κB; whereas, GR-1 selectively activated extracellular regulated kinases and p38, NF-κB and Akt, but not c-Jun N-terminal kinases (JNKs) in a TLR2-dependent manner. Using specific inhibitors, we demonstrated that lack of JNKs activation by GR-1 caused inefficient production of pro-inflammatory cytokines but not G-CSF production. A secreted heat-labile protein-like molecule, 30–100 kDa in size, induced the preferential production of G-CSF. Conclusion This study elucidated unique signaling events triggered by GR-1, resulting in selective production of the immunomodulatory cytokine G-CSF in macrophages. Electronic supplementary material The online version of this article (doi:10.1186/s12866-015-0578-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shahab Meshkibaf
- Department of Microbiology and Immunology and Infectious Diseases Research Group, Siebens-Drake Research Institute, Western University, London, ON, N6G 2 V4, Canada. .,Center for Human Immunology, Western University, London, ON, N6G 2 V4, Canada.
| | - Jӧrg Fritz
- Department of Microbiology, McGill University, Montreal, QC, H3G 0B1, Canada.
| | - Marcelo Gottschalk
- Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, QC, J2S 2 M2, Canada.
| | - Sung Ouk Kim
- Department of Microbiology and Immunology and Infectious Diseases Research Group, Siebens-Drake Research Institute, Western University, London, ON, N6G 2 V4, Canada. .,Center for Human Immunology, Western University, London, ON, N6G 2 V4, Canada.
| |
Collapse
|
7
|
Nader-Macías MEF, Juárez Tomás MS. Profiles and technological requirements of urogenital probiotics. Adv Drug Deliv Rev 2015; 92:84-104. [PMID: 25858665 DOI: 10.1016/j.addr.2015.03.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 02/20/2015] [Accepted: 03/27/2015] [Indexed: 12/14/2022]
Abstract
Probiotics, defined as live microorganisms that, when administered in adequate amounts, confer a health benefit on the host, are considered a valid and novel alternative for the prevention and treatment of female urogenital tract infections. Lactobacilli, the predominant microorganisms of the healthy human vaginal microbiome, can be included as active pharmaceutical ingredients in probiotics products. Several requirements must be considered or criteria fulfilled during the development of a probiotic product or formula for the female urogenital tract. This review deals with the main selection criteria for urogenital probiotic microorganisms: host specificity, potential beneficial properties, functional specifications, technological characteristics and clinical trials used to test their effect on certain physiological and pathological conditions. Further studies are required to complement the current knowledge and support the clinical applications of probiotics in the urogenital tract. This therapy will allow the restoration of the ecological equilibrium of the urogenital tract microbiome as well as the recovery of the sexual and reproductive health of women.
Collapse
|
8
|
Yang S, Li W, Challis JRG, Reid G, Kim SO, Bocking AD. Probiotic Lactobacillus rhamnosus GR-1 supernatant prevents lipopolysaccharide-induced preterm birth and reduces inflammation in pregnant CD-1 mice. Am J Obstet Gynecol 2014; 211:44.e1-44.e12. [PMID: 24486224 DOI: 10.1016/j.ajog.2014.01.029] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 12/20/2013] [Accepted: 01/21/2014] [Indexed: 11/19/2022]
Abstract
OBJECTIVE The objective of this study was to determine the effect of probiotic Lactobacillus rhamnosus GR-1 supernatant (GR-1 SN) on lipopolysaccharide-induced preterm birth (PTB) and outputs of cytokines, chemokines, and progesterone in pregnant CD-1 mice. STUDY DESIGN We compared PTB rates after intrauterine injection of lipopolysaccharide with and without previous GR-1 SN treatment. Cytokines and chemokines in the maternal plasma, myometrium, placenta, and amniotic fluid were examined with multiplex assay, and circulating maternal progesterone was measured with enzyme-linked immunoassay. Statistical significance was assessed with 2-tailed 1-way analysis of variance or analysis of variance on ranks. Fetal sex ratios in mice that delivered preterm were compared with those that delivered at term after lipopolysaccharide and GR-1 SN treatments. RESULTS GR-1 SN reduced lipopolysaccharide-induced PTB by 43%. GR-1 SN significantly decreased the lipopolysaccharide-induced production of interleukin (IL)-1β, -6, and -12p40, tumor necrosis factor-α, CCL4, and CCL5 in maternal plasma; IL-6, -12p70, -17, and -13 and tumor necrosis factor-α in myometrium; IL-6, -12p70, and -17 in placenta; and IL-6, tumor necrosis factor-α, CCL3, and CCL4 in amniotic fluid. Maternal plasma progesterone was reduced significantly after lipopolysaccharide injection with and without GR-1 SN pretreatment. There was no difference in fetal sex ratios between mice that delivered preterm and those that did not after lipopolysaccharide and GR-1 SN treatments. CONCLUSION The supernatant of probiotic L rhamnosus GR-1 attenuated lipopolysaccharide-induced inflammation and PTB in vivo. GR-1 SN may confer therapeutic benefits in the prevention of infection-associated PTB by controlling systemic and intrauterine inflammation.
Collapse
Affiliation(s)
- Siwen Yang
- Departments of Physiology and Obstetrics and Gynecology, University of Toronto Faculty of Medicine, Toronto, ON, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Wei Li
- Departments of Physiology and Obstetrics and Gynecology, University of Toronto Faculty of Medicine, Toronto, ON, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - John R G Challis
- Departments of Physiology and Obstetrics and Gynecology, University of Toronto Faculty of Medicine, Toronto, ON, Canada; Faculty of Health Sciences, Simon Fraser University, Vancouver, BC, Canada
| | - Gregor Reid
- Department of Microbiology and Immunology, Western University Faculty of Medicine, London, ON, Canada; Lawson Health Research Institute, London, ON, Canada
| | - Sung O Kim
- Department of Microbiology and Immunology, Western University Faculty of Medicine, London, ON, Canada
| | - Alan D Bocking
- Departments of Physiology and Obstetrics and Gynecology, University of Toronto Faculty of Medicine, Toronto, ON, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.
| |
Collapse
|
9
|
Meshkibaf S, William Gower M, Dekaban GA, Ouk Kim S. G-CSF preferentially supports the generation of gut-homing Gr-1high macrophages in M-CSF-treated bone marrow cells. J Leukoc Biol 2014; 96:549-561. [DOI: 10.1189/jlb.1a0314-172r] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
AbstractThe G-CSF is best known for its activity in the generation and activation of neutrophils. In addition, studies on G-CSF−/− or G-CSFR−/− mice and BMC cultures suggested a role of G-CSF in macrophage generation. However, our understanding on the role of G-CSF in macrophage development is limited. Here, using in vitro BMC models, we demonstrated that G-CSF promoted the generation of Gr-1high/F4/80+ macrophage-like cells in M-BMCs, likely through suppressing cell death and enhancing generation of Gr-1high/F4/80+ macrophage-like cells. These Gr-1high macrophage-like cells produced “M2-like” cytokines and surface markers in response to LPS and IL-4/IL-13, respectively. Adoptive transfer of EGFP-expressing (EGFP+) M-BMCs showed a dominant, gut-homing phenotype. The small intestinal lamina propria of G-CSFR−/− mice also harbored significantly reduced numbers of Gr-1high/F4/80+ macrophages compared with those of WT mice, but levels of Gr-1+/F4/80− neutrophil-like cells were similar between these mice. Collectively, these results suggest a novel function of G-CSF in the generation of gut-homing, M2-like macrophages.
Collapse
Affiliation(s)
- Shahab Meshkibaf
- Department of Microbiology and Immunology , London, Ontario, Canada
- Center for Human Immunology, and Schulich School of Medicine and Dentistry , London, Ontario, Canada
| | - Mark William Gower
- Department of Microbiology and Immunology , London, Ontario, Canada
- Center for Human Immunology, and Schulich School of Medicine and Dentistry , London, Ontario, Canada
| | - Gregory A Dekaban
- Department of Microbiology and Immunology , London, Ontario, Canada
- Department of Molecular Medicine, Robarts Research Institute, University of Western Ontario , London, Ontario, Canada
| | - Sung Ouk Kim
- Department of Microbiology and Immunology , London, Ontario, Canada
- Center for Human Immunology, and Schulich School of Medicine and Dentistry , London, Ontario, Canada
| |
Collapse
|