1
|
Trial J, Diaz Lankenau R, Angelini A, Tovar Perez JE, Taffet GE, Entman ML, Cieslik KA. Treatment with a DC-SIGN ligand reduces macrophage polarization and diastolic dysfunction in the aging female but not male mouse hearts. GeroScience 2021; 43:881-899. [PMID: 32851570 PMCID: PMC8110645 DOI: 10.1007/s11357-020-00255-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/13/2020] [Indexed: 12/18/2022] Open
Abstract
Cardiac diastolic dysfunction in aging arises from increased ventricular stiffness caused by inflammation and interstitial fibrosis. The diastolic dysfunction contributes to heart failure with preserved ejection fraction (HFpEF), which in the aging population is more common in women. This report examines its progression over 12 weeks in aging C57BL/6J mice and correlates its development with changes in macrophage polarization and collagen deposition.Aged C57BL/6J mice were injected with dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN) ligand 1 (DCSL1, an anti-inflammatory agent) or saline for 12 weeks. Echo and Doppler measurements were performed before and after 4 and 12 weeks of treatment. DCSL1 prevented the worsening of diastolic dysfunction over time in females but not in males. Cardiac single cell suspensions analyzed by flow cytometry revealed changes in the inflammatory infiltrate: (1) in males, there was an increased total number of leukocytes with an increased pro-inflammatory profile compared with females and they did not respond to DCSL1; (2) by contrast, DCSL1 treatment resulted in a shift in macrophage polarization to an anti-inflammatory phenotype in females. Notably, DCSL1 preferentially targeted tumor necrosis factor-α (TNFα+) pro-inflammatory macrophages. The reduction in pro-inflammatory macrophage polarization was accompanied by a decrease in collagen content in the heart.Age-associated diastolic dysfunction in mice is more severe in females and is associated with unique changes in macrophage polarization in cardiac tissue. Treatment with DCSL1 mitigates the changes in inflammation, cardiac function, and fibrosis. The characteristics of diastolic dysfunction in aging female mice mimic similar changes in aging women.
Collapse
Affiliation(s)
- JoAnn Trial
- Department of Medicine, Cardiovascular Research, Baylor College of Medicine, One Baylor Plaza, MS: BCM 620, Houston, TX, 77030, USA
| | - Rodrigo Diaz Lankenau
- Department of Medicine, Cardiovascular Research, Baylor College of Medicine, One Baylor Plaza, MS: BCM 620, Houston, TX, 77030, USA
| | - Aude Angelini
- Department of Medicine, Cardiovascular Research, Baylor College of Medicine, One Baylor Plaza, MS: BCM 620, Houston, TX, 77030, USA
| | - Jorge E Tovar Perez
- Department of Medicine, Cardiovascular Research, Baylor College of Medicine, One Baylor Plaza, MS: BCM 620, Houston, TX, 77030, USA
- Texas A&M University, 2121 W. Holcombe Blvd, Houston, TX, 77030, USA
| | - George E Taffet
- Department of Medicine, Cardiovascular Research, Baylor College of Medicine, One Baylor Plaza, MS: BCM 620, Houston, TX, 77030, USA
- The DeBakey Heart Center, Houston Methodist Hospital, 6565 Fannin Street, Houston, TX, 77030, USA
| | - Mark L Entman
- Department of Medicine, Cardiovascular Research, Baylor College of Medicine, One Baylor Plaza, MS: BCM 620, Houston, TX, 77030, USA
- The DeBakey Heart Center, Houston Methodist Hospital, 6565 Fannin Street, Houston, TX, 77030, USA
| | - Katarzyna A Cieslik
- Department of Medicine, Cardiovascular Research, Baylor College of Medicine, One Baylor Plaza, MS: BCM 620, Houston, TX, 77030, USA.
| |
Collapse
|
2
|
Čolić M, Tomić S, Bekić M. Immunological aspects of nanocellulose. Immunol Lett 2020; 222:80-89. [PMID: 32278785 DOI: 10.1016/j.imlet.2020.04.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/21/2020] [Accepted: 04/04/2020] [Indexed: 12/31/2022]
Abstract
Cellulose is the most abundant natural polymer in the world. Nanoscale forms of cellulose, including cellulose nanofibers (CNF), cellulose nanocrystals (CNC) and bacterial nanocellulose (BC), are very attractive in industry, medicine and pharmacy. Biomedical applications of nanocellulose in tissue engineering, regenerative medicine, and controlled drug delivery are the most promising. Nanocellulose is considered a biocompatible nanomaterial and relatively safe for biomedical applications. However, more studies are needed to prove this hypothesis, especially those related to chronic exposure to nanocellulose. Besides toxicity, the response of the immune system is of particular importance in this sense. This paper provides a comprehensive and critical review of the current-state knowledge of the impact of nanocellulose on the immune system, especially on macrophages and dendritic cells (DC), as the central immunoregulatory cells, which has not been addressed in the literature sufficiently. Nanocellulose, especially CNC, can induce the inflammatory response upon the internalization by macrophages, but this reaction may be significantly modulated by introducing different functional groups on their surface. Our original results showed that nanocellulose has a potent immunotolerogenic potential. Native CNF potentiated the capacity of DC to induce conventional Tregs. When carboxyl groups were introduced on the CNF surface, the tolerogenic potential of DC was shifted towards the induction of regulatory CD8+ T cells, whereas the introduction of phosphonates on CNF surface potentiated DCs' capacity to induce both regulatory CD8+ T cells and Type 1 regulatory (Tr-1) cells. These results are extremely important when considering the application of nanocellulose in vivo, especially for tissue regeneration and wound healing.
Collapse
Affiliation(s)
- Miodrag Čolić
- Institute for the Application of Nuclear Energy, University of Belgrade, Serbia; University of East Sarajevo, Medical Faculty Foča, R.Srpska, BiH; Serbian Academy of Sciences and Arts, Belgrade, Serbia.
| | - Sergej Tomić
- Institute for the Application of Nuclear Energy, University of Belgrade, Serbia
| | - Marina Bekić
- Institute for the Application of Nuclear Energy, University of Belgrade, Serbia
| |
Collapse
|
3
|
Tomić S, Ilić N, Kokol V, Gruden-Movsesijan A, Mihajlović D, Bekić M, Sofronić-Milosavljević L, Čolić M, Vučević D. Functionalization-dependent effects of cellulose nanofibrils on tolerogenic mechanisms of human dendritic cells. Int J Nanomedicine 2018; 13:6941-6960. [PMID: 30464452 PMCID: PMC6217907 DOI: 10.2147/ijn.s183510] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background Cellulose nanofibrils (CNF) are attractive nanomaterials for various biomedical applications due to their excellent biocompatibility and biomimetic properties. However, their immunoregulatory properties are insufficiently investigated, especially in relation to their functionalization, which could cause problems during their clinical application. Methods Using a model of human dendritic cells (DC), which have a central role in the regulation of immune response, we investigated how differentially functionalized CNF, ie, native (n) CNF, 2,2,6,6-tetramethylpiperidine 1-oxyl radical-oxidized (c) CNF, and 3-aminopropylphosphoric acid-functionalized (APAc) CNF, affect DC properties, their viability, morphology, differentiation and maturation potential, and the capacity to regulate T cell-mediated immune response. Results Nontoxic doses of APAcCNF displayed the strongest inhibitory effects on DC differentiation, maturation, and T helper (Th) 1 and Th17 polarization capacity, followed by cCNF and nCNF, respectively. These results correlated with a specific pattern of regulatory cytokines production by APAcCNF-DC and their increased capacity to induce suppressive CD8+CD25+IL-10+ regulatory T cells in immunoglobulin-like transcript (ILT)-3- and ILT-4- dependent manner. In contrast, nCNF-DC induced predominantly suppressive CD4+CD25hiFoxP3hi regulatory T cells in indolamine 2,3-dioxygenase-1-dependent manner. Different tolerogenic properties of CNF correlated with their size and APA functionalization, as well as with different expression of CD209 and actin bundles at the place of contact with CNF. Conclusion The capacity to induce different types of DC-mediated tolerogenic immune responses by functionalized CNF opens new perspectives for their application as well-tolerated nanomaterials in tissue engineering and novel platforms for the therapy of inflammatory T cell-mediated pathologies.
Collapse
Affiliation(s)
- Sergej Tomić
- Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia, .,Institute for Medical Research, Medical Faculty of the Military Medical Academy, University of Defense, Belgrade, Serbia,
| | - Nataša Ilić
- Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia,
| | - Vanja Kokol
- Institute of Engineering Materials and Design, University of Maribor, Maribor, Slovenia
| | | | - Dušan Mihajlović
- Institute for Medical Research, Medical Faculty of the Military Medical Academy, University of Defense, Belgrade, Serbia,
| | - Marina Bekić
- Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia,
| | | | - Miodrag Čolić
- Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia, .,Institute for Medical Research, Medical Faculty of the Military Medical Academy, University of Defense, Belgrade, Serbia, .,Medical Faculty Foča, University of East Sarajevo, Foča, Bosnia and Herzegovina
| | - Dragana Vučević
- Institute for Medical Research, Medical Faculty of the Military Medical Academy, University of Defense, Belgrade, Serbia,
| |
Collapse
|
4
|
El-Awady AR, Arce RM, Cutler CW. Dendritic cells: microbial clearance via autophagy and potential immunobiological consequences for periodontal disease. Periodontol 2000 2017; 69:160-80. [PMID: 26252408 PMCID: PMC4530502 DOI: 10.1111/prd.12096] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2015] [Indexed: 12/15/2022]
Abstract
Dendritic cells are potent antigen‐capture and antigen‐presenting cells that play a key role in the initiation and regulation of the adaptive immune response. This process of immune homeostasis, as maintained by dendritic cells, is susceptible to dysregulation by certain pathogens during chronic infections. Such dysregulation may lead to disease perpetuation with potentially severe systemic consequences. Here we discuss in detail how intracellular pathogens exploit dendritic cells and escape degradation by altering or evading autophagy. This novel mechanism explains, in part, the chronic, persistent nature observed in several immuno‐inflammatory diseases, including periodontal disease. We also propose a hypothetical model of the plausible role of autophagy in the context of periodontal disease. Promotion of autophagy may open new therapeutic strategies in the search of a ‘cure’ for periodontal disease in humans.
Collapse
|
5
|
PPAR-γ agonist pioglitazone regulates dendritic cells immunogenicity mediated by DC-SIGN via the MAPK and NF-κB pathways. Int Immunopharmacol 2016; 41:24-34. [PMID: 27792919 DOI: 10.1016/j.intimp.2016.09.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 09/07/2016] [Accepted: 09/27/2016] [Indexed: 12/20/2022]
Abstract
Dendritic cell-specific ICAM-3 grabbing non-integrin (DC-SIGN) is a dendritic cell-specific lectin which participates in dendritic cell (DC) trafficking, antigen uptake and DC-T cell interactions at the initiation of immune responses. This study investigated whether peroxisome proliferator-activated receptor-gamma (PPAR-γ) activation in human DCs regulates the immunogenicity of DCs mediated by DC-SIGN and exploited the possible molecular mechanisms, especially focused on the signaling pathways of mitogen-activated protein kinases (MAPK) and nuclear factor-κB (NF-κB). Here, we show that the PPAR-γ agonist pioglitazone decreased DC adhesion and transmigration, and DC stimulation of T cell proliferation mediated by DC-SIGN dependent on activation of PPAR-γ, although it increased DC endocytosis independent of PPAR-γ activation. Furthermore, PPAR-γ activation by pioglitazone in DCs down-regulated the expression of DC-SIGN, which was mediated by modulating the balance of the signaling pathways of extracellular signal-regulated kinase, c-Jun N-terminal kinase and NF-κB, but not p38 MAPK. Therefore, we conclude that PPAR-γ activation in human DCs regulates the immunogenicity of DCs mediated by DC-SIGN via the pathways of MAPK and NF-κB. These findings may support the important role of these mediators in the regulation of DC-mediated inflammatory and immunologic processes.
Collapse
|
6
|
Tomić S, Kokol V, Mihajlović D, Mirčić A, Čolić M. Native cellulose nanofibrills induce immune tolerance in vitro by acting on dendritic cells. Sci Rep 2016; 6:31618. [PMID: 27558765 PMCID: PMC4997350 DOI: 10.1038/srep31618] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 07/20/2016] [Indexed: 12/22/2022] Open
Abstract
Cellulose nanofibrills (CNFs) are attractive biocompatible, natural nanomaterials for wide biomedical applications. However, the immunological mechanisms of CNFs have been poorly investigated. Considering that dendritic cells (DCs) are the key immune regulatory cells in response to nanomaterials, our aim was to investigate the immunological mechanisms of CNFs in a model of DC-mediated immune response. We found that non-toxic concentrations of CNFs impaired the differentiation, and subsequent maturation of human monocyte-derived (mo)-DCs. In a co-culture with CD4+T cells, CNF-treated mo-DCs possessed a weaker allostimulatory and T helper (Th)1 and Th17 polarizing capacity, but a stronger capacity to induce Th2 cells and CD4+CD25hiFoxP3hi regulatory T cells. This correlated with an increased immunoglobulin-like transcript-4 and indolamine dioxygenase-1 expression by CNF-treated mo-DCs, following the partial internalization of CNFs and the accumulation of CD209 and actin bundles at the place of contacts with CNFs. Cumulatively, we showed that CNFs are able to induce an active immune tolerance by inducing tolerogenic DCs, which could be beneficial for the application of CNFs in wound healing and chronic inflammation therapies.
Collapse
Affiliation(s)
- Sergej Tomić
- University of Defense, Medical Faculty of the Military Medical Academy, Institute for Medical Research, Belgrade, Serbia
| | - Vanja Kokol
- University of Maribor, Faculty of Mechanical Engineering, Institute for Engineering Materials and Design, Maribor, Slovenia
| | - Dušan Mihajlović
- University of Defense, Medical Faculty of the Military Medical Academy, Institute for Medical Research, Belgrade, Serbia
| | - Aleksandar Mirčić
- University of Belgrade, Institute of Histology and Embryology, School of Medicine, Belgrade, Serbia
| | - Miodrag Čolić
- University of Defense, Medical Faculty of the Military Medical Academy, Institute for Medical Research, Belgrade, Serbia.,University of Belgrade, Institute for Application of Nuclear Energy, Belgrade, Serbia
| |
Collapse
|
7
|
A novel dendritic cell-targeted lentiviral vector, encoding Ag85A-ESAT6 fusion gene of Mycobacterium tuberculosis, could elicit potent cell-mediated immune responses in mice. Mol Immunol 2016; 75:101-11. [DOI: 10.1016/j.molimm.2016.04.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 04/08/2016] [Accepted: 04/28/2016] [Indexed: 01/13/2023]
|
8
|
Peters M, Guidato PM, Peters K, Megger DA, Sitek B, Classen B, Heise EM, Bufe A. Allergy-Protective Arabinogalactan Modulates Human Dendritic Cells via C-Type Lectins and Inhibition of NF-κB. THE JOURNAL OF IMMUNOLOGY 2016; 196:1626-35. [PMID: 26746190 DOI: 10.4049/jimmunol.1502178] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 12/08/2015] [Indexed: 01/07/2023]
Abstract
Arabinogalactan (AG) isolated from dust of a traditional farm prevents disease in murine models of allergy. However, it is unclear whether this polysaccharide has immune regulatory properties in humans. The aim of this study was to test the influence of AG on the immune-stimulating properties of human dendritic cells (DCs). Moreover, we sought to identify the receptor to which AG binds. AG was produced from plant callus tissue under sterile conditions to avoid the influence of pathogen-associated molecular patterns in subsequent experiments. The influence of AG on the human immune system was investigated by analyzing its impact on monocyte-derived DCs. To analyze whether the T cell stimulatory capacity of AG-stimulated DCs is altered, an MLR with naive Th cells was performed. We revealed that AG reduced T cell proliferation in a human MLR. In the search for a molecular mechanism, we found that AG binds to the immune modulatory receptors DC-specific ICAM-3 -: grabbing non integrin (DC-SIGN) and macrophage mannose receptor 1 (MMR-1). Stimulation of these receptors with AG simultaneously with TLR4 stimulation with LPS increased the expression of the E3 ubiquitin-protein ligase tripartite motif -: containing protein 21 and decreased the phosphorylation of NF-κB p65 in DCs. This led to a reduced activation profile with reduced costimulatory molecules and proinflammatory cytokine production. Blocking of MMR-1 or DC-SIGN with neutralizing Abs partially inhibits this effect. We conclude that AG dampens the activation of human DCs by LPS via binding to DC-SIGN and MMR-1, leading to attenuated TLR signaling. This results in a reduced T cell activation capacity of DCs.
Collapse
Affiliation(s)
- Marcus Peters
- Department of Experimental Pneumology, Ruhr University Bochum, 44801 Bochum, Germany;
| | - Patrick M Guidato
- Department of Experimental Pneumology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Karin Peters
- Department of Experimental Pneumology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Dominik A Megger
- Medical Proteome Center, Ruhr University Bochum, 44801 Bochum, Germany; and
| | - Barbara Sitek
- Medical Proteome Center, Ruhr University Bochum, 44801 Bochum, Germany; and
| | - Birgit Classen
- Department of Pharmaceutical Biology, Christian Albrechts University, 24118 Kiel, Germany
| | - Esther M Heise
- Department of Pharmaceutical Biology, Christian Albrechts University, 24118 Kiel, Germany
| | - Albrecht Bufe
- Department of Experimental Pneumology, Ruhr University Bochum, 44801 Bochum, Germany
| |
Collapse
|
9
|
Arsov Z, Švajger U, Mravljak J, Pajk S, Kotar A, Urbančič I, Štrancar J, Anderluh M. Internalization and Accumulation in Dendritic Cells of a Small pH-Activatable Glycomimetic Fluorescent Probe as Revealed by Spectral Detection. Chembiochem 2015; 16:2660-7. [DOI: 10.1002/cbic.201500376] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Indexed: 12/30/2022]
Affiliation(s)
- Zoran Arsov
- Laboratory of Biophysics; Department of Condensed Matter Physics; Jozef Stefan Institute; Jamova 39 1000 Ljubljana Slovenia
- Center of Excellence NAMASTE; Jamova 39 1000 Ljubljana Slovenia
| | - Urban Švajger
- Blood Transfusion Centre of Slovenia; Šlajmerjeva 6 1000 Ljubljana Slovenia
| | - Janez Mravljak
- Department of Medicinal Chemistry; Faculty of Pharmacy; University of Ljubljana; Aškerčeva 7 1000 Ljubljana Slovenia
| | - Stane Pajk
- Department of Medicinal Chemistry; Faculty of Pharmacy; University of Ljubljana; Aškerčeva 7 1000 Ljubljana Slovenia
- Laboratory of Biophysics; Department of Condensed Matter Physics; Jozef Stefan Institute; Jamova 39 1000 Ljubljana Slovenia
| | - Anita Kotar
- Department of Medicinal Chemistry; Faculty of Pharmacy; University of Ljubljana; Aškerčeva 7 1000 Ljubljana Slovenia
- Slovenian NMR Centre; National Institute of Chemistry; Hajdrihova 19 1000 Ljubljana Slovenia
| | - Iztok Urbančič
- Laboratory of Biophysics; Department of Condensed Matter Physics; Jozef Stefan Institute; Jamova 39 1000 Ljubljana Slovenia
| | - Janez Štrancar
- Laboratory of Biophysics; Department of Condensed Matter Physics; Jozef Stefan Institute; Jamova 39 1000 Ljubljana Slovenia
- Center of Excellence NAMASTE; Jamova 39 1000 Ljubljana Slovenia
| | - Marko Anderluh
- Department of Medicinal Chemistry; Faculty of Pharmacy; University of Ljubljana; Aškerčeva 7 1000 Ljubljana Slovenia
| |
Collapse
|
10
|
Miles B, Scisci E, Carrion J, Sabino GJ, Genco CA, Cutler CW. Noncanonical dendritic cell differentiation and survival driven by a bacteremic pathogen. J Leukoc Biol 2013; 94:281-9. [PMID: 23729500 DOI: 10.1189/jlb.0213108] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Maintenance of blood DC homeostasis is essential to preventing autoimmunity while controlling chronic infection. However, the ability of bacteremic pathogens to directly regulate blood DC homeostasis has not been defined. One such bacteremic pathogen, Porphyromonas gingivalis, is shown by our group to survive within mDCs under aerobic conditions and therein, metastasize from its oral mucosal niche. This is accompanied by expansion of the blood mDC pool in vivo, independently of canonical DC poietins. We presently know little of how this bacteremic pathogen causes blood DC expansion and the pathophysiological significance. This work shows that optimum differentiation of MoDCs from primary human monocytes, with or without GM-CSF/IL-4, is dependent on infection with P. gingivalis strains expressing the DC-SIGN ligand mfa-1. DC differentiation is lost when DC-SIGN is blocked with its ligand HIV gp120 or knocked out by siRNA gene silencing. Thus, we have identified a novel, noncanonical pathway of DC differentiation. We term these PDDCs and show that PDDCs are bona fide DCs, based on phenotype and phagocytic activity when immature and the ability to up-regulate accessory molecules and stimulate allo-CD4(+) T cell proliferation when matured. The latter is dependent on the P. gingivalis strain used to initially "educate" PDDCs. Moreover, we show that P. gingivalis-infected, conventional MoDCs become resistant to apoptosis and inflammatory pyroptosis, as determined by levels of Annexin V and caspase-8, -3/7, and -1. Taken together, we provide new insights into how a relatively asymptomatic bacteremia may influence immune homeostasis and promote chronic inflammation.
Collapse
Affiliation(s)
- Brodie Miles
- 1.Georgia Regent University Augusta, 1120 15th St., GC-1335, Augusta, GA 30912, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Cai M, Wu J, Mao C, Ren J, Li P, Li X, Zhong J, Xu C, Zhou T. A Lectin-EGF antibody promotes regulatory T cells and attenuates nephrotoxic nephritis via DC-SIGN on dendritic cells. J Transl Med 2013; 11:103. [PMID: 23627732 PMCID: PMC3651349 DOI: 10.1186/1479-5876-11-103] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 04/25/2013] [Indexed: 02/02/2023] Open
Abstract
Background Interactions between dendritic cells (DCs) and T cells play a critical role in the development of glomerulonephritis, which is a common cause of chronic kidney disease. DC-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN), an immune-regulating molecule of the C-type lectin family, is mainly expressed on DCs and mediates DC adhesion and migration, inflammation, activation of primary T cells. DC-SIGN triggers immune responses and is involved in the immune escape of pathogens and tumours. In addition, ligation of DC-SIGN on DCs actively primes DCs to induce Tregs. Under certain conditions, DC-SIGN signalling may result in inhibition of DC maturation, by promoting regulatory T cell (Treg) function and affecting Th1/Th2 bias. Methods A rat model of nephrotoxic nephritis was used to investigate the therapeutic effects of an anti-lectin-epidermal growth factor (EGF) antibody on glomerulonephritis. DCs were induced by human peripheral blood mononuclear cells in vitro. The expression of DC surface antigens were detected using flow cytometry; the levels of cytokines were detected by ELISA and qPCR, respectively; the capability of DCs to stimulate T cell proliferation was examined by mixed lymphocyte reaction; PsL-EGFmAb targeting to DC-SIGN on DCs was identified by immunoprecipitation. Results Anti-Lectin-EGF antibody significantly reduced global crescent formation, tubulointerstitial injury and improved renal function impairment through inhibiting DC maturation and modulating Foxp3 expression and the Th1/Th2 cytokine balance in kidney. Binding of anti-Lectin-EGF antibody to DC-SIGN on human DCs inhibited DC maturation, increased IL-10 production from DCs and enhanced CD4+CD25+ Treg functions. Conclusions Our results suggest that treatment with anti-Lectin-EGF antibody modulates DCs to suppressive DCs and enhances Treg functions, contributing to the attenuation of renal injury in a rat model of nephrotoxic nephritis.
Collapse
Affiliation(s)
- Minchao Cai
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai 200025, China
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Bradford BM, Mabbott NA. Prion disease and the innate immune system. Viruses 2012; 4:3389-419. [PMID: 23342365 PMCID: PMC3528271 DOI: 10.3390/v4123389] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Revised: 11/14/2012] [Accepted: 11/22/2012] [Indexed: 02/06/2023] Open
Abstract
Prion diseases or transmissible spongiform encephalopathies are a unique category of infectious protein-misfolding neurodegenerative disorders. Hypothesized to be caused by misfolding of the cellular prion protein these disorders possess an infectious quality that thrives in immune-competent hosts. While much has been discovered about the routing and critical components involved in the peripheral pathogenesis of these agents there are still many aspects to be discovered. Research into this area has been extensive as it represents a major target for therapeutic intervention within this group of diseases. The main focus of pathological damage in these diseases occurs within the central nervous system. Cells of the innate immune system have been proven to be critical players in the initial pathogenesis of prion disease, and may have a role in the pathological progression of disease. Understanding how prions interact with the host innate immune system may provide us with natural pathways and mechanisms to combat these diseases prior to their neuroinvasive stage. We present here a review of the current knowledge regarding the role of the innate immune system in prion pathogenesis.
Collapse
Affiliation(s)
- Barry M Bradford
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK.
| | | |
Collapse
|
13
|
Remes Lenicov F, Rodriguez Rodrigues C, Sabatté J, Cabrini M, Jancic C, Ostrowski M, Merlotti A, Gonzalez H, Alonso A, Pasqualini RA, Davio C, Geffner J, Ceballos A. Semen promotes the differentiation of tolerogenic dendritic cells. THE JOURNAL OF IMMUNOLOGY 2012; 189:4777-86. [PMID: 23066152 DOI: 10.4049/jimmunol.1202089] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Seminal plasma is not just a carrier for spermatozoa. It contains high concentrations of cytokines, chemokines, and other biological compounds that are able to exert potent effects on the immune system of the receptive partner. Previous studies have shown that semen induces an acute inflammatory response at the female genital mucosa after coitus. Moreover, it induces regulatory mechanisms that allow the fetus (a semiallograft) to grow and develop in the uterus. The mechanisms underlying these regulatory mechanisms, however, are poorly understood. In this study, we show that seminal plasma redirects the differentiation of human dendritic cells (DCs) toward a regulatory profile. DCs differentiated from human monocytes in the presence of high dilutions of seminal plasma did not express CD1a but showed high levels of CD14. They were unable to develop a fully mature phenotype in response to LPS, TNF-α, CD40L, Pam2CSK4 (TLR2/6 agonist), or Pam3CSK4 (TLR1/2 agonist). Upon activation, they produced low amounts of the inflammatory cytokines IL-12p70, IL-1β, TNF-α, and IL-6, but expressed a high ability to produce IL-10 and TGF-β. Inhibition of the PG receptors E-prostanoid receptors 2 and 4 prevented the tolerogenic effect induced by seminal plasma on the phenotype and function of DCs, suggesting that E-series PGs play a major role. By promoting a tolerogenic profile in DCs, seminal plasma might favor fertility, but might also compromise the capacity of the receptive partner to mount an effective immune response against sexually transmitted pathogens.
Collapse
Affiliation(s)
- Federico Remes Lenicov
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, Universidad de Buenos Aires, Buenos Aires C1121ABG, Argentina
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Carrion J, Scisci E, Miles B, Sabino GJ, Zeituni AE, Gu Y, Bear A, Genco CA, Brown DL, Cutler CW. Microbial carriage state of peripheral blood dendritic cells (DCs) in chronic periodontitis influences DC differentiation, atherogenic potential. THE JOURNAL OF IMMUNOLOGY 2012; 189:3178-87. [PMID: 22891282 DOI: 10.4049/jimmunol.1201053] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The low-grade oral infection chronic periodontitis (CP) has been implicated in coronary artery disease risk, but the mechanisms are unclear. In this study, a pathophysiological role for blood dendritic cells (DCs) in systemic dissemination of oral mucosal pathogens to atherosclerotic plaques was investigated in humans. The frequency and microbiome of CD19(-)BDCA-1(+)DC-SIGN(+) blood myeloid DCs (mDCs) were analyzed in CP subjects with or without existing acute coronary syndrome and in healthy controls. FACS analysis revealed a significant increase in blood mDCs in the following order: healthy controls < CP < acute coronary syndrome/CP. Analysis of the blood mDC microbiome by 16S rDNA sequencing showed Porphyromonas gingivalis and other species, including (cultivable) Burkholderia cepacia. The mDC carriage rate with P. gingivalis correlated with oral carriage rate and with serologic exposure to P. gingivalis in CP subjects. Intervention (local debridement) to elicit a bacteremia increased the mDC carriage rate and frequency in vivo. In vitro studies established that P. gingivalis enhanced by 28% the differentiation of monocytes into immature mDCs; moreover, mDCs secreted high levels of matrix metalloproteinase-9 and upregulated C1q, heat shock protein 60, heat shock protein 70, CCR2, and CXCL16 transcripts in response to P. gingivalis in a fimbriae-dependent manner. Moreover, the survival of the anaerobe P. gingivalis under aerobic conditions was enhanced when within mDCs. Immunofluorescence analysis of oral mucosa and atherosclerotic plaques demonstrate infiltration with mDCs, colocalized with P. gingivalis. Our results suggest a role for blood mDCs in harboring and disseminating pathogens from oral mucosa to atherosclerosis plaques, which may provide key signals for mDC differentiation and atherogenic conversion.
Collapse
Affiliation(s)
- Julio Carrion
- School of Dental Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Peng H, Guerau-de-Arellano M, Mehta VB, Yang Y, Huss DJ, Papenfuss TL, Lovett-Racke AE, Racke MK. Dimethyl fumarate inhibits dendritic cell maturation via nuclear factor κB (NF-κB) and extracellular signal-regulated kinase 1 and 2 (ERK1/2) and mitogen stress-activated kinase 1 (MSK1) signaling. J Biol Chem 2012; 287:28017-26. [PMID: 22733812 DOI: 10.1074/jbc.m112.383380] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dimethyl fumarate (DMF) is an effective novel treatment for multiple sclerosis in clinical trials. A reduction of IFN-γ-producing CD4(+) T cells is observed in DMF-treated patients and may contribute to its clinical efficacy. However, the cellular and molecular mechanisms behind this clinical observation are unclear. In this study, we investigated the effects of DMF on dendritic cell (DC) maturation and subsequent DC-mediated T cell responses. We show that DMF inhibits DC maturation by reducing inflammatory cytokine production (IL-12 and IL-6) and the expression of MHC class II, CD80, and CD86. Importantly, this immature DC phenotype generated fewer activated T cells that were characterized by decreased IFN-γ and IL-17 production. Further molecular studies demonstrated that DMF impaired nuclear factor κB (NF-κB) signaling via reduced p65 nuclear translocalization and phosphorylation. NF-κB signaling was further decreased by DMF-mediated suppression of extracellular signal-regulated kinase 1 and 2 (ERK1/2) and its downstream kinase mitogen stress-activated kinase 1 (MSK1). MSK1 suppression resulted in decreased p65 phosphorylation at serine 276 and reduced histone phosphorylation at serine 10. As a consequence, DMF appears to reduce p65 transcriptional activity both directly and indirectly by promoting a silent chromatin environment. Finally, treatment of DCs with the MSK1 inhibitor H89 partially mimicked the effects of DMF on the DC signaling pathway and impaired DC maturation. Taken together, these studies indicate that by suppression of both NF-κB and ERK1/2-MSK1 signaling, DMF inhibits maturation of DCs and subsequently Th1 and Th17 cell differentiation.
Collapse
Affiliation(s)
- Haiyan Peng
- Neuroscience Graduate Studies Program, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Sabatte J, Faigle W, Ceballos A, Morelle W, Rodríguez Rodrígues C, Remes Lenicov F, Thépaut M, Fieschi F, Malchiodi E, Fernández M, Arenzana-Seisdedos F, Lortat-Jacob H, Michalski JC, Geffner J, Amigorena S. Semen clusterin is a novel DC-SIGN ligand. THE JOURNAL OF IMMUNOLOGY 2011; 187:5299-309. [PMID: 22013110 DOI: 10.4049/jimmunol.1101889] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The C-type lectin receptor dendritic cell-specific ICAM-3-grabbing nonintegrin (DC-SIGN) is an important player in the recognition of pathogens by dendritic cells. A plethora of pathogens including viruses, bacteria, parasites, and fungi are recognized by DC-SIGN through both mannose and fucose-containing glycans expressed on the pathogen surface. In this study, we identified semen clusterin as a novel DC-SIGN ligand. Semen clusterin, but not serum clusterin, expresses an extreme abundance of fucose-containing blood-type Ags such as Le(x) and Le(y), which are both excellent DC-SIGN ligands. These motifs enable semen clusterin to bind DC-SIGN with very high affinity (K(d) 76 nM) and abrogate the binding of HIV-1 to DC-SIGN. Depletion of clusterin from semen samples, however, did not completely prevent the ability of semen to inhibit the capture of HIV-1 by DC-SIGN, supporting that besides clusterin, semen contains other DC-SIGN ligands. Further studies are needed to characterize these ligands and define their contribution to the DC-SIGN-blocking activity mediated by semen. Clusterin is an enigmatic protein involved in a variety of physiologic and pathologic processes including inflammation, atherosclerosis, and cancer. Our results uncover an unexpected heterogeneity in the glycosylation pattern of clusterin and suggest that the expression of high concentrations of fucose-containing glycans enables semen clusterin to display a unique set of biological functions that might affect the early course of sexually transmitted infectious diseases.
Collapse
Affiliation(s)
- Juan Sabatte
- INSERM U653, Immunité et Cancer, Institut Curie Paris, Paris 75248, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|