1
|
Chen M, Su Q, Shi Y. Molecular mechanism of IgE-mediated FcεRI activation. Nature 2025; 637:453-460. [PMID: 39442557 DOI: 10.1038/s41586-024-08229-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024]
Abstract
Allergic diseases affect more than a quarter of individuals in industrialized countries, and are a major public health concern1,2. The high-affinity Fc receptor for immunoglobulin E (FcεRI), which is mainly present on mast cells and basophils, has a crucial role in allergic diseases3-5. Monomeric immunoglobulin E (IgE) binding to FcεRI regulates mast cell survival, differentiation and maturation6-8. However, the underlying molecular mechanism remains unclear. Here we demonstrate that prior to IgE binding, FcεRI exists mostly as a homodimer on human mast cell membranes. The structure of human FcεRI confirms the dimeric organization, with each promoter comprising one α subunit, one β subunit and two γ subunits. The transmembrane helices of the α subunits form a layered arrangement with those of the γ and β subunits. The dimeric interface is mediated by a four-helix bundle of the α and γ subunits at the intracellular juxtamembrane region. Cholesterol-like molecules embedded within the transmembrane domain may stabilize the dimeric assembly. Upon IgE binding, the dimeric FcεRI dissociates into two protomers, each of which binds to an IgE molecule. This process elicits transcriptional activation of Egr1, Egr3 and Ccl2 in rat basophils, which can be attenuated by inhibiting the FcεRI dimer-to-monomer transition. Collectively, our study reveals the mechanism of antigen-independent, IgE-mediated FcεRI activation.
Collapse
Affiliation(s)
- Mengying Chen
- Research Center for Industries of the Future, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Qiang Su
- Research Center for Industries of the Future, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- Institute of Bio-Architecture and Bio-Interactions (IBABI), Shenzhen Medical Academy of Research and Translation (SMART), Shenzhen, China.
| | - Yigong Shi
- Research Center for Industries of the Future, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, School of Medicine, Tsinghua University, Beijing, China.
| |
Collapse
|
2
|
Balla J, Rathore AP, St John AL. Mechanisms and risk factors for perinatal allergic disease. Curr Opin Immunol 2024; 91:102505. [PMID: 39566249 DOI: 10.1016/j.coi.2024.102505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/19/2024] [Accepted: 10/26/2024] [Indexed: 11/22/2024]
Abstract
Allergies are among the top causes of chronic disease in children. Their pathogenesis classically involves T helper 2 (Th2)-type inflammation driven by IgE-mediated allergen sensing. Triggers influencing allergic disease occur early in life, including before birth. The immature fetal immune system and mucosal barriers undergo periods of plasticity that are open to longitudinal programming by maternal influence. Evidence supports the importance of the maternal immune system in shaping perinatal immunity, as the transfer of cytokines, antibodies, and cells promotes offspring protection from pathogens. However, the same components may lead to allergic predisposition. Maternal-fetal interactions are further modified by epigenetic, metabolic, dietary, and microbiome-mediated effects. Here, we review how diverse maternal exposures and mediators signal across the placenta and through nursing perinatally to promote future tolerance or enhance reactivity against allergens. Improved understanding of the mechanisms predisposing for allergic disease in early life can guide the development of new therapeutics and preventative lifestyle modifications.
Collapse
Affiliation(s)
- Jozef Balla
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, 169857 Singapore
| | - Abhay Ps Rathore
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, 169857 Singapore; Department of Pathology, Duke University Medical Center, Durham, North Carolina 27705, USA
| | - Ashley L St John
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, 169857 Singapore; Department of Pathology, Duke University Medical Center, Durham, North Carolina 27705, USA; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; SingHealth Duke-NUS Global Health Institute, Singapore.
| |
Collapse
|
3
|
Nutritional immunity: the impact of metals on lung immune cells and the airway microbiome during chronic respiratory disease. Respir Res 2021; 22:133. [PMID: 33926483 PMCID: PMC8082489 DOI: 10.1186/s12931-021-01722-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/15/2021] [Indexed: 12/15/2022] Open
Abstract
Nutritional immunity is the sequestration of bioavailable trace metals such as iron, zinc and copper by the host to limit pathogenicity by invading microorganisms. As one of the most conserved activities of the innate immune system, limiting the availability of free trace metals by cells of the immune system serves not only to conceal these vital nutrients from invading bacteria but also operates to tightly regulate host immune cell responses and function. In the setting of chronic lung disease, the regulation of trace metals by the host is often disrupted, leading to the altered availability of these nutrients to commensal and invading opportunistic pathogenic microbes. Similarly, alterations in the uptake, secretion, turnover and redox activity of these vitally important metals has significant repercussions for immune cell function including the response to and resolution of infection. This review will discuss the intricate role of nutritional immunity in host immune cells of the lung and how changes in this fundamental process as a result of chronic lung disease may alter the airway microbiome, disease progression and the response to infection.
Collapse
|
4
|
Yanase Y, Matsuo Y, Kawaguchi T, Ishii K, Tanaka A, Iwamoto K, Takahagi S, Hide M. Activation of Human Peripheral Basophils in Response to High IgE Antibody Concentrations without Antigens. Int J Mol Sci 2018; 20:ijms20010045. [PMID: 30583496 PMCID: PMC6337277 DOI: 10.3390/ijms20010045] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 01/08/2023] Open
Abstract
Basophils and mast cells have high affinity IgE receptors (FcεRI) on their plasma membrane and play important roles in FcεRI-associated allergic diseases, such as pollen allergy, food allergy, chronic spontaneous urticarial (CSU), and atopic dermatitis (AD). To date, several reports have revealed that high IgE antibody concentrations activate mast cells—which reside in tissue—in the absence of any antigens (allergens). However, IgE antibody-induced activation of basophils—which circulate in blood—has not been reported. Here, we investigated whether IgE antibodies may regulate functions of human peripheral basophils without antigens in vitro. We successfully removed IgE antibodies bound to FcεRI on the surface of human peripheral basophils by treating with 0.1% lactic acid. We also demonstrated that high IgE antibody concentrations (>1 μM) induced histamine release, polarization, and CD203c upregulation of IgE antibody-stripped basophils. Thus, high IgE antibody concentrations directly activate basophils, which express IgE-free FcεRI on the cell surface. This mechanism may contribute to the pathogenesis of patients with AD and CSU who have higher serum IgE concentrations compared to healthy donors.
Collapse
Affiliation(s)
- Yuhki Yanase
- Department of Dermatology, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan.
| | - Yoshimi Matsuo
- Department of Dermatology, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan.
| | - Tomoko Kawaguchi
- Department of Dermatology, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan.
| | - Kaori Ishii
- Department of Dermatology, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan.
| | - Akio Tanaka
- Department of Dermatology, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan.
| | - Kazumasa Iwamoto
- Department of Dermatology, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan.
| | - Shunsuke Takahagi
- Department of Dermatology, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan.
| | - Michihiro Hide
- Department of Dermatology, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan.
| |
Collapse
|
5
|
Kashiwakura JI, Ando T, Kawakami T. Role of Histamine-releasing Factor in Allergic Inflammatory Reactions. YAKUGAKU ZASSHI 2017; 137:517-521. [PMID: 28458281 DOI: 10.1248/yakushi.16-00239-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mast cells are effector cells in immunoglobulin E (IgE)-mediated immediate hypersensitivity and allergic diseases such as asthma and food allergy. Mast cells are activated by the aggregation of the IgE-bound high-affinity IgE receptor FcεRI with multivalent antigen. Activated mast cells secrete proinflammatory mediators such as histamine, serotonin, and proteases and produce cytokines and chemokines. However, it has been reported that mast cells are activated by crosslinking of FcεRI with monomeric IgE in the absence of antigen. We have recently demonstrated that histamine-releasing factor (HRF) is involved in IgE-mediated mast cell activation both in vitro and in vivo. HRF binds to a subset of IgE and IgG molecules [HRF-reactive antibodies (Abs)]. The Fab, but not Fc, portions of the IgE and IgG molecules are HRF-binding sites, and the N-terminal 19-residue (N19) and H3 portions of HRF are HRF-reactive Ab-binding sites. We observed that both N19 and H3 tagged with glutathione S transferase (GST) (GST-N19 and GST-H3) can inhibit the interaction between HRF and HRF-reactive Abs. Using acute- and late-phase passive cutaneous anaphylaxis mouse models, it was shown that HRF initiates mast cell activation through HRF-reactive, but not HRF-nonreactive, IgE in vivo. Antigen-induced passive cutaneous anaphylaxis was inhibited by pretreatment with GST-N19 and GST-H3. We demonstrated that pretreatment with GST-N19 before antigen challenge inhibited antigen-induced mast cell-dependent airway inflammation. In addition, GST-N19 partially inhibited Aspergillus fumigatus extract-induced IgE-dependent airway inflammation. However, GST-N19 did not inhibit T cell-dependent airway inflammation. These results suggest that mast cells are target cells for HRF to initiate IgE- and mast cell-dependent airway inflammation.
Collapse
Affiliation(s)
- Jun-Ichi Kashiwakura
- Laboratory for Allergic Disease, RIKEN Center for Integrative Medical Sciences.,Allergy and Immunology Project Team, Division of Medical Education Planning and Development, Nihon University School of Medicine.,Division of Cell Biology, La Jolla Institute for Allergy and Immunology
| | - Tomoaki Ando
- Laboratory for Allergic Disease, RIKEN Center for Integrative Medical Sciences
| | - Toshiaki Kawakami
- Laboratory for Allergic Disease, RIKEN Center for Integrative Medical Sciences.,Division of Cell Biology, La Jolla Institute for Allergy and Immunology
| |
Collapse
|
6
|
Sakanaka M, Kurimune Y, Yamada K, Hyodo N, Natsuhara M, Ichikawa A, Furuta K, Tanaka S. Down-modulation of antigen-induced activation of murine cultured mast cells sensitized with a highly cytokinergic IgE clone. Immunol Lett 2016; 174:1-8. [PMID: 27060497 DOI: 10.1016/j.imlet.2016.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 04/05/2016] [Accepted: 04/05/2016] [Indexed: 01/18/2023]
Abstract
Accumulating evidence suggests that several IgE clones can activate mast cells during the sensitization phase even in the absence of antigen. They were found to induce pro-inflammatory cytokine release, histamine synthesis, chemotaxis, adhesion, and accelerated maturation of mast cells, although it remains unknown whether antigen-induced responses can be affected by differences of IgE clones. We compared two IgE clones, which were different in the capacity to activate mast cells during sensitization, in terms of potentials to affect antigen-induced degranulation and cytokine releases using IL-3-dependent murine bone marrow-derived cultured mast cells (BMMCs). Antigen-induced degranulation and pro-inflammatory cytokine release were augmented, when BMMCs were sensitized with elevated concentrations of a clone IgE-3, which did not induce phosphorylation of JNK and cytokine release in the absence of antigen, whereas those were significantly rather decreased, when BMMCs were sensitized with elevated concentrations of a clone SPE-7, one of the most potent cytokinergic IgE clones, which intensively induced phosphorylation of JNK. This attenuated response with SPE-7 was accompanied by decreased tyrosine phosphorylation of the cellular proteins including Syk upon antigen stimulation. SP600125, which is known to inhibit JNK, restored the levels of antigen-induced degranulation and phosphorylation of Syk in BMMCs sensitized with higher concentrations of a clone SPE-7 when it was added before sensitization. Treatment with anisomycin, a potent activator of JNK, before IgE sensitization significantly suppressed antigen-induced degranulation. These findings suggest that differences of sensitizing IgE clones can affect antigen-induced responses and activation of JNK during sensitization might suppress antigen-induced activation of mast cells.
Collapse
Affiliation(s)
- Mariko Sakanaka
- Department of Immunobiology, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Koshien, Nishinomiya, Hyogo 663-8179, Japan
| | - Yuki Kurimune
- Department of Immunobiology, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Koshien, Nishinomiya, Hyogo 663-8179, Japan
| | - Keiko Yamada
- Department of Immunobiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Tsushima-naka 1-1-1, Kita-ku, Okayama 700-8530, Japan
| | - Nao Hyodo
- Department of Immunobiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Tsushima-naka 1-1-1, Kita-ku, Okayama 700-8530, Japan
| | - Mayuko Natsuhara
- Department of Immunobiology, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Koshien, Nishinomiya, Hyogo 663-8179, Japan
| | - Atsushi Ichikawa
- Institute for Biosciences, Mukogawa Women's University, Koshien, Nishinomiya, Hyogo 663-8179, Japan
| | - Kazuyuki Furuta
- Department of Immunobiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Tsushima-naka 1-1-1, Kita-ku, Okayama 700-8530, Japan
| | - Satoshi Tanaka
- Department of Immunobiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Tsushima-naka 1-1-1, Kita-ku, Okayama 700-8530, Japan.
| |
Collapse
|
7
|
Lee JB, Chen CY, Liu B, Mugge L, Angkasekwinai P, Facchinetti V, Dong C, Liu YJ, Rothenberg ME, Hogan SP, Finkelman FD, Wang YH. IL-25 and CD4(+) TH2 cells enhance type 2 innate lymphoid cell-derived IL-13 production, which promotes IgE-mediated experimental food allergy. J Allergy Clin Immunol 2016; 137:1216-1225.e5. [PMID: 26560039 PMCID: PMC4826796 DOI: 10.1016/j.jaci.2015.09.019] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 09/10/2015] [Accepted: 09/15/2015] [Indexed: 10/22/2022]
Abstract
BACKGROUND Food-mediated allergic reactions have emerged as a major health problem. The underlying mechanisms that promote uncontrolled type 2 immune responses to dietary allergens in the gastrointestinal tract remain elusive. OBJECTIVE We investigated whether altering IL-25 signaling enhances or attenuates allergic responses to food allergens. METHODS Mice of an IL-25 transgenic mouse line (iIL-25Tg mice), which constitutively overexpress intestinal IL-25, and Il17rb(-/-) mice, in which Il17rb gene expression is disrupted, were sensitized and gavage fed with ovalbumin (OVA). We assessed symptomatic characteristics of experimental food allergy, including incidence of diarrhea, incidence of hypothermia, intestinal TH2 immune response, and serum OVA-specific IgE and mast cell protease 1 production. RESULTS Rapid induction of Il25 expression in the intestinal epithelium preceded onset of the anaphylactic response to ingested OVA antigen. iIL-25Tg mice were more prone and Il17rb(-/-) mice were more resistant to experimental food allergy. Resident intestinal type 2 innate lymphoid cells (ILC2s) were identified as the major producers of IL-5 and IL-13 in response to IL-25. Reconstituting irradiated wild-type mice with Rora(-/-) or Il17rb(-/-) bone marrow resulted in a deficiency or dysfunction of the ILC2 compartment, respectively, and resistance to experimental food allergy. Repeated intragastric antigen challenge induced a significant increase in numbers of CD4(+) TH2 cells, which enhance IL-25-stimulated IL-13 production by ILC2s ex vivo and in vivo. Finally, reconstituted IL-13-deficient ILC2s had reduced capability to promote allergic inflammation, resulting in increased resistance to experimental food allergy. CONCLUSION IL-25 and CD4(+) TH2 cells induced by ingested antigens enhance ILC2-derived IL-13 production, thereby promoting IgE-mediated experimental food allergy.
Collapse
Affiliation(s)
- Jee-Boong Lee
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Chun-Yu Chen
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Bo Liu
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Luke Mugge
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Pornpimon Angkasekwinai
- Department of Medical Technology, Faculty of Allied Health Sciences, Thammasat University, Bangkok, Thailand
| | - Valeria Facchinetti
- Department of Immunology, University of Texas and MD Anderson Cancer Center, Houston, Tex
| | - Chen Dong
- Department of Immunology, University of Texas and MD Anderson Cancer Center, Houston, Tex
| | | | - Marc E Rothenberg
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Simon P Hogan
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Fred D Finkelman
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Medicine, Cincinnati Veterans Affairs Medical Center, Cincinnati, Ohio; Division of Immunology, Allergy and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Yui-Hsi Wang
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.
| |
Collapse
|
8
|
Ahn KB, Jeon JH, Kang SS, Chung DK, Yun CH, Han SH. IgE in the absence of allergen induces the expression of monocyte chemoattractant protein-1 in the rat basophilic cell-line RBL-2H3. Mol Immunol 2014; 62:114-21. [DOI: 10.1016/j.molimm.2014.06.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 05/28/2014] [Accepted: 06/08/2014] [Indexed: 11/27/2022]
|
9
|
Fukuishi N, Igawa Y, Kunimi T, Hamano H, Toyota M, Takahashi H, Kenmoku H, Yagi Y, Matsui N, Akagi M. Generation of mast cells from mouse fetus: analysis of differentiation and functionality, and transcriptome profiling using next generation sequencer. PLoS One 2013; 8:e60837. [PMID: 23573287 PMCID: PMC3616098 DOI: 10.1371/journal.pone.0060837] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 03/03/2013] [Indexed: 12/31/2022] Open
Abstract
While gene knockout technology can reveal the roles of proteins in cellular functions, including in mast cells, fetal death due to gene manipulation frequently interrupts experimental analysis. We generated mast cells from mouse fetal liver (FLMC), and compared the fundamental functions of FLMC with those of bone marrow-derived mouse mast cells (BMMC). Under electron microscopy, numerous small and electron-dense granules were observed in FLMC. In FLMC, the expression levels of a subunit of the FcεRI receptor and degranulation by IgE cross-linking were comparable with BMMC. By flow cytometry we observed surface expression of c-Kit prior to that of FcεRI on FLMC, although on BMMC the expression of c-Kit came after FcεRI. The surface expression levels of Sca-1 and c-Kit, a marker of putative mast cell precursors, were slightly different between bone marrow cells and fetal liver cells, suggesting that differentiation stage or cell type are not necessarily equivalent between both lineages. Moreover, this indicates that phenotypically similar mast cells may not have undergone an identical process of differentiation. By comprehensive analysis using the next generation sequencer, the same frequency of gene expression was observed for 98.6% of all transcripts in both cell types. These results indicate that FLMC could represent a new and useful tool for exploring mast cell differentiation, and may help to elucidate the roles of individual proteins in the function of mast cells where gene manipulation can induce embryonic lethality in the mid to late stages of pregnancy.
Collapse
Affiliation(s)
- Nobuyuki Fukuishi
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Kawahara T. Establishment and characterization of mouse bone marrow-derived mast cell hybridomas. Exp Cell Res 2012; 318:2385-96. [DOI: 10.1016/j.yexcr.2012.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 07/09/2012] [Accepted: 07/12/2012] [Indexed: 12/20/2022]
|
11
|
Abstract
Abstract The evolution of immunological agents in milk is intertwined with the general aspects of the evolution of the mammary gland. In that respect, mammalian precursors emerged from basal amniotes some 300 million years ago. In contrast to the predominant dinosaurs, proto-mammals possessed a glandular skin. A secondary palate in the roof of the mouth that directed airflow from the nostrils to the oropharynx and thus allowed mammals to ingest and breathe simultaneously first appeared in cynodonts 230 million years ago. This set the stage for mammalian newborns to nurse from the future mammary gland. Interplays between environmental and genetic changes shaped mammalian evolution including the mammary gland from dermal glands some 160 millions of years ago. It is likely that secretions from early mammary glands provided nutrients and immunological agents for the infant. Natural selection culminated in milks uniquely suited to nourish and protect infants of each species. In human milk, antimicrobial, anti-inflammatory, and immunoregulatory agents and living leukocytes are qualitatively or quantitatively different from those in other mammalian milks. Those in human milk compensate for developmental delays in the immunological system of the recipient infant. Consequently, the immune system in human milk provided by evolution is much of the basis for encouraging breastfeeding for human infants.
Collapse
Affiliation(s)
- Armond S Goldman
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, 77555-0369, USA.
| |
Collapse
|
12
|
Okayama Y, Kashiwakura JI, Sasaki-Sakamoto T, Matsumoto K, Hashimoto N, Ohmori K, Kawakami T, Saito H, Ra C. Omalizumab inhibits acceleration of FcεRI-mediated responsiveness of immature human mast cells by immunoglobulin E. Ann Allergy Asthma Immunol 2012; 108:188-94. [PMID: 22374203 DOI: 10.1016/j.anai.2012.01.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 12/19/2011] [Accepted: 01/16/2012] [Indexed: 11/26/2022]
Abstract
BACKGROUND A large body of evidence has demonstrated that treatment with omalizumab is clinically effective for the management of moderate to severe allergic asthma, emphasizing the importance of IgE in the pathogenesis of allergic asthma. We hypothesized that IgE accelerates FcεRI-mediated responsiveness of "immature" human mast cells (MCs) and that omalizumab downregulates the acceleration. OBJECTIVES To examine when MC progenitors acquired the ability to degranulate following FcεRI aggregation, whether IgE accelerates the responsiveness of immature MCs following FcεRI aggregation, and whether omalizumab regulates such an acceleration. METHODS Gene expression was examined using a microarray and quantitative reverse transcription polymerase chain reaction. Protein expression was investigated using FACS. Histamine release was examined using an EIA. RESULTS The time-course analysis of the mRNA expression of MC-related genes, including FcεRI, in Kit(+) sorted cells during the differentiation and histamine experiments revealed that the expression level of FcεRI in 5 week (w)-cultured MCs was not sufficient to induce degranulation following FcεRI aggregation but that 5 w-cultured MCs were fully responsive to calcium ionophore. By addition of IgE in culture medium FcεRI expression level and FcεRI-mediated histamine release of 5 w-cultured MCs were significantly increased compared with those without addition of IgE, whereas the expression level of tryptase and number of MCs was not affected. Omalizumab significantly inhibited IgE-dependent enhancement of FcεRI expression level and FcεRI-mediated histamine release. CONCLUSIONS High levels of IgE in the microenvironment in vivo may upregulate the responsiveness of immature MCs to allergens. Omalizumab may inhibit the IgE-mediated responsiveness of not only mature MCs, but also immature MCs.
Collapse
Affiliation(s)
- Yoshimichi Okayama
- Division of Molecular Cell Immunology and Allergology, Advanced Medical Research Center, Nihon University Graduate School of Medical Science, Tokyo, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Molnár V, Érsek B, Wiener Z, Tömböl Z, Szabó PM, Igaz P, Falus A. MicroRNA-132 targets HB-EGF upon IgE-mediated activation in murine and human mast cells. Cell Mol Life Sci 2012; 69:793-808. [PMID: 21853268 PMCID: PMC11114963 DOI: 10.1007/s00018-011-0786-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 07/13/2011] [Accepted: 07/19/2011] [Indexed: 01/01/2023]
Abstract
MicroRNAs provide an additional layer in the regulation of gene expression acting as repressors with several targets at the posttranscriptional level. This study describes microRNA expression patterns during differentiation and activation of mast cells. The expression levels of 567 different mouse miRNAs were compared by microarray between c-Kit+ committed progenitors, mucosal mast cells, resting and IgE-crosslinked BMMCs in vitro. The strongest upregulation of miR-132 upon IgE-mediated activation was validated in human cord blood-derived mast cells as well. HB-EGF growth factor also upregulated upon activation and was ranked high by more prediction algorithms. Co-transfection of miR-132 mimicking precursor and the 3'UTR of human Hbegf-containing luciferase vector proves that the predicted binding site is functional. In line with this, neutralization of miR-132 by anti-miR inhibitor leads to sustained production of HB-EGF protein in activated mast cells. Our data provide a novel example for negative regulation of a growth factor by an upregulated miRNA.
Collapse
Affiliation(s)
- Viktor Molnár
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary.
| | | | | | | | | | | | | |
Collapse
|
14
|
Burton OT, Oettgen HC. Beyond immediate hypersensitivity: evolving roles for IgE antibodies in immune homeostasis and allergic diseases. Immunol Rev 2011; 242:128-43. [PMID: 21682742 DOI: 10.1111/j.1600-065x.2011.01024.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Immunoglobulin E (IgE) antibodies have long been recognized as the antigen-specific triggers of allergic reactions. This review briefly introduces the established functions of IgE in immediate hypersensitivity and then focuses on emerging evidence from our own investigations as well as those of others that IgE plays important roles in protective immunity against parasites and exerts regulatory influences in the expression of its own receptors, FcεRI and CD23, as well as controlling mast cell homeostasis. We provide an overview of the multifaceted ways in which IgE antibodies contribute to the pathology of food allergy and speculate regarding potential mechanisms of action of IgE blockade.
Collapse
Affiliation(s)
- Oliver T Burton
- Division of Immunology, Children's Hospital, Harvard Medical School, Boston, MA, USA.
| | | |
Collapse
|
15
|
Kashiwakura JI, Otani IM, Kawakami T. Monomeric IgE and mast cell development, survival and function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 716:29-46. [PMID: 21713650 DOI: 10.1007/978-1-4419-9533-9_3] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Mast cells play a major role in allergy and anaphylaxis, as well as a protective role in immunity against bacteria and venoms (innate immunity) and T-cell activation (acquired immunity).1,2 It was long thought that two steps are essential to mast cell activation. The first step (sensitization) occurs when antigen-specific IgE binds to its high-affinity IgE receptor (FcεRI) expressed on the surface of mast cells. The second step occurs when antigen (Ag) or anti-IgE binds antigen-specific IgE antibodies bound to FcεRI present on the mast cell surface (this mode of stimulation hereafter referred to as IgE+Ag or IgE+anti-IgE stimulation, respectively).Conventional wisdom has been that monomeric IgE plays only an initial, passive role in mast cell activation. However, recent findings have shown that IgE binding to its receptor FcεRI can mediate mast cell activation events even in the absence of antigen (this mode of stimulation hereafter referred to as IgE(-Ag) stimulation). Different subtypes of monomeric IgEs act via IgE(-Ag) stimulation to elicit varied effects on mast cells function, survival and differentiation. This chapter will describe the role of monomeric IgE molecules in allergic reaction, the various effects and mechanisms of action of IgE(-Ag) stimulation on mast cells and what possible developments may arise from this knowledge in the future. Since mast cells are involved in a variety of pathologic and protective responses, understanding the role that monomeric IgE plays in mast cell function, survival and differentiation will hopefully lead to better understanding and treatment of asthma and other allergic diseases, as well as improved understanding of host response to infections.
Collapse
Affiliation(s)
- Jun-Ichi Kashiwakura
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | | | | |
Collapse
|
16
|
Medina-Tamayo J, Ibarra-Sánchez A, Padilla-Trejo A, González-Espinosa C. IgE-dependent sensitization increases responsiveness to LPS but does not modify development of endotoxin tolerance in mast cells. Inflamm Res 2010; 60:19-27. [PMID: 20625918 DOI: 10.1007/s00011-010-0230-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 06/08/2010] [Accepted: 06/23/2010] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVE Effects of immunoglobulin E (IgE)-dependent sensitization on the response to bacterial lipopolysaccharide (LPS) were analyzed in mast cells. METHODS Murine bone marrow-derived mast cells (BMMCs) were sensitized or not with IgE before stimulation with LPS. TLR4 and co-receptors expression was analyzed by flow cytometry and RT-PCR, TNF-α production by ELISA, IKK and IκB activation by western blot or immunoprecipitation. NFκB nuclear translocation was determined by EMSA. RESULTS IgE-sensitized BMMCs secreted larger amounts of TNF-α than non-sensitized cells shortly after LPS challenge. No change in TLR4, CD14 or MD-2 expression was detected after the IgE-dependent sensitization process, whereas TLR4-dependent phosphorylation of IKK and IκB was augmented. IgE-dependent sensitization increased basal NFκB activity. Endotoxin tolerance was not affected by the IgE-dependent sensitization process. CONCLUSIONS IgE-induced sensitization primes mast cells for higher response to LPS through pre-activation of NFκB transcription factor. IgE-dependent sensitization does not modify events leading to endotoxin tolerance.
Collapse
Affiliation(s)
- Jaciel Medina-Tamayo
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN, Sede Sur, Calzada de los Tenorios No 235, Col Granjas Coapa, Tlalpan, Mexico, DF, México
| | | | | | | |
Collapse
|
17
|
Takenaka H, Ushio H, Niyonsaba F, Jayawardana STM, Hajime S, Ikeda S, Ogawa H, Okumura K. Synergistic augmentation of inflammatory cytokine productions from murine mast cells by monomeric IgE and toll-like receptor ligands. Biochem Biophys Res Commun 2009; 391:471-6. [PMID: 19914211 DOI: 10.1016/j.bbrc.2009.11.082] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Accepted: 11/11/2009] [Indexed: 01/08/2023]
Abstract
Simultaneous activation of murine mast cells by monomeric IgE and toll-like receptor (TLR) ligands was examined. Inflammatory cytokine production elicited by the binding of IgE in the absence of antigen, was further enhanced by the addition of lipopolysaccharide (LPS) or peptidoglycan (PGN). Enhancement by LPS or PGN on cytokine production was mediated by TLR4 and TLR2, respectively, since TLR4- and TLR2-deficient mast cells did not show synergistic activation by monomeric IgE and LPS/PGN. Synergistic activation of mast cells was obtained via phosphorylation of several mitogen-activated protein kinases (MAPK). Furthermore, MAPK inhibitors, significantly attenuated the augmentation of inflammatory cytokine production by monomeric IgE and LPS or PGN. Altogether, these results suggest that simultaneous TLR activation of mast cells with IgE molecules, particularly highly cytokinergic (HC) IgE, might contribute to the exacerbation of allergic diseases associated with infection even in the absence of a specific antigen.
Collapse
Affiliation(s)
- Hiroshi Takenaka
- Atopy (Allergy) Research Center, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Andrews NL, Pfeiffer JR, Martinez AM, Haaland DM, Davis RW, Kawakami T, Oliver JM, Wilson BS, Lidke DS. Small, mobile FcepsilonRI receptor aggregates are signaling competent. Immunity 2009; 31:469-79. [PMID: 19747859 DOI: 10.1016/j.immuni.2009.06.026] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Revised: 06/15/2009] [Accepted: 06/24/2009] [Indexed: 10/20/2022]
Abstract
Crosslinking of IgE-bound FcepsilonRI triggers mast cell degranulation. Previous fluorescence recovery after photobleaching (FRAP) and phosphorescent anisotropy studies suggested that FcepsilonRI must immobilize to signal. Here, single quantum dot (QD) tracking and hyperspectral microscopy methods were used for defining the relationship between receptor mobility and signaling. QD-IgE-FcepsilonRI aggregates of at least three receptors remained highly mobile over extended times at low concentrations of antigen that induced Syk kinase activation and near-maximal secretion. Multivalent antigen, presented as DNP-QD, also remained mobile at low doses that supported secretion. FcepsilonRI immobilization was marked at intermediate and high antigen concentrations, correlating with increases in cluster size and rates of receptor internalization. The kinase inhibitor PP2 blocked secretion without affecting immobilization or internalization. We propose that immobility is a feature of highly crosslinked immunoreceptor aggregates and a trigger for receptor internalization, but is not required for tyrosine kinase activation leading to secretion.
Collapse
Affiliation(s)
- Nicholas L Andrews
- Department of Pathology and Cancer Research and Treatment Center, University of New Mexico, Albuquerque, NM 87131, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Liu C, Liu Z, Li Z, Wu Y. Molecular regulation of mast cell development and maturation. Mol Biol Rep 2009; 37:1993-2001. [PMID: 19644767 DOI: 10.1007/s11033-009-9650-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Accepted: 07/21/2009] [Indexed: 10/20/2022]
Abstract
Mast cells play a crucial role in the pathogenesis of allergic diseases. In recent years, tremendous progresses have been made in studies of mast cell origination, migration, proliferation, maturation and survival, and the cytokines regulating these activities. These advances have significantly improved our understandings to mast cell biology and to the molecular mechanisms of mast cells in the pathogenesis of allergic diseases.
Collapse
Affiliation(s)
- Chenxiong Liu
- Allergy and Immunology Institute, School of Medicine, Shenzhen University, Shenzhen, China
| | | | | | | |
Collapse
|
20
|
MacGlashan D. IgE receptor and signal transduction in mast cells and basophils. Curr Opin Immunol 2008; 20:717-23. [PMID: 18822373 DOI: 10.1016/j.coi.2008.08.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Revised: 08/27/2008] [Accepted: 08/28/2008] [Indexed: 12/11/2022]
Abstract
There are many aspects of mast cell and basophil biology that are being explored today. Notably, there is a wide variety of studies of the roles these two cell types play in the development of a multitude of diseases and the role they play in the general immune response. But the original reasons for studying these two cells types--because they are considered crucial to immediate hypersensitivity reactions--remain a driving force for research. These two cell types express the complete high affinity IgE receptor and aggregation of this receptor results in the secretion of multiple potent mediators that cause many of the signs and symptoms of an allergic reaction. Understanding more about the biology of the receptor and the signaling that it initiates remains important to the development of new therapeutic approaches to inhibit this reaction.
Collapse
Affiliation(s)
- Donald MacGlashan
- Johns Hopkins Asthma and Allergy Center, 5501 Hopkins Bayview Circle, Baltimore, MD 21224, United States.
| |
Collapse
|