1
|
Ding P, Liu J, Meng Y, Wang H, Huang Y, Su G, Xia C, Du X, Dong N, Cui T, Zhang J, Li J. MFG-E8 facilitates heart repair through M1/M2 polarization after myocardial infarction by inhibiting CaMKII. Int Immunopharmacol 2024; 126:111216. [PMID: 37977072 DOI: 10.1016/j.intimp.2023.111216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/01/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND M1/M2 macrophage polarization affects patient outcomes after myocardial infarction (MI). The relationship between milk fat globule-epidermal growth factor 8 (MFG-E8) and Ca2+/calmodulin-dependent protein kinase II (CaMKII) on macrophage polarization after MI is unknown. To investigate the functional role of MFG-E8 in modulating cardiac M1/M2 macrophage polarization after MI, especially its influence on CaMKII signaling. METHODS Human ventricular tissue and blood were obtained from patients with MI and controls. MFG-E8-KO mice were constructed (C57BL/6). The mice were randomized to WT-sham, sham-MFG-E8-KO, WT-PBS, rmMFG-E8 (WT injected with rmMFG-E8 10 min after MI), and MFG-E8-KO. The mouse macrophage cell line RAW264.7 was obtained. CaMKII, p-CaMKII, Akt, and NF-κB p65 were determined by qRT-PCR, western blot, and immunofluorescence. RESULTS The MFG-E8 levels were significantly enhanced after MI in the hearts and plasma of patients with MI compared with controls. The MFG-E8 levels were significantly increased in the hearts and plasma of mice after MI. MFG-E8 was derived from cardiac fibroblasts. The administration of rmMFG-E8 improved ventricular remodeling and cardiac function after MI. rmMFG-E8 did not suppress infiltrating monocyte/macrophages into the peri-infarct area. rmMFG-E8 suppressed the polarization of macrophages to the M1 phenotype and promoted the polarization of macrophages to the M2 phenotype. rmMFG-E8 suppressed CaMKII-dependent signaling in macrophages. CONCLUSIONS MFG-E8 and CaMKII appear to collaboratively regulate myocardial remodeling and M1/M2 macrophage polarization after MI. These observations suggest new roles for MFG-E8 in inhibiting M1 but promoting M2 macrophage polarization.
Collapse
Affiliation(s)
- Peiwu Ding
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jie Liu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yidi Meng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Department of Gerontology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hongfei Wang
- Department of Cardiac Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yun Huang
- Department of Gerontology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Guanhua Su
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chaorui Xia
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xinling Du
- Department of Cardiac Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Nianguo Dong
- Department of Cardiac Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Tianpen Cui
- Department of Laboratory Medicine, Wuhan No.1 Hospital, Wuhan, Hubei 430022, China
| | - Jiaming Zhang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jingdong Li
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
2
|
Brilland B, Laplante P, Thebault P, Geoffroy K, Brissette MJ, Latour M, Chassé M, Qi S, Hébert MJ, Cardinal H, Cailhier JF. MFG-E8 Reduces Aortic Intimal Proliferation in a Murine Model of Transplant Vasculopathy. Int J Mol Sci 2022; 23:ijms23084094. [PMID: 35456911 PMCID: PMC9027378 DOI: 10.3390/ijms23084094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 12/10/2022] Open
Abstract
Transplant vasculopathy is characterized by endothelial apoptosis, which modulates the local microenvironment. Milk fat globule epidermal growth factor 8 (MFG-E8), which is released by apoptotic endothelial cells, limits tissue damage and inflammation by promoting anti-inflammatory macrophages. We aimed to study its role in transplant vasculopathy using the murine aortic allotransplantation model. BALB/c mice were transplanted with fully mismatched aortic transplants from MFG-E8 knockout (KO) or wild type (WT) C57BL/6J mice. Thereafter, mice received MFG-E8 (or vehicle) injections for 9 weeks prior to histopathological analysis of allografts for intimal proliferation (hematoxylin and eosin staining) and leukocyte infiltration assessment (immunofluorescence). Phenotypes of blood leukocytes and humoral responses were also evaluated (flow cytometry and ELISA). Mice receiving MFG-E8 KO aortas without MFG-E8 injections had the most severe intimal proliferation (p < 0.001). Administration of MFG-E8 decreased intimal proliferation, especially in mice receiving MFG-E8 KO aortas. Administration of MFG-E8 also increased the proportion of anti-inflammatory macrophages among graft-infiltrating macrophages (p = 0.003) and decreased systemic CD4+ and CD8+ T-cell activation (p < 0.001). An increase in regulatory T cells occurred in both groups of mice receiving WT aortas (p < 0.01). Thus, the analarmin MFG-E8 appears to be an important protein for reducing intimal proliferation in this murine model of transplant vasculopathy. MFG-E8 effects are associated with intra-allograft macrophage reprogramming and systemic T-cell activation dampening.
Collapse
Affiliation(s)
- Benoit Brilland
- Service de Néphrologie-Dialyse-Transplantation, CHU d’Angers, F-49000 Angers, France;
- University of Angers, Université de Nantes, CHU Angers, INSERM, CRCINA, SFR ICAT, F-49000 Angers, France
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada; (P.L.); (P.T.); (K.G.); (M.-J.B.); (M.C.); (S.Q.); (M.-J.H.); (H.C.)
| | - Patrick Laplante
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada; (P.L.); (P.T.); (K.G.); (M.-J.B.); (M.C.); (S.Q.); (M.-J.H.); (H.C.)
- Institut du Cancer de Montréal, Montréal, QC H2X 0A9, Canada
| | - Pamela Thebault
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada; (P.L.); (P.T.); (K.G.); (M.-J.B.); (M.C.); (S.Q.); (M.-J.H.); (H.C.)
- Institut du Cancer de Montréal, Montréal, QC H2X 0A9, Canada
| | - Karen Geoffroy
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada; (P.L.); (P.T.); (K.G.); (M.-J.B.); (M.C.); (S.Q.); (M.-J.H.); (H.C.)
- Institut du Cancer de Montréal, Montréal, QC H2X 0A9, Canada
| | - Marie-Joëlle Brissette
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada; (P.L.); (P.T.); (K.G.); (M.-J.B.); (M.C.); (S.Q.); (M.-J.H.); (H.C.)
| | - Mathieu Latour
- Department of Pathology, Centre Hospitalier de l’Université de Montréal, Montreal, QC H2X 3J4, Canada;
| | - Michaël Chassé
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada; (P.L.); (P.T.); (K.G.); (M.-J.B.); (M.C.); (S.Q.); (M.-J.H.); (H.C.)
- Department of Medicine, Critical Care Division, Centre Hospitalier de l’Université de Montréal, Montreal, QC H2X 3J4, Canada
| | - Shijie Qi
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada; (P.L.); (P.T.); (K.G.); (M.-J.B.); (M.C.); (S.Q.); (M.-J.H.); (H.C.)
| | - Marie-Josée Hébert
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada; (P.L.); (P.T.); (K.G.); (M.-J.B.); (M.C.); (S.Q.); (M.-J.H.); (H.C.)
- Canadian National Transplant Research Program, Edmonton, AB T6G 2E1, Canada
- Department of Medicine, Renal Division, Centre Hospitalier de l’Université de Montréal, Montreal, QC H2X 3J4, Canada
| | - Héloïse Cardinal
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada; (P.L.); (P.T.); (K.G.); (M.-J.B.); (M.C.); (S.Q.); (M.-J.H.); (H.C.)
- Canadian National Transplant Research Program, Edmonton, AB T6G 2E1, Canada
- Department of Medicine, Renal Division, Centre Hospitalier de l’Université de Montréal, Montreal, QC H2X 3J4, Canada
| | - Jean-François Cailhier
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada; (P.L.); (P.T.); (K.G.); (M.-J.B.); (M.C.); (S.Q.); (M.-J.H.); (H.C.)
- Institut du Cancer de Montréal, Montréal, QC H2X 0A9, Canada
- Canadian National Transplant Research Program, Edmonton, AB T6G 2E1, Canada
- Department of Medicine, Renal Division, Centre Hospitalier de l’Université de Montréal, Montreal, QC H2X 3J4, Canada
- Correspondence: ; Tel.: +514-890-8000 (ext. 25971); Fax: +514-412-7938
| |
Collapse
|
3
|
Wang J, Wang Y, Zuo Y, Duan J, Pan A, Li JM, Yan XX, Liu F. MFGE8 mitigates brain injury in a rat model of SAH by maintaining vascular endothelial integrity via TIGβ5/PI3K/CXCL12 signaling. Exp Brain Res 2021; 239:2193-2205. [PMID: 33991211 DOI: 10.1007/s00221-021-06111-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 04/08/2021] [Indexed: 12/25/2022]
Abstract
Leaked blood components, injured endothelial cells, local inflammatory response and vasospasm may converge to promote microthrombosis following subarachnoid hemorrhage (SAH). Previously, we showed that the milk fat globule-epidermal growth factor 8 (MFGE8) can mitigate SAH-induced microthrombosis. This present study was aimed to explore the molecular pathway participated in MFGE8-dependent protection on vascular endothelium. Immunofluorescence, immunoblot and behavioral tests were used to determine the molecular partner and signaling pathway mediating the effect of MFGE8 in vascular endothelium in rats with experimental SAH and controls, together with the applications of RNA silencing and pharmacological intervention methods. Relative to control, recombinant human MFGE8 (rhMFGE8) treatment increased 5-bromo-2'-deoxyuridine (BrdU) labeled new endothelial cells, reduced TUNUL-positive endothelial cells and elevated the expression of phosphatidylinositol 3-kinase (PI3K) and chemokine (C-X-C motif) ligand 12 (CXCL12), in the brains of SAH rats. These effects were reversed by MFGE8 RNA silencing, as well as following cilengitide and wortmannin intervention. These results suggest that MFGE8 promotes endothelial regeneration and mitigates endothelial DNA damage through the activation of the TIGβ5/PI3K/CXCL12 signaling pathway.
Collapse
Affiliation(s)
- Jikai Wang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Sun Yat-sen University, No. 52 Meihuadong Road, Zhuhai, 519000, Guangdong, China
| | - Yiping Wang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Sun Yat-sen University, No. 52 Meihuadong Road, Zhuhai, 519000, Guangdong, China
| | - Yuchun Zuo
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jiajia Duan
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Aihua Pan
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Jian-Ming Li
- Department of Anatomy, School of Basic Sciences, Changsha Medical University, Changsha, 410219, Hunan, China
| | - Xiao-Xin Yan
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Fei Liu
- Department of Neurosurgery, The Fifth Affiliated Hospital of Sun Yat-sen University, No. 52 Meihuadong Road, Zhuhai, 519000, Guangdong, China.
| |
Collapse
|
4
|
Verma AK, Ali SA, Singh P, Kumar S, Mohanty AK. Transcriptional Repression of MFG-E8 Causes Disturbance in the Homeostasis of Cell Cycle Through DOCK/ZP4/STAT Signaling in Buffalo Mammary Epithelial Cells. Front Cell Dev Biol 2021; 9:568660. [PMID: 33869165 PMCID: PMC8047144 DOI: 10.3389/fcell.2021.568660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 03/08/2021] [Indexed: 12/13/2022] Open
Abstract
The mammary gland is a unique apocrine gland made up of a branching network of ducts that end in alveoli. It is an ideal system to study the molecular mechanisms associated with cell proliferation, differentiation, and oncogenesis. MFG-E8, also known as Lactadherin, is a vital glycoprotein related to the milk fat globule membrane and initially identified to get secreted in bovine milk. Our previous report suggests that a high level of MFG-E8 is indicative of high milk yield in dairy animals. Here, we showed that MFG-E8 controls the cell growth and morphology of epithelial cells through a network of regulatory transcription factors. To understand the comprehensive action, we downregulated its expression in MECs by MFG-E8 specific shRNA. We generated a knockdown proteome profile of differentially expressed proteins through a quantitative iTRAQ experiment on a high-resolution mass spectrometer (Q-TOF). The downregulation of MFG-E8 resulted in reduced phagocytosis and cell migration ability, whereas it also leads to more lifespan to knockdown vis-a-vis healthy cells, which is confirmed through BrdU, MTT, and Caspase 3/7. The bioinformatics analysis revealed that MFG-E8 knockdown perturbs a large number of intracellular signaling, eventually leading to cessation in cell growth. Based on the directed network analysis, we found that MFG-E8 is activated by CX3CL1, TP63, and CSF2 and leads to the activation of SOCS3 and CCL2 for the regulation of cell proliferation. We further proved that the depletion of MFG-E8 resulted in activated cytoskeletal remodeling by MFG-E8 knockdown, which results in the activation of three independent pathways ZP4/JAK-STAT5, DOCK1/STAT3, and PIP3/AKT/mTOR. Overall, this study suggests that MFG-E8 expression in mammary epithelial cells is an indication of intracellular deterioration in cell health. To date, to the best of our knowledge, this is the first study that explores the downstream targets of MFG-E8 involved in the regulation of mammary epithelial cell health.
Collapse
|
5
|
MFG-E8-derived peptide attenuates inflammation and injury after renal ischemia-reperfusion in mice. Heliyon 2020; 6:e05794. [PMID: 33409388 PMCID: PMC7773867 DOI: 10.1016/j.heliyon.2020.e05794] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/23/2020] [Accepted: 12/17/2020] [Indexed: 01/14/2023] Open
Abstract
Background Renal ischemia-reperfusion (renal I/R) injury may lead to acute kidney injury (AKI). After renal I/R, proinflammatory mediators cause immune cell infiltration and further injury. Milk fat globule-epidermal growth factor-factor 8 (MFG-E8) is a protein involved in cell-cell and cell-matrix interactions. MSP68 is an MFG-E8-derived peptide that inhibits neutrophil adhesion and migration. Here, we evaluated whether MSP68 attenuates renal I/R injury. Materials and methods Adult C57BL/6 mice were subjected to bilateral renal ischemia for 30 min followed by reperfusion and intraperitoneal administration of saline (vehicle) or MSP68 (5 mg/kg). Sham animals underwent laparotomy without renal I/R. The blood collected and studied for BUN, creatinine, and LDH by colorimetry. The kidneys were analyzed for IL-6 and TNFα by qPCR, ELISA, histological injury, and apoptosis by TUNEL. Results At 24 h after surgery, serum levels of BUN, creatinine, and LDH were markedly higher in vehicle-treated renal I/R mice than in sham mice, but significantly lower in MSP68-treated renal I/R mice. Similarly, compared to sham, renal levels of IL-6 mRNA and protein and TNFα protein were markedly higher in vehicle-treated renal I/R mice, but significantly lower in MSP68-treated renal I/R mice. Vehicle-treated renal I/R mice also had severe renal tubular histological injury, which was significantly lower in MSP68-treated renal I/R mice. Additionally, the kidneys of vehicle-treated renal I/R mice had a 93-fold increase in TUNEL-positive cells, which were reduced by 35% in mice treated with MSP68. Conclusion MSP68 has the potential to be developed as novel therapeutic agent for patients with AKI.
Collapse
|
6
|
Wang Z, Han L, Sun T, Ma J, Sun S, Ma L, Wu B. Extracellular matrix derived from allogenic decellularized bone marrow mesenchymal stem cell sheets for the reconstruction of osteochondral defects in rabbits. Acta Biomater 2020; 118:54-68. [PMID: 33068746 DOI: 10.1016/j.actbio.2020.10.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/17/2020] [Accepted: 10/12/2020] [Indexed: 12/28/2022]
Abstract
Bioactive scaffolds from synthetical polymers or decellularized cartilage matrices have been widely used in osteochondral regeneration. However, the risks of potential immunological reactions and the inevitable donor morbidity of these scaffolds have limited their practical applications. To address these issues, a biological extracellular matrix (ECM) scaffold derived from allogenic decellularized bone marrow mesenchymal stem cell (BMSC) sheets was established for osteochondral reconstruction. BMSCs were induced to form cell sheets. Three different concentrations of sodium dodecyl sulfate (SDS), namely, 0.5%, 1%, and 3%, were used to decellularize these BMSC sheets to prepare the ECM. Histological and microstructural observations were performed in vitro and then the ECM scaffolds were implanted into osteochondral defects in rabbits to evaluate the repair effect in vivo. Treatment with 0.5% SDS not only efficiently removed BMSCs but also successfully preserved the original structure and bioactive components of the ECM When compared with the 1% and 3% SDS groups, histological observations substantiated the superior repair effect of osteochondral defects, including the simultaneous regeneration of well-vascularized subchondral bone and avascular articular cartilage integrated with native tissues in the 0.5% SDS group. Moreover, RT-PCR indicated that ECM scaffolds could promote the osteogenic differentiation potential of BMSCs under osteogenic conditions while increasing the chondrogenic differentiation potential of BMSCs under chondrogenic conditions. Allogenic BMSC sheets decellularized with 0.5% SDS treatment increased the recruitment of BMSCs and significantly improved the regeneration of osteochondral defects in rabbits, thus providing a prospective approach for both articular cartilage and subchondral bone reconstruction with cell-free transplantation.
Collapse
|
7
|
Cheyuo C, Aziz M, Wang P. Neurogenesis in Neurodegenerative Diseases: Role of MFG-E8. Front Neurosci 2019; 13:569. [PMID: 31213977 PMCID: PMC6558065 DOI: 10.3389/fnins.2019.00569] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/20/2019] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative diseases are devastating medical conditions with no effective treatments. Restoration of impaired neurogenesis represents a promising therapeutic strategy for neurodegenerative diseases. Milk fat globule-epidermal growth factor-factor VIII (MFG-E8) is a secretory glycoprotein that plays a wide range of cellular functions including phagocytosis of apoptotic cells, anti-inflammation, tissue regeneration, and homeostasis. The beneficial role of MFG-E8 has been shown in cerebral ischemia (stroke), neurodegenerative diseases such as Alzheimer’s disease and Parkinson’s disease, and traumatic brain injury. In stroke, MFG-E8 promotes neural stem cell proliferation and their migration toward the ischemic brain tissues. These novel functions of MFG-E8 are primarily mediated through its receptor αvβ3-integrin. Here, we focus on the pivotal role of MFG-E8 in protecting against neuronal diseases by promoting neurogenesis. We also discuss the mechanisms of MFG-E8-mediated neural stem/progenitor cell (NSPC) proliferation and migration, and the potential of MFG-E8 for neural stem cell niche maintenance via angiogenesis. We propose further investigation of the molecular pathways for MFG-E8 signaling in NSPC and effective strategies for MFG-E8 delivery across the blood–brain barrier, which will help develop MFG-E8 as a future drug candidate for the bedside management of neurodegenerative diseases.
Collapse
Affiliation(s)
- Cletus Cheyuo
- Department of Neurosurgery, West Virginia University, Morgantown, WV, United States
| | - Monowar Aziz
- Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, Manhasset, NY, United States
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, Manhasset, NY, United States.,Department of Surgery and Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| |
Collapse
|
8
|
Wang Y, Kong X, Wang M, Li J, Chen W, Jiang D. Luteolin Partially Inhibits LFA-1 Expression in Neutrophils Through the ERK Pathway. Inflammation 2019; 42:365-374. [PMID: 30255285 DOI: 10.1007/s10753-018-0900-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Luteolin inhibits the adhesion of neutrophils to microvascular endothelial cells and plays an important anti-inflammatory role, owing to its mechanism of suppressing the expression of lymphocyte function-associated antigen-1 (LFA-1) in the neutrophils. Our study deals with the different signaling pathways participating in LFA-1 expression in neutrophils along with the regulation of luteolin in order to elucidate new anti-inflammatory targets of luteolin, thus providing a basis for clinical applications. In our study, neutrophils were separated using density gradient centrifugation and the cAMP levels were determined using ELISA. Additionally, phosphorylation levels of p38 mitogen-activated protein kinase (MAPK), extracellular regulated protein kinase (ERK), phosphatidylinositol-3-kinase (PI3K), and Janus kinase (JAK) were also detected by Western blotting. LFA-1 expression was estimated using flow cytometry. The results showed that inhibiting agents used against p38 MAPK, ERK, PI3K, and JAK could significantly inhibit LFA-1 expression on neutrophils (p < 0.05, p < 0.01). Luteolin also induced a noteworthy elevation of cAMP in neutrophil supernatants (p < 0.01). It could also significantly inhibit ERK phosphorylation (p < 0.05, p < 0.01), and had no obvious effect on p38 MAPK phosphorylation in neutrophils (p > 0.05). However, phosphorylation of PI3K and JAK was not detected in neutrophils. To conclude, the p38 MAPK, ERK, PI3K, and JAK pathways are involved in the regulation of LFA-1 expression in neutrophils, and luteolin partially inhibits LFA-1 expression by increasing cAMP levels and suppressing ERK phosphorylation.
Collapse
Affiliation(s)
- Yanan Wang
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, No.7 of Beinong road, Huilongguan town, Changping district, Beijing, 102206, People's Republic of China
| | - Xueli Kong
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, No.7 of Beinong road, Huilongguan town, Changping district, Beijing, 102206, People's Republic of China
| | - Mengjie Wang
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, No.7 of Beinong road, Huilongguan town, Changping district, Beijing, 102206, People's Republic of China
| | - Jia Li
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, No.7 of Beinong road, Huilongguan town, Changping district, Beijing, 102206, People's Republic of China
| | - Wu Chen
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, No.7 of Beinong road, Huilongguan town, Changping district, Beijing, 102206, People's Republic of China
| | - Daixun Jiang
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, No.7 of Beinong road, Huilongguan town, Changping district, Beijing, 102206, People's Republic of China.
| |
Collapse
|
9
|
Yu L, Zhao L, Jia Z, Bi J, Wei Q, Song X, Jiang L, Lin S, Wei M. MFG-E8 overexpression is associated with poor prognosis in breast cancer patients. Pathol Res Pract 2018; 215:490-498. [PMID: 30612778 DOI: 10.1016/j.prp.2018.12.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/10/2018] [Accepted: 12/30/2018] [Indexed: 01/18/2023]
Abstract
BACKGROUND MFG-E8(Milk fat globule-EGF factor 8), a secreted glycoprotein, plays an exceptional role in various diseases. MFG-E8 overexpression is found in a variety of cancers. However, it remains unclear whether MFG-E8 overexpression is associated with the clinicopathological characteristics and prognosis of human breast cancer. MATERIALS AND METHODS In this study, we detected the expression and localization of MFG-E8 protein in breast cancer and cancer-adjacent tissues using immunohistochemical staining, Western blot analysis and immunofluorescence. We analyzed the association between MFG-E8 expression and clinical characteristics and outcomes of breast cancer patients with different HR and HER2 statuses. RESULTS Our results confirmed that MFG-E8 expression increased significantly in breast cancer compared with cancer-adjacent tissues by immunohistochemical staining (P < 0.001). Similarly, the Western blot results further confirmed the increased expression of MFG-E8 in breast cancer compared with cancer-adjacent tissues (P = 0.001). Immunofluorescence staining showed that MFG-E8 was mainly localized in the cytoplasm and membrane of tumor cells, consistent with the immunohistochemical staining results. The high expression levels of MFG-E8 showed a greater association with lymph node metastasis, TNM stage and histological grade (P < 0.001). Moreover, high MFG-E8 expression was related to a shortened overall survival (OS) (P < 0.001) and disease-free survival (DFS) (P < 0.001). Bioinformatics analysis with a Kaplan-Meier plotter also demonstrated a strong association of MFG-E8 mRNA overexpression with a short OS and DFS compared with low MFG-E8 expression (P = 0.040, P = 0.005). CONCLUSIONS Our findings indicate that MFG-E8 may be a potential marker for poor prognosis and survival in breast cancer.
Collapse
Affiliation(s)
- Lifeng Yu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, 110122, China; Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, 110122, China; Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China
| | - Zhen Jia
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, 110122, China; Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China
| | - Jia Bi
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, 110122, China; Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China
| | - Qian Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, 110122, China; Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China
| | - Xinyue Song
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, 110122, China; Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China
| | - Longyang Jiang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, 110122, China; Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China
| | - Shu Lin
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, 110122, China; Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, 110122, China; Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China.
| |
Collapse
|
10
|
Beazley-Long N, Moss CE, Ashby WR, Bestall SM, Almahasneh F, Durrant AM, Benest AV, Blackley Z, Ballmer-Hofer K, Hirashima M, Hulse RP, Bates DO, Donaldson LF. VEGFR2 promotes central endothelial activation and the spread of pain in inflammatory arthritis. Brain Behav Immun 2018; 74:49-67. [PMID: 29548992 PMCID: PMC6302073 DOI: 10.1016/j.bbi.2018.03.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 03/02/2018] [Accepted: 03/11/2018] [Indexed: 02/01/2023] Open
Abstract
Chronic pain can develop in response to conditions such as inflammatory arthritis. The central mechanisms underlying the development and maintenance of chronic pain in humans are not well elucidated although there is evidence for a role of microglia and astrocytes. However in pre-clinical models of pain, including models of inflammatory arthritis, there is a wealth of evidence indicating roles for pathological glial reactivity within the CNS. In the spinal dorsal horn of rats with painful inflammatory arthritis we found both a significant increase in CD11b+ microglia-like cells and GFAP+ astrocytes associated with blood vessels, and the number of activated blood vessels expressing the adhesion molecule ICAM-1, indicating potential glio-vascular activation. Using pharmacological interventions targeting VEGFR2 in arthritic rats, to inhibit endothelial cell activation, the number of dorsal horn ICAM-1+ blood vessels, CD11b+ microglia and the development of secondary mechanical allodynia, an indicator of central sensitization, were all prevented. Targeting endothelial VEGFR2 by inducible Tie2-specific VEGFR2 knock-out also prevented secondary allodynia in mice and glio-vascular activation in the dorsal horn in response to inflammatory arthritis. Inhibition of VEGFR2 in vitro significantly blocked ICAM-1-dependent monocyte adhesion to brain microvascular endothelial cells, when stimulated with inflammatory mediators TNF-α and VEGF-A165a. Taken together our findings suggest that a novel VEGFR2-mediated spinal cord glio-vascular mechanism may promote peripheral CD11b+ circulating cell transmigration into the CNS parenchyma and contribute to the development of chronic pain in inflammatory arthritis. We hypothesise that preventing this glio-vascular activation and circulating cell translocation into the spinal cord could be a new therapeutic strategy for pain caused by rheumatoid arthritis.
Collapse
Affiliation(s)
- Nicholas Beazley-Long
- Arthritis Research UK Pain Centre & School of Life Sciences, Medical School, University of Nottingham, Nottingham NG7 2UH, UK.
| | - Catherine Elizabeth Moss
- Arthritis Research UK Pain Centre & School of Life Sciences, Medical School, University of Nottingham, Nottingham NG7 2UH, UK
| | - William Robert Ashby
- Arthritis Research UK Pain Centre & School of Life Sciences, Medical School, University of Nottingham, Nottingham NG7 2UH, UK
| | - Samuel Marcus Bestall
- Cancer Biology, School of Medicine, QMC, University of Nottingham, Nottingham NG7 2UH, UK
| | - Fatimah Almahasneh
- Arthritis Research UK Pain Centre & School of Life Sciences, Medical School, University of Nottingham, Nottingham NG7 2UH, UK
| | - Alexandra Margaret Durrant
- Arthritis Research UK Pain Centre & School of Life Sciences, Medical School, University of Nottingham, Nottingham NG7 2UH, UK
| | - Andrew Vaughan Benest
- Cancer Biology, School of Medicine, QMC, University of Nottingham, Nottingham NG7 2UH, UK
| | - Zoe Blackley
- Cancer Biology, School of Medicine, QMC, University of Nottingham, Nottingham NG7 2UH, UK
| | | | - Masanori Hirashima
- Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Japan
| | - Richard Phillip Hulse
- Cancer Biology, School of Medicine, QMC, University of Nottingham, Nottingham NG7 2UH, UK
| | - David Owen Bates
- Cancer Biology, School of Medicine, QMC, University of Nottingham, Nottingham NG7 2UH, UK,COMPARE University of Birmingham and University of Nottingham Midlands, UK
| | - Lucy Frances Donaldson
- Arthritis Research UK Pain Centre & School of Life Sciences, Medical School, University of Nottingham, Nottingham NG7 2UH, UK
| |
Collapse
|
11
|
Wang Z, Li Z, Li Z, Wu B, Liu Y, Wu W. Cartilaginous extracellular matrix derived from decellularized chondrocyte sheets for the reconstruction of osteochondral defects in rabbits. Acta Biomater 2018; 81:129-145. [PMID: 30300711 DOI: 10.1016/j.actbio.2018.10.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/20/2018] [Accepted: 10/04/2018] [Indexed: 12/28/2022]
Abstract
Cartilaginous extracellular matrix (ECM) materials derived from decellularized native articular cartilage are widely used in cartilage regeneration. However, it is difficult for endogenous cells to migrate into ECM derived from native cartilage owing to its nonporous structure and dense nature. Moreover, current decellularization approaches frequently lead to architectural breakdown and potential loss of surface composition of ECM. To solve this problem, we aimed to establish a novel biological ECM scaffold from chondrocyte sheets for cartilage regeneration. We cultured chondrocytes harvested from the auricular cartilage of 4-week-old New Zealand rabbits and enabled them to form cell sheets. These sheets were decellularized using sodium dodecyl sulfate (SDS) with three different concentrations, namely, 1%, 5%, and 10%, followed by 1% Triton X-100 and deoxyribonuclease enzyme solution. In vitro microstructural examination and mechanical tests demonstrated that 1% SDS not only removed chondrocytes completely but also maintained the native architecture and composition of ECM, thus avoiding the use of high-concentration SDS. Application of decellularized chondrocyte sheets for osteochondral defects in rabbits resulted in substantial host remodeling and variant regeneration of osteochondral tissues. One percent SDS-treated decellularized chondrocyte sheets contributed to the superior reconstruction of osteochondral defects as compared with 5% and 10% SDS groups, which includes vascularized subchondral bone, articular cartilage with adequate thickness, and integration with host tissues. Furthermore, ECM from 1% SDS significantly increased the migrating potential of bone marrow mesenchymal stem cells (BMSCs) in vitro. RT-PCR and western blot also revealed that ECM increased the expression of SOX-9 in BMSCs, whereas it decreased COL-X expression. In conclusion, our results suggested that the chondrocyte sheets decellularized with 1% SDS preserved the integrity and bioactivity, which favored cell recruitment and enabled osteochondral regeneration in the knee joints of rabbits, thus offering a promising approach for articular cartilage reconstruction without cell transplantation. STATEMENT OF SIGNIFICANCE: Although biological extracellular matrix (ECM) derived from decellularized native cartilage has been widely used in cartilage regeneration, it is difficult for endogenous cells to migrate into ECM owing to its dense nature. Moreover, current decellularization approaches lead to architectural breakdown of ECM. This study established a novel biological ECM from decellularized chondrocyte sheets for cartilage regeneration. Our results suggested that cartilaginous ECM favored cell recruitment and enabled osteochondral regeneration in rabbits, thus offering a promising approach for articular cartilage reconstruction without cell transplantation. SDS 1% adequately decellularized the chondrocytes in cell sheets, whereas it maintained the native architecture and composition of ECM, thereby avoiding the use of high-concentration SDS and providing a new way to acquire cartilaginous ECM.
Collapse
|
12
|
Benmoussa A, Gotti C, Bourassa S, Gilbert C, Provost P. Identification of protein markers for extracellular vesicle (EV) subsets in cow's milk. J Proteomics 2018; 192:78-88. [PMID: 30153512 DOI: 10.1016/j.jprot.2018.08.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/02/2018] [Accepted: 08/20/2018] [Indexed: 12/11/2022]
Abstract
Extracellular vesicles (EVs), like exosomes, are small membrane vesicles involved in cell-to-cell communications that modulate numerous biological processes. We previously discovered a new EV subset in milk (sedimenting at 35,000 g; 35 K) that protected its cargo (RNAs and proteins) during simulated digestion and was more enriched in microRNAs than exosomes (sedimenting at 100 K). Here, we used LC-MS/MS to push further the comparison between these two pellets. Commonly used EV markers were not differentially enriched between the pellets, questioning their use with cow's milk EVs. Similarly, the majority of the quantified proteins were equally enriched between the two pellets. Nevertheless, 20 proteins were specific to 35 K, while 41 were specifically enriched in 100 K (p < 0.05), suggesting their potential use as specific markers. Loaded with these proteins, the EVs in these pellets might regulate translation, proliferation and cell survival for 35 K, and metabolism, extracellular matrix turnover and immunity for 100 K. This approach also brought new insights into milk EV-associated integrins and their possible role in specifically targeting recipient cell types. These findings may help better discriminate between milk EVs, improve our understanding of milk EV-associated protein function and their possible use as therapeutic tools for the management of immunity- and metabolism-associated disorders. WEB PAGE: http://www.crchuq.ca/en/research/researchers/4691.
Collapse
Affiliation(s)
- Abderrahim Benmoussa
- CHU de Québec Research Center/CHUL Pavilion, 2705 Blvd Laurier, Quebec City, QC, G1V 4G2 and Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Clarisse Gotti
- Proteomics Platform, Genomics Center, CHU de Québec Research Center/CHUL Pavilion, 2705 Blvd Laurier, Quebec City, QC G1V 4G2, Canada
| | - Sylvie Bourassa
- Proteomics Platform, Genomics Center, CHU de Québec Research Center/CHUL Pavilion, 2705 Blvd Laurier, Quebec City, QC G1V 4G2, Canada
| | - Caroline Gilbert
- CHU de Québec Research Center/CHUL Pavilion, 2705 Blvd Laurier, Quebec City, QC, G1V 4G2 and Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Patrick Provost
- CHU de Québec Research Center/CHUL Pavilion, 2705 Blvd Laurier, Quebec City, QC, G1V 4G2 and Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada.
| |
Collapse
|