1
|
So J, Wu D, Tai AK, Lichtenstein AH, Matthan NR, Lamon-Fava S. Monocyte transcriptomic profile following EPA and DHA supplementation in men and women with low-grade chronic inflammation. Atherosclerosis 2024; 388:117407. [PMID: 38091778 PMCID: PMC10872449 DOI: 10.1016/j.atherosclerosis.2023.117407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 11/16/2023] [Accepted: 11/29/2023] [Indexed: 01/15/2024]
Abstract
BACKGROUND Recent data indicate considerable variability in response to very long chain omega-3 fatty acid supplementation on cardiovascular disease risk. This inconsistency may be due to differential effects of EPA vs DHA and/or sex-specific responses. METHODS Sixteen subjects (eight men and eight women) 50-75 y and with low-grade chronic inflammation participated in a randomized controlled crossover trial comparing 3 g/d EPA, 3 g/d DHA, and placebo (3 g/d high oleic acid sunflower oil). Blood monocytes were isolated at the end of each phase for RNA-sequencing. RESULTS Sex dimorphism in monocyte gene expression was observed, therefore, data for men and women were analyzed separately. 1088 genes were differentially expressed in men and 997 in women (p < 0.05). In both men and women, EPA and DHA repressed genes involved in protein turnover and mitochondrial energy metabolism, relative to placebo. In men only, EPA and DHA upregulated genes related to wound healing and PPARα activation. In women only, EPA and DHA activated genes related to ER stress response. Relative to DHA, EPA resulted in lower expression of genes involved in inflammatory processes in men, and lower expression of genes involved in ER stress response in women. CONCLUSIONS EPA and DHA supplementation elicited both similar and differential effects on monocyte transcriptome, some of which were sex specific. The observed variability in response to EPA and DHA in men and women could in part explain the conflicting results from previous cardiovascular clinical trials using omega-3 fatty acids.
Collapse
Affiliation(s)
- Jisun So
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - Dayong Wu
- Nutritional Immunology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - Albert K Tai
- Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
| | - Alice H Lichtenstein
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - Nirupa R Matthan
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - Stefania Lamon-Fava
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA.
| |
Collapse
|
2
|
Zhang J, Xue Z, Zhao Q, Zhang K, Zhou A, Shi L, Liu Y. RNA-Sequencing Characterization of lncRNA and mRNA Functions in Septic Pig Liver Injury. Genes (Basel) 2023; 14:genes14040945. [PMID: 37107704 PMCID: PMC10137529 DOI: 10.3390/genes14040945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
We assessed differentially expressed (DE) mRNAs and lncRNAs in the liver of septic pigs to explore the key factors regulating lipopolysaccharide (LPS)-induced liver injury. We identified 543 DE lncRNAs and 3642 DE mRNAs responsive to LPS. Functional enrichment analysis revealed the DE mRNAs were involved in liver metabolism and other pathways related to inflammation and apoptosis. We also found significantly upregulated endoplasmic reticulum stress (ERS)-associated genes, including the receptor protein kinase receptor-like endoplasmic reticulum kinase (PERK), the eukaryotic translation initiation factor 2α (EIF2S1), the transcription factor C/EBP homologous protein (CHOP), and activating transcription factor 4 (ATF4). In addition, we predicted 247 differentially expressed target genes (DETG) of DE lncRNAs. The analysis of protein-protein interactions (PPI) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway detected key DETGs that are involved in metabolic pathways, such as N-Acetylgalactosaminyltransferase 2 (GALNT2), argininosuccinate synthetase 1 (ASS1), and fructose 1,6-bisphosphatase 1 (FBP1). LNC_003307 was the most abundant DE lncRNA in the pig liver, with a marked upregulation of >10-fold after LPS stimulation. We identified three transcripts for this gene using the rapid amplification of the cDNA ends (RACE) technique and obtained the shortest transcript sequence. This gene likely derives from the nicotinamide N-methyltransferase (NNMT) gene in pigs. According to the identified DETGs of LNC_003307, we hypothesize that this gene regulates inflammation and endoplasmic reticulum stress in LPS-induced liver damage in pigs. This study provides a transcriptomic reference for further understanding of the regulatory mechanisms underlying septic hepatic injury.
Collapse
Affiliation(s)
- Jing Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan 430023, China
| | - Zhihui Xue
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan 430023, China
| | - Qingbo Zhao
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan 430023, China
| | - Keke Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan 430023, China
| | - Ao Zhou
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan 430023, China
| | - Liangyu Shi
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yulan Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
3
|
Chattopadhyay P, Mishra P, Khare K, Yadav A, Mehta P, Saifi S, Swaminathan A, Devi P, Parveen S, Tyagi A, Jha V, Tarai B, Jha S, Budhiraja S, Narayan J, Pandey R. LncRNAs harbouring regulatory motifs within repeat elements modulate immune response towards COVID-19 disease severity and clinical outcomes. Clin Transl Med 2022; 12:e932. [PMID: 35808807 PMCID: PMC9270577 DOI: 10.1002/ctm2.932] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/24/2022] [Accepted: 05/30/2022] [Indexed: 11/05/2022] Open
Affiliation(s)
- Partha Chattopadhyay
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Pallavi Mishra
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Kriti Khare
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Aanchal Yadav
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Priyanka Mehta
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Sheeba Saifi
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Aparna Swaminathan
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Priti Devi
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Shaista Parveen
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Akansha Tyagi
- Max Super Speciality Hospital (A Unit of Devki Devi Foundation), Max Healthcare, Delhi, India
| | - Vinita Jha
- Max Super Speciality Hospital (A Unit of Devki Devi Foundation), Max Healthcare, Delhi, India
| | - Bansidhar Tarai
- Max Super Speciality Hospital (A Unit of Devki Devi Foundation), Max Healthcare, Delhi, India
| | - Sujeet Jha
- Max Super Speciality Hospital (A Unit of Devki Devi Foundation), Max Healthcare, Delhi, India
| | - Sandeep Budhiraja
- Max Super Speciality Hospital (A Unit of Devki Devi Foundation), Max Healthcare, Delhi, India
| | - Jitendra Narayan
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Rajesh Pandey
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
4
|
Progranulin Improves Acute Lung Injury through Regulating the Differentiation of Regulatory T Cells and Interleukin-10 Immunomodulation to Promote Macrophage Polarization. Mediators Inflamm 2020; 2020:9704327. [PMID: 32565732 PMCID: PMC7281846 DOI: 10.1155/2020/9704327] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/27/2020] [Accepted: 05/14/2020] [Indexed: 12/19/2022] Open
Abstract
Progranulin (PGRN), which plays an anti-inflammatory role in acute lung injury (ALI), is promising as a potential drug. Studies have shown that regulatory T cells (Tregs) and interleukin- (IL-) 10 can repress inflammation and alleviate tissue damage during ALI. In this study, we built a lipopolysaccharide- (LPS-) induced ALI mouse model to illustrate the effect of PGRN on regulation of Treg differentiation and modulation of IL-10 promoting macrophage polarization. We found that the proportion of Tregs in splenic mononuclear cells and peripheral blood mononuclear cells was higher after treatment with PGRN. The increased proportion of Tregs after PGRN intratracheal instillation was consistent with the decreased severity of lung injury, the reduction of proinflammatory cytokines, and the increase of anti-inflammatory cytokines. In vitro, the percentages of CD4+CD25+FOXP3+ Tregs from splenic naïve CD4+ T cells increased after PGRN treatment. In further research, it was found that PGRN can regulate the anti-inflammatory factor IL-10 and affect the polarization of M1/M2 macrophages by upregulating IL-10. These findings show that PGRN likely plays a protective role in ALI by promoting Treg differentiation and activating IL-10 immunomodulation.
Collapse
|
5
|
Chai YS, Chen YQ, Lin SH, Xie K, Wang CJ, Yang YZ, Xu F. Curcumin regulates the differentiation of naïve CD4+T cells and activates IL-10 immune modulation against acute lung injury in mice. Biomed Pharmacother 2020; 125:109946. [DOI: 10.1016/j.biopha.2020.109946] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/19/2020] [Accepted: 01/23/2020] [Indexed: 12/13/2022] Open
|
6
|
Verjans E, Kanzler S, Ohl K, Rieg AD, Ruske N, Schippers A, Wagner N, Tenbrock K, Uhlig S, Martin C. Initiation of LPS-induced pulmonary dysfunction and its recovery occur independent of T cells. BMC Pulm Med 2018; 18:174. [PMID: 30466430 PMCID: PMC6251177 DOI: 10.1186/s12890-018-0741-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 11/14/2018] [Indexed: 12/19/2022] Open
Abstract
Background The acute respiratory distress syndrome (ARDS) is a serious disease in critically ill patients that is characterized by pulmonary dysfunctions, hypoxemia and significant mortality. Patients with immunodeficiency (e.g. SCID with T and B cell deficiency) are particularly susceptible to the development of severe ARDS. However, the role of T cells on pulmonary dysfunctions in immune-competent patients with ARDS is only incompletely understood. Methods Wild-type (wt) and RAG2−/− mice (lymphocyte deficient) received intratracheal instillations of LPS (4 mg/kg) or saline. On day 1, 4 and 10 lung mechanics and bronchial hyperresponsiveness towards acetylcholine were measured with the flexiVent ventilation set-up. The bronchoalveolar lavage fluid (BALF) was examined for leukocytes (FACS analysis) and pro-inflammatory cytokines (ELISA). Results In wt mice, lung mechanics, body weight and body temperature deteriorated in the LPS-group during the early phase (up to d4); these alterations were accompanied by increased leukocyte numbers and inflammatory cytokine levels in the BALF. During the late phase (day 10), both lung mechanics and the cell/cytokine homeostasis recovered in LPS-treated wt mice. RAG2−/− mice experienced changes in body weight, lung mechanics, BAL neutrophil numbers, BAL inflammatory cytokines levels that were comparable to wt mice. Conclusion Following LPS instillation, lung mechanics deteriorate within the first 4 days and recover towards day 10. This response is not altered by the lack of T lymphocytes suggesting that T cells play only a minor role for the initiation, propagation or recovery of LPS-induced lung dysfunctions or function of T lymphocytes can be compensated by other immune cells, such as alveolar macrophages. Electronic supplementary material The online version of this article (10.1186/s12890-018-0741-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Eva Verjans
- Department of Pediatrics, Medical Faculty, RWTH Aachen, Aachen, Germany. .,Institute of Pharmacology and Toxicology, RWTH Aachen, Aachen, Germany.
| | - Stephanie Kanzler
- Institute of Pharmacology and Toxicology, RWTH Aachen, Aachen, Germany
| | - Kim Ohl
- Department of Pediatrics, Medical Faculty, RWTH Aachen, Aachen, Germany
| | - Annette D Rieg
- Institute of Pharmacology and Toxicology, RWTH Aachen, Aachen, Germany.,Department of Anaesthesiology, Medical Faculty, RWTH Aachen, Aachen, Germany
| | - Nadine Ruske
- Institute of Pharmacology and Toxicology, RWTH Aachen, Aachen, Germany
| | - Angela Schippers
- Department of Pediatrics, Medical Faculty, RWTH Aachen, Aachen, Germany
| | - Norbert Wagner
- Department of Pediatrics, Medical Faculty, RWTH Aachen, Aachen, Germany
| | - Klaus Tenbrock
- Department of Pediatrics, Medical Faculty, RWTH Aachen, Aachen, Germany
| | - Stefan Uhlig
- Institute of Pharmacology and Toxicology, RWTH Aachen, Aachen, Germany
| | - Christian Martin
- Institute of Pharmacology and Toxicology, RWTH Aachen, Aachen, Germany
| |
Collapse
|
7
|
Zhou S, Li S, Zhang W, Tong H, Li S, Yan Y. MiR-139 promotes differentiation of bovine skeletal muscle-derived satellite cells by regulating DHFR gene expression. J Cell Physiol 2018; 234:632-641. [PMID: 30078180 DOI: 10.1002/jcp.26817] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 04/30/2018] [Indexed: 11/09/2022]
Abstract
MicroRNAs play an important regulatory role in the proliferation and differentiation of skeletal muscle-derived satellite cells (MDSCs). In particular, miR-139 can inhibit tumor cell proliferation and invasion, and its expression is down-regulated during C2C12 myoblast differentiation. The aim of this study was thus to examine the effect and potential mechanism of miR-139 in bovine MDSCs. The expression of miR-139 was found to be significantly increased during bovine MDSC differentiation by stem-loop reverse transcription-polymerase chain reaction amplification. Statistical analysis of the myotube fusion rate was done through immunofluorescence detection of desmin, and western blotting was used to measure the change in protein expression of the muscle differentiation marker genes MYOG and MYH3. The results showed that the miR-139 mimic could enhance the differentiation of bovine MDSCs, whereas the inhibitor had the opposite effect. By using the dual-luciferase reporter system, miR-139 was found to target the 3'-untranslated region of the dihydrofolate reductase (DHFR) gene and regulate its expression. In addition, the expression of miR-139 was found to be regulated by its host gene phosphodiesterase 2A (PDE2A) via inhibition of the latter by CRISPR interference (CRISPRi). Overall, our findings indicate that miR-139 plays an important role in regulating the differentiation of bovine MDSCs.
Collapse
Affiliation(s)
- Shuang Zhou
- The Laboratory of Cell and Development, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Shuang Li
- The Laboratory of Cell and Development, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Weiwei Zhang
- Department of Life Science and Agroforestry, Qiqihar University, Quqihar, Heilongjiang, China
| | - Huili Tong
- The Laboratory of Cell and Development, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Shufeng Li
- The Laboratory of Cell and Development, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yunqin Yan
- The Laboratory of Cell and Development, Northeast Agricultural University, Harbin, Heilongjiang, China
| |
Collapse
|
8
|
Gnipp S, Mergia E, Puschkarow M, Bufe A, Koesling D, Peters M. Nitric oxide dependent signaling via cyclic GMP in dendritic cells regulates migration and T-cell polarization. Sci Rep 2018; 8:10969. [PMID: 30030528 PMCID: PMC6054623 DOI: 10.1038/s41598-018-29287-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 07/05/2018] [Indexed: 12/18/2022] Open
Abstract
Allergic airway inflammation is accompanied by excessive generation of nitric oxide (NO). Beside its detrimental activity due to the generation of reactive nitrogen species, NO was found to modulate immune responses by activating the NO-sensitive Guanylyl Cyclases (NO-GCs) thereby mediating the formation of the second messenger cyclic GMP (cGMP). To investigate the contribution of the key-enzyme NO-GC on the development of Th2 immunity in vivo, we sensitized knock-out (KO) mice of the major isoform NO-GC1 to the model allergen ovalbumin (OVA). The loss of NO-GC1 attenuates the Th2 response leading to a reduction of airway inflammation and IgE production. Further, in vitro-generated OVA-presenting DCs of the KO induce only a weak Th2 response in the WT recipient mice upon re-exposure to OVA. In vitro, these NO-GC1 KO BMDCs develop a Th1-polarizing phenotype and display increased cyclic AMP (cAMP) formation, which is known to induce Th1-bias. According to our hypothesis of a NO-GC1/cGMP-dependent regulation of cAMP-levels we further demonstrate activity of the cGMP-activated cAMP-degrading phosphodiesterase 2 in DCs. Herewith, we show that activity of NO-GC1 in DCs is important for the magnitude and bias of the Th response in allergic airway disease most likely by counteracting intracellular cAMP.
Collapse
Affiliation(s)
- Stefanie Gnipp
- Department of Experimental Pneumology, Medical Faculty, Ruhr University Bochum, 44780, Bochum, Germany.
| | - Evanthia Mergia
- Institute of Pharmacology and Toxicology, Medical Faculty, Ruhr University Bochum, 44780, Bochum, Germany
| | - Michelle Puschkarow
- Department of Experimental Pneumology, Medical Faculty, Ruhr University Bochum, 44780, Bochum, Germany
| | - Albrecht Bufe
- Department of Experimental Pneumology, Medical Faculty, Ruhr University Bochum, 44780, Bochum, Germany
| | - Doris Koesling
- Institute of Pharmacology and Toxicology, Medical Faculty, Ruhr University Bochum, 44780, Bochum, Germany
| | - Marcus Peters
- Department of Experimental Pneumology, Medical Faculty, Ruhr University Bochum, 44780, Bochum, Germany.
| |
Collapse
|
9
|
Selective phosphodiesterase-2A inhibitor alleviates radicular inflammation and mechanical allodynia in non-compressive lumbar disc herniation rats. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2017; 26:1961-1968. [PMID: 28283839 DOI: 10.1007/s00586-017-5023-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 02/18/2017] [Accepted: 02/28/2017] [Indexed: 12/11/2022]
Abstract
PURPOSE Phosphodiesterase inhibitors possess anti-inflammatory properties. In addition, some studies report that phosphodiesterase 2A (PDE2A) are highly expressed in the dorsal horn of the spinal cord. The present study aimed to investigate whether intrathecal administration of Bay 60-7550, a specific PDE2A inhibitor, could alleviate mechanical allodynia in non-compressive lumbar disc herniation (NCLDH) rats. METHODS Rat NCLDH models by autologous nucleus pulposus implantation to dorsal root ganglion were established. Vehicle or Bay 60-7550 (0.1, 1.0 mg/kg) was injected by intrathecal catheter at day 1 post-operation. The ipsilateral mechanical withdrawal thresholds were analyzed from the day before surgery to day 7 after surgery. At day 7 post-operation, the ipsilateral lumbar (L4-L6) segments of the spinal dorsal horns were removed, and tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), cyclic adenosine monophosphate (cAMP), and cyclic guanosine monophosphate (cGMP) expressions were measured by ELISA. Furthermore, PDE2A mRNA and protein expressions in spinal cord were measured by Real-Time PCR and Western blot. RESULTS Intrathecal administration of the PDE2A inhibitor Bay 60-7550, significantly attenuated mechanical allodynia, down-regulated spinal TNF-α, IL-1β and IL-6 over-expressions, increased the expression of spinal cAMP, as well as cGMP in a more remarkable manner, and decreased the spinal PDE2A expression in NCLDH rats in a dose-dependent manner. CONCLUSIONS Bay 60-7550 alleviated mechanical allodynia and inflammation in NCLDH rats, which might be associated with increased cAMP and especially cGMP increase. Thus, spinal PDE2A inhibition might represent a potential analgesic strategy for radiculopathy treatment in non-compressive lumbar disc herniation.
Collapse
|
10
|
Neviere R, Delguste F, Durand A, Inamo J, Boulanger E, Preau S. Abnormal Mitochondrial cAMP/PKA Signaling Is Involved in Sepsis-Induced Mitochondrial and Myocardial Dysfunction. Int J Mol Sci 2016; 17:ijms17122075. [PMID: 27973394 PMCID: PMC5187875 DOI: 10.3390/ijms17122075] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 11/18/2016] [Accepted: 12/06/2016] [Indexed: 12/11/2022] Open
Abstract
Adrenergic receptors couple to Gs-proteins leading to transmembrane adenylyl cyclase activation and cytosolic cyclic adenosine monophosphate (cAMP) production. Cyclic AMP is also produced in the mitochondrial matrix, where it regulates respiration through protein kinase A (PKA)-dependent phosphorylation of respiratory chain complexes. We hypothesized that a blunted mitochondrial cAMP-PKA pathway would participate in sepsis-induced heart dysfunction. Adult male mice were subjected to intra-abdominal sepsis. Mitochondrial respiration of cardiac fibers and myocardial contractile performance were evaluated in response to 8Br-cAMP, PKA inhibition (H89), soluble adenylyl cyclase inhibition (KH7), and phosphodiesterase inhibition (IBMX; BAY60-7550). Adenosine diphosphate (ADP)-stimulated respiratory rates of cardiac fibers were reduced in septic mice. Compared with controls, stimulatory effects of 8Br-cAMP on respiration rates were enhanced in septic fibers, whereas inhibitory effects of H89 were reduced. Ser-58 phosphorylation of cytochrome c oxidase subunit IV-1 was reduced in septic hearts. In vitro, incubation of septic cardiac fibers with BAY60-7550 increased respiratory control ratio and improved cardiac MVO2 efficiency in isolated septic heart. In vivo, BAY60-7550 pre-treatment of septic mice have limited impact on myocardial function. Mitochondrial cAMP-PKA signaling is impaired in the septic myocardium. PDE2 phosphodiesterase inhibition by BAY60-7550 improves mitochondrial respiration and cardiac MVO2 efficiency in septic mice.
Collapse
Affiliation(s)
- Remi Neviere
- Département de Physiologie, Faculté de Médecine, Université Lille, 1 Place de Verdun, F-59000 Lille CEDEX 59045, France.
- INSERM LIRIC U995/Team "Glycation: From Inflammation to Aging", Université Lille, F-59000 Lille, France.
| | - Florian Delguste
- INSERM LIRIC U995/Team "Glycation: From Inflammation to Aging", Université Lille, F-59000 Lille, France.
| | - Arthur Durand
- INSERM LIRIC U995/Team "Glycation: From Inflammation to Aging", Université Lille, F-59000 Lille, France.
- Pôle Réanimation Médicale, CHU Lille, Bd Pr Leclercq, F-59000 Lille, France.
| | - Jocelyn Inamo
- Département de Cardiologie, CHU Martinique, Faculté de Médecine, Université des Antilles, F-97200 Fort de France, France.
| | - Eric Boulanger
- INSERM LIRIC U995/Team "Glycation: From Inflammation to Aging", Université Lille, F-59000 Lille, France.
| | - Sebastien Preau
- INSERM LIRIC U995/Team "Glycation: From Inflammation to Aging", Université Lille, F-59000 Lille, France.
- Pôle Réanimation Médicale, CHU Lille, Bd Pr Leclercq, F-59000 Lille, France.
| |
Collapse
|
11
|
Mogilski S, Kubacka M, Łażewska D, Więcek M, Głuch-Lutwin M, Tyszka-Czochara M, Bukowska-Strakova K, Filipek B, Kieć-Kononowicz K. Aryl-1,3,5-triazine ligands of histamine H 4 receptor attenuate inflammatory and nociceptive response to carrageen, zymosan and lipopolysaccharide. Inflamm Res 2016; 66:79-95. [PMID: 27766379 PMCID: PMC5209447 DOI: 10.1007/s00011-016-0997-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 10/06/2016] [Accepted: 10/11/2016] [Indexed: 12/30/2022] Open
Abstract
Objective and design Histamine H4 receptor (H4R) offers a great potential for new therapeutic strategies for the treatment of inflammation-based diseases. The aim of this study is to present the pharmacological profile of two recently synthesized ligands of H4R with particular reference to their anti-inflammatory and analgesic activity. Materials and subjects We used mice and rats in the in vivo tests. We also used murine RAW 264.7 cells and isolated guinea-pig ileum in in vitro test. Treatments In the in vivo tests, animals were pre-treated with the increasing doses of investigated compounds (12.5, 25 and 50 mg/kg) and reference compounds: JNJ7777120 (25 mg/kg), indomethacin (10 mg/kg). Macrophages were pre-treated with two concentrations of tested compounds 100 and 10 µM. Methods We examined anti-inflammatory and analgesic effects of the new H4R antagonists in the in vivo models of inflammation induced by carrageenan or zymosan. We assessed the level of cAMP and release of cytokines, ROS and NO in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. Moreover, we assessed the affinity of the investigated compounds for histamine H1 receptor in functional studies. Results Both investigated compounds reduced paw edema, mechanical and thermal hyperalgesia in the carrageenan-induced acute inflammation. Moreover, administration of the investigated compounds resulted in decreased granulocyte influx and attenuated nociceptive reaction in the zymosan-induced peritonitis model. In the same model of inflammation, the investigated compounds reduced vascular permeability; however, this effect was observed only after the highest applied dose. Furthermore, the test compounds had no impact on cell viability in the experiments on RAW 264.7 macrophages. In these cells, stimulated with LPS, the test compounds decreased reactive oxygen species (ROS) production. They increased the cellular concentration of cAMP and attenuated the production of inflammatory cytokines such as TNFα and IL-1β. All results were comparable to those obtained for the reference compound JNJ7777120 with the exception of the impact on NO production. Nevertheless, this effect was similar to that obtained for the other reference compound rolipram, which is a phosphodiesterase 4 (PDE 4) inhibitor. Further experiments revealed that both of the investigated compounds possessed relatively low affinity for histamine H1 receptor and do not inhibit the activity of the PDE 4B1 enzyme. In addition, all the effects of the investigated compounds in in vivo experiments were observed at doses that did not cause neurologic deficits in rotarod test and did not reduce spontaneous locomotor activity. Conclusions Our results demonstrate the anti-inflammatory and analgesic activity of the new aryl-1,3,5-triazine derivatives, which are primarily H4R–dependent.
Collapse
Affiliation(s)
- Szczepan Mogilski
- Departament of Pharmacodynamics, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland.
| | - Monika Kubacka
- Departament of Pharmacodynamics, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Dorota Łażewska
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Małgorzata Więcek
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Monika Głuch-Lutwin
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland
| | - Małgorzata Tyszka-Czochara
- Department of Radioligands, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Karolina Bukowska-Strakova
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.,Department of Clinical Immunology and Transplantology, Polish-American Institute of Pediatrics, Medical College, Jagiellonian University, Krakow, Poland
| | - Barbara Filipek
- Departament of Pharmacodynamics, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| |
Collapse
|