1
|
Beatty CJ, Ruiz-Lozano RE, Quiroga-Garza ME, Perez VL, Jester JV, Saban DR. The Yin and Yang of non-immune and immune responses in meibomian gland dysfunction. Ocul Surf 2024; 32:81-90. [PMID: 38224775 DOI: 10.1016/j.jtos.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/04/2024] [Accepted: 01/12/2024] [Indexed: 01/17/2024]
Abstract
Meibomian gland dysfunction (MGD) is a leading cause of dry eye disease and one of the most common ophthalmic conditions encountered in eye clinics worldwide. These holocrine glands are situated in the eyelid, where they produce specialized lipids, or meibum, needed to lubricate the eye surface and slow tear film evaporation - functions which are critical to preserving high-resolution vision. MGD results in tear instability, rapid tear evaporation, changes in local microflora, and dry eye disease, amongst other pathological entities. While studies identifying the mechanisms of MGD have generally focused on gland obstruction, we now know that age is a major risk factor for MGD that is associated with abnormal cell differentiation and renewal. It is also now appreciated that immune-inflammatory disorders, such as certain autoimmune diseases and atopy, may trigger MGD, as demonstrated through a T cell-driven neutrophil response. Here, we independently discuss the underlying roles of gland and immune related factors in MGD, as well as the integration of these two distinct mechanisms into a unified perspective that may aid future studies. From this unique standpoint, we propose a revised model in which glandular dysfunction and immunopathogenic pathways are not primary versus secondary contributors in MGD, but are fluid, interactive, and dynamic, which we likened to the Yin and Yang of MGD.
Collapse
Affiliation(s)
- Cole J Beatty
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA; Duke Eye Center, Duke University School of Medicine, Foster Center for Ocular Immunology at Duke Eye Center, Durham, NC, USA
| | - Raul E Ruiz-Lozano
- Duke Eye Center, Duke University School of Medicine, Foster Center for Ocular Immunology at Duke Eye Center, Durham, NC, USA
| | - Manuel E Quiroga-Garza
- Duke Eye Center, Duke University School of Medicine, Foster Center for Ocular Immunology at Duke Eye Center, Durham, NC, USA
| | - Victor L Perez
- Duke Eye Center, Duke University School of Medicine, Foster Center for Ocular Immunology at Duke Eye Center, Durham, NC, USA.
| | - James V Jester
- Department of Ophthalmology and Biomedical Engineering, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA, USA.
| | - Daniel R Saban
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA; Duke Eye Center, Duke University School of Medicine, Foster Center for Ocular Immunology at Duke Eye Center, Durham, NC, USA.
| |
Collapse
|
2
|
Yu R, Liu S, Li Y, Lu L, Huang S, Chen X, Xue Y, Fu T, Liu J, Li Z. TRPV1 + sensory nerves suppress conjunctival inflammation via SST-SSTR5 signaling in murine allergic conjunctivitis. Mucosal Immunol 2024; 17:211-225. [PMID: 38331094 DOI: 10.1016/j.mucimm.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/10/2024]
Abstract
Allergic conjunctivitis (AC), an allergen-induced ocular inflammatory disease, primarily involves mast cells (MCs) and eosinophils. The role of neuroimmune mechanisms in AC, however, remains to be elucidated. We investigated the effects of transient receptor potential vanilloid 1 (TRPV1)-positive sensory nerve ablation (using resiniferatoxin) and TRPV1 blockade (using Acetamide, N-[4-[[6-[4-(trifluoromethyl)phenyl]-4-pyrimidinyl]oxy]-2-benzothiazolyl] (AMG-517)) on ovalbumin-induced conjunctival allergic inflammation in mice. The results showed an exacerbation of allergic inflammation as evidenced by increased inflammatory gene expression, MC degranulation, tumor necrosis factor-α production by MCs, eosinophil infiltration and activation, and C-C motif chemokine 11 (CCL11) (eotaxin-1) expression in fibroblasts. Subsequent findings demonstrated that TRPV1+ sensory nerves secrete somatostatin (SST), which binds to SST receptor 5 (SSTR5) on MCs and conjunctival fibroblasts. SST effectively inhibited tumor necrosis factor-α production in MCs and CCL11 expression in fibroblasts, thereby reducing eosinophil infiltration and alleviating AC symptoms, including eyelid swelling, lacrimation, conjunctival chemosis, and redness. These findings suggest that targeting TRPV1+ sensory nerve-mediated SST-SSTR5 signaling could be a promising therapeutic strategy for AC, offering insights into neuroimmune mechanisms and potential targeted treatments.
Collapse
Affiliation(s)
- Ruoxun Yu
- International Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Sijing Liu
- International Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yan Li
- International Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Liyuan Lu
- International Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shuoya Huang
- International Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xinwei Chen
- International Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yunxia Xue
- International Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China
| | - Ting Fu
- International Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China
| | - Jun Liu
- International Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| | - Zhijie Li
- International Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| |
Collapse
|
3
|
Kaur S, Roberts DD. Emerging functions of thrombospondin-1 in immunity. Semin Cell Dev Biol 2024; 155:22-31. [PMID: 37258315 PMCID: PMC10684827 DOI: 10.1016/j.semcdb.2023.05.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023]
Abstract
Thrombospondin-1 is a secreted matricellular glycoprotein that modulates cell behavior by interacting with components of the extracellular matrix and with several cell surface receptors. Its presence in the extracellular matrix is induced by injuries that cause thrombospondin-1 release from platelets and conditions including hyperglycemia, ischemia, and aging that stimulate its expression by many cell types. Conversely, rapid receptor-mediated clearance of thrombospondin-1 from the extracellular space limits its sustained presence in the extracellular space and maintains sub-nanomolar physiological concentrations in blood plasma. Roles for thrombospondin-1 signaling, mediated by specific cellular receptors or by activation of latent TGFβ, have been defined in T and B lymphocytes, natural killer cells, macrophages, neutrophils, and dendritic cells. In addition to regulating physiological nitric oxide signaling and responses of cells to stress, studies in mice lacking thrombospondin-1 or its receptors have revealed important roles for thrombospondin-1 in regulating immune responses in infectious and autoimmune diseases and antitumor immunity.
Collapse
Affiliation(s)
- Sukhbir Kaur
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - David D Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
4
|
Csorba A, Maneschg OA, Resch MD, Nagy ZZ. Examination of corneal microstructure in the quiescent phase of vernal keratoconjunctivitis using in vivo confocal microscopy. Eur J Ophthalmol 2023; 33:196-202. [PMID: 35509192 DOI: 10.1177/11206721221099778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION This study investigated the morphological characteristics of corneal microstructure in the quiescent phase of vernal keratoconjunctivitis (VKC). METHODS Twenty patients with quiescent VKC and 25 healthy subjects were included. In vivo confocal microscopy (IVCM) of the central cornea was performed. Cellular density of each layer and the morphology of subbasal nerve plexus (SBNP) was analysed. Langerhans cell density (LCD), morphology (LCM), and field area (LCF) were also examined. RESULTS No differences were found either in cell densities nor in SBNP morphology (p > 0.05). LCD, LCM and LCF were significantly higher in the VKC group (p = 0.005, p < 0.001 and p < 0.001, respectively). The severity of papillary hypertrophy had a significant impact on LCD, LCM and LCF (β-coefficient: 19.541, p < 0.001; β-coefficient: 0.283, p < 0.001 and β-coefficient: 595.255, p < 0.001, respectively). DISCUSSION In quiescent VKC, LCD, LCM, and LCF were increased, and they were associated with the severity of papillary hypertrophy. Alterations of Langerhans cells indicate a subclinical inflammatory process without ocular symptoms.
Collapse
Affiliation(s)
- Anita Csorba
- Department of Ophthalmology, 97848Semmelweis University, Budapest, Hungary
| | | | - Miklós Dénes Resch
- Department of Ophthalmology, 97848Semmelweis University, Budapest, Hungary
| | - Zoltán Zsolt Nagy
- Department of Ophthalmology, 97848Semmelweis University, Budapest, Hungary
| |
Collapse
|
5
|
Chen Y, Wang S, Alemi H, Dohlman T, Dana R. Immune regulation of the ocular surface. Exp Eye Res 2022; 218:109007. [PMID: 35257715 PMCID: PMC9050918 DOI: 10.1016/j.exer.2022.109007] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/10/2022] [Accepted: 02/20/2022] [Indexed: 01/01/2023]
Abstract
Despite constant exposure to various environmental stimuli, the ocular surface remains intact and uninflamed while maintaining the transparency of the cornea and its visual function. This 'immune privilege' of the ocular surface is not simply a result of the physical barrier function of the mucosal lining but, more importantly, is actively maintained through a variety of immunoregulatory mechanisms that prevent the disruption of immune homeostasis. In this review, we focus on essential molecular and cellular players that promote immune quiescence in steady-state conditions and suppress inflammation in disease-states. Specifically, we examine the interactions between the ocular surface and its local draining lymphoid compartment, by encompassing the corneal epithelium, corneal nerves and cornea-resident myeloid cells, conjunctival goblet cells, and regulatory T cells (Treg) in the context of ocular surface autoimmune inflammation (dry eye disease) and alloimmunity (corneal transplantation). A better understanding of the immunoregulatory mechanisms will facilitate the development of novel, targeted immunomodulatory strategies for a broad range of ocular surface inflammatory disorders.
Collapse
Affiliation(s)
- Yihe Chen
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA.
| | - Shudan Wang
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA
| | - Hamid Alemi
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA
| | - Thomas Dohlman
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA
| | - Reza Dana
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA
| |
Collapse
|
6
|
Singh PP, Yu C, Mathew R, Perez VL, Saban DR. Meibomian gland dysfunction is suppressed via selective inhibition of immune responses by topical LFA-1/ICAM antagonism with lifitegrast in the allergic eye disease (AED) model. Ocul Surf 2021; 21:271-278. [PMID: 33812087 PMCID: PMC8606044 DOI: 10.1016/j.jtos.2021.03.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 11/18/2022]
Abstract
PURPOSE The etiology of meibomian gland dysfunction (MGD) is incompletely understood, despite being a common ophthalmic condition and an area of unmet medical need. It is characterized by an insufficiency in glandular provision of specialized lipids (meibum) to the tear film and is a major cause of dry eye. Work in the allergic eye disease (AED) mouse model has revealed an immunopathogenic role in MGD causation, now raising interest in the applicability of immunomodulatory therapies. As such, we herein ask whether inhibition of lymphocyte function associated antigen (LFA)-1/intracellular adhesion molecules (ICAM)-1 signaling via topical lifitegrast administration has a therapeutic effect on MGD in AED mice. METHODS Mice were induced with AED by i.p. injection of ovalbumin (OVA) mixed with alum and pertussis toxin, followed 2 weeks later by once daily topical OVA challenges for 7 days. Mice were treated topically with 5% lifitegrast ophthalmic solution or vehicle (PBS) 30 min prior to challenge. We developed a clinical ranking method to assess MGD severity, and also scored clinical allergy. Conjunctivae and draining lymph nodes were collected for flow cytometry. RESULTS Topical lifitegrast significantly inhibited clinical MGD severity, which was associated with diminished pathogenic TH17 cell and neutrophil numbers in the conjunctiva. No significant change in conjunctival TH2 cells or eosinophils, and only marginal differences in ocular allergy were observed. CONCLUSIONS In AED mice, lifitegrast inhibited MGD severity marked by a reduction in select immune populations in the conjunctiva. Our findings warrant future examination of lifitegrast in the treatment of patients with forms of MGD.
Collapse
Affiliation(s)
- Pali P Singh
- Duke University School of Medicine, Durham, NC, USA
| | - Chen Yu
- Department of Ophthalmology, Duke Eye Center, Duke University School of Medicine, Durham, NC 27710, USA
| | - Rose Mathew
- Department of Ophthalmology, Duke Eye Center, Duke University School of Medicine, Durham, NC 27710, USA
| | - Victor L Perez
- Foster Center for Ocular Immunology, Department of Ophthalmology, Duke Eye Center, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Daniel R Saban
- Department of Ophthalmology, Duke Eye Center, Duke University School of Medicine, Durham, NC 27710, USA; Foster Center for Ocular Immunology, Department of Ophthalmology, Duke Eye Center, Duke University School of Medicine, Durham, NC, 27710, USA; Department of Immunology, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
7
|
Allergic conjunctivitis in children: current understanding and future perspectives. Curr Opin Allergy Clin Immunol 2020; 20:507-515. [DOI: 10.1097/aci.0000000000000675] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
8
|
Liu J, Huang S, Li F, Wu M, He J, Xue Y, Fu T, Yu R, Chen X, Wang Y, Li Z. Sympathetic Nerves Positively Regulate Eosinophil-Driven Allergic Conjunctivitis via α1-Adrenergic Receptor Signaling. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1298-1308. [PMID: 32194050 DOI: 10.1016/j.ajpath.2020.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/15/2020] [Accepted: 02/20/2020] [Indexed: 12/17/2022]
Abstract
Eosinophils are a major cause of tissue injury in allergic conjunctivitis. The biological nature of eosinophils in the conjunctiva and the mechanisms that control eosinophils' responses in allergic conjunctivitis are currently not completely understood. This study reports that conjunctival eosinophils comprise two populations-Siglec-Fint and Siglec-Fhi-in different life stages. Siglec-Fint eosinophils partly expressed CD34 and were in the immature (or steady) state. Siglec-Fhi eosinophils did not express CD34, sharply increased in number after short ragweed (SRW) pollen challenge, and were in the mature (or activated) state. Moreover, chemical sympathectomy by 6-hydroxydopamine reduced the recruitment and activation of eosinophils, whereas the activation of the sympathetic nerve system (SNS) with restraint stress accelerated the recruitment and activation of eosinophils in SRW-induced conjunctivitis. It was also found that two eosinophil populations expressed alpha-1a-adrenergic receptors (α1a-ARs); in SRW-induced conjunctivitis, treatment with an α1a-AR antagonist decreased eosinophil responses, whereas treatment with an α1a-AR agonist aggravated eosinophil responses. Thus, eosinophil responses in conjunctivitis are regulated by the SNS via α1a-AR signaling. SNS inputs or α1a-AR function may be potential targets for the treatment of allergic conjunctivitis.
Collapse
Affiliation(s)
- Jun Liu
- International Ocular Surface Research Center, Institute of Ophthalmology and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China
| | - Shuoya Huang
- International Ocular Surface Research Center, Institute of Ophthalmology and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Fanying Li
- International Ocular Surface Research Center, Institute of Ophthalmology and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China; Department of Microbiology and Immunology, School of Medicine, Jinan University, Guangzhou, China
| | - Mingjuan Wu
- International Ocular Surface Research Center, Institute of Ophthalmology and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China
| | - Jingxin He
- International Ocular Surface Research Center, Institute of Ophthalmology and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yunxia Xue
- International Ocular Surface Research Center, Institute of Ophthalmology and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China
| | - Ting Fu
- International Ocular Surface Research Center, Institute of Ophthalmology and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China
| | - Ruoxun Yu
- International Ocular Surface Research Center, Institute of Ophthalmology and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xinwei Chen
- International Ocular Surface Research Center, Institute of Ophthalmology and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China
| | - Yuming Wang
- Departments of Science and Technology Administration, Henan Provincial People's Hospital, Henan University People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Zhijie Li
- International Ocular Surface Research Center, Institute of Ophthalmology and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China; Department of Ophthalmology, Henan Provincial People's Hospital, Henan University People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China.
| |
Collapse
|
9
|
Buda V, Andor M, Cristescu C, Tomescu MC, Muntean DM, Bâibâță DE, Bordejevic DA, Danciu C, Dalleur O, Coricovac D, Crainiceanu Z, Tudor A, Ledeti I, Petrescu L. Thrombospondin-1 Serum Levels In Hypertensive Patients With Endothelial Dysfunction After One Year Of Treatment With Perindopril. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:3515-3526. [PMID: 31631975 PMCID: PMC6791256 DOI: 10.2147/dddt.s218428] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 09/23/2019] [Indexed: 12/14/2022]
Abstract
Background Thrombospondin-1 (TSP-1) is a matricellular functional protein of the extracellular matrix. As it is not constitutively present extracellularly, its secretion is enhanced in several situations, namely injury, chronic pathology, tissue remodeling, angiogenesis, and aging. Over the last decade, TSP-1 has been reported to be involved in complex and opposing biological effects on vasculature in the context of NO signaling. Several studies have reported high patient TSP-1 plasma levels, indicating that the protein can potentially serve as a prognostic marker for pulmonary arterial hypertension. Materials and methods Here, we aimed to quantify TSP-1 serum levels in hypertensive patients with endothelial dysfunction before and after one year of treatment with Perindopril (an antihypertensive drug with vasoprotective properties). Results After one year of treatment, TSP-1 levels increased in hypertensive patients compared to baseline (T0: 8061.9 ± 3684.80 vs T1: 15380±5887 ng/mL, p<0.001) and compared to non-hypertensive controls (9221.03 ± 6510.21 ng/mL). In contrast, pentraxin-3 plasma levels were decreased after one year of Perindopril treatment in both hypertensive (T0: 0.91 ± 0.51 vs T1: 0.50 ± 0.24 ng/mL, p<0.001) and control group (1.36 ±1.5 ng/mL) patients, although flow-mediated vasodilation and intima-media thickness assessment parameters were not significantly changed. Systolic and diastolic blood pressure values as well as levels of fibrinogen, high-sensitivity C-reactive protein, triglycerides, and alanine aminotransferase were found to be significantly lower after one year of treatment with Perindopril. High levels of TSP-1 strongly correlated with platelet count (positive), lymphocytes (positive), red cell distribution width-CV (positive), systolic blood pressure (negative), and mean corpuscular hemoglobin (negative) after one year of treatment. Blood urea nitrogen was found to be a protective factor for TSP-1, while glucose and heart rate were found to be risk factors prior to and after treatment.
Collapse
Affiliation(s)
- Valentina Buda
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, "Victor Babeş" University of Medicine and Pharmacy, Timisoara 300041, Romania
| | - Minodora Andor
- Department of Medical Semiotics, Faculty of Medicine, "Victor Babeş" University of Medicine and Pharmacy, Timisoara 300041, Romania
| | - Carmen Cristescu
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, "Victor Babeş" University of Medicine and Pharmacy, Timisoara 300041, Romania
| | - Mirela Cleopatra Tomescu
- Department of Medical Semiotics, Faculty of Medicine, "Victor Babeş" University of Medicine and Pharmacy, Timisoara 300041, Romania
| | - Danina M Muntean
- Department of Pathophysiology, Faculty of Medicine, "Victor Babeş" University of Medicine and Pharmacy, Timisoara 300041, Romania
| | - Dana Emilia Bâibâță
- Department of Cardiology VI, Faculty of Medicine, "Victor Babeş" University of Medicine and Pharmacy, Timisoara 300041, Romania.,Cardiovascular Diseases Institute, Timisoara 300310, Romania
| | - Diana Aurora Bordejevic
- Department of Cardiology VI, Faculty of Medicine, "Victor Babeş" University of Medicine and Pharmacy, Timisoara 300041, Romania.,Cardiovascular Diseases Institute, Timisoara 300310, Romania
| | - Corina Danciu
- Department of Pharmacognosy, "Victor Babeş" University of Medicine and Pharmacy, Timisoara 300041, Romania
| | - Olivia Dalleur
- Clinical Pharmacy Research Group, Louvain Drug Research Institute, Université Catholique De Louvain, Woluwe-Saint-Lambert 1200, Bruxelles, Belgium
| | - Dorina Coricovac
- Department of Toxicology, Faculty of Pharmacy, "Victor Babeş" University of Medicine and Pharmacy, Timisoara 300041, Romania
| | - Zorin Crainiceanu
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine, "Victor Babeş" University of Medicine and Pharmacy, Timisoara 300041, Romania
| | - Anca Tudor
- Department of Statistics and Biomedical Informatics, Faculty of Medicine, "Victor Babeş" University of Medicine and Pharmacy, Timisoara 300041, Romania
| | - Ionut Ledeti
- Department of Physical Chemistry, Faculty of Pharmacy, "Victor Babeş" University of Medicine and Pharmacy, Timisoara 300041, Romania
| | - Lucian Petrescu
- Department of Cardiology VI, Faculty of Medicine, "Victor Babeş" University of Medicine and Pharmacy, Timisoara 300041, Romania.,Cardiovascular Diseases Institute, Timisoara 300310, Romania
| |
Collapse
|
10
|
Reyes NJ, Yu C, Mathew R, Kunnen CM, Kalnitsky J, Redfern RL, Leonardi A, Perez VL, MacLeod AS, Gupta PK, Saban DR. Neutrophils cause obstruction of eyelid sebaceous glands in inflammatory eye disease in mice. Sci Transl Med 2019; 10:10/451/eaas9164. [PMID: 30045980 DOI: 10.1126/scitranslmed.aas9164] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 07/05/2018] [Indexed: 12/28/2022]
Abstract
Meibomian glands (MGs) are sebaceous glands of the eyelid margin that secrete lipids needed to avert tear evaporation and to help maintain ocular surface homeostasis. Obstruction of MGs or other forms of MG dysfunction can promote chronic diseases of the ocular surface. Although chronic eyelid inflammation, such as allergic eye disease, is an associated risk factor for obstructive MG dysfunction, it is not clear whether inflammatory processes contribute to the pathophysiology of MG obstruction. We show that polymorphonuclear neutrophils (PMNs) promoted MG obstruction in a chronic inflammatory model of allergic eye disease in mice. Analysis of leukocytes in tears of patients with MG dysfunction showed an increase in PMN numbers compared to healthy subjects. Moreover, PMN numbers in tears positively correlated with clinical severity of MG dysfunction. Our findings point to a role for PMNs in the pathogenesis and progression of MG dysfunction.
Collapse
Affiliation(s)
- Nancy J Reyes
- Department of Ophthalmology, Duke Eye Center, Duke University School of Medicine, Durham, NC 27710, USA
| | - Chen Yu
- Department of Ophthalmology, Duke Eye Center, Duke University School of Medicine, Durham, NC 27710, USA
| | - Rose Mathew
- Department of Ophthalmology, Duke Eye Center, Duke University School of Medicine, Durham, NC 27710, USA
| | - Carolina M Kunnen
- College of Optometry, The Ocular Surface Institute, University of Houston, Houston, TX 77204, USA
| | - Joan Kalnitsky
- Department of Ophthalmology, Duke Eye Center, Duke University School of Medicine, Durham, NC 27710, USA
| | - Rachel L Redfern
- College of Optometry, The Ocular Surface Institute, University of Houston, Houston, TX 77204, USA
| | - Andrea Leonardi
- Department of Neuroscience, Ophthalmology Unit, University of Padova, Padova 35128, Italy
| | - Victor L Perez
- Department of Ophthalmology, Duke Eye Center, Duke University School of Medicine, Durham, NC 27710, USA
| | - Amanda S MacLeod
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA.,Department of Dermatology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Preeya K Gupta
- Department of Ophthalmology, Duke Eye Center, Duke University School of Medicine, Durham, NC 27710, USA
| | - Daniel R Saban
- Department of Ophthalmology, Duke Eye Center, Duke University School of Medicine, Durham, NC 27710, USA. .,Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
11
|
|
12
|
Foulsham W, Dohlman TH, Mittal SK, Taketani Y, Singh RB, Masli S, Dana R. Thrombospondin-1 in ocular surface health and disease. Ocul Surf 2019; 17:374-383. [PMID: 31173926 DOI: 10.1016/j.jtos.2019.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 05/29/2019] [Accepted: 06/03/2019] [Indexed: 12/13/2022]
Abstract
Thrombospondin 1 (TSP-1) is an extracellular matrix protein that interacts with a wide array of ligands including cell receptors, growth factors, cytokines and proteases to regulate various physiological and pathological processes. Constitutively expressed by certain ocular surface tissues (e.g. corneal and conjunctival epithelium), TSP-1 expression is modulated during ocular surface inflammation. TSP-1 is an important activator of latent TGF-β, serving to promote the immunomodulatory and wound healing functions of TGF-β. Mounting research has deepened our understanding of how TSP-1 expression (and lack thereof) contributes to ocular surface homeostasis and disease. Here, we review current knowledge of the function of TSP-1 in dry eye disease, ocular allergy, angiogenesis/lymphangiogenesis, corneal transplantation, corneal wound healing and infectious keratitis.
Collapse
Affiliation(s)
- William Foulsham
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA; Institute of Ophthalmology, University College London (UCL), London, United Kingdom
| | - Thomas H Dohlman
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA
| | - Sharad K Mittal
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA
| | - Yukako Taketani
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA
| | - Rohan Bir Singh
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA
| | - Sharmila Masli
- Department of Ophthalmology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Reza Dana
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
13
|
Rodríguez-Jiménez P, Chicharro P, Llamas-Velasco M, Cibrian D, Trigo-Torres L, Vara A, Jiménez-Fernández M, Sevilla-Montero J, Calzada MJ, Sánchez-Madrid F, de la Fuente H, Daudén E. Thrombospondin-1/CD47 Interaction Regulates Th17 and Treg Differentiation in Psoriasis. Front Immunol 2019; 10:1268. [PMID: 31214201 PMCID: PMC6558197 DOI: 10.3389/fimmu.2019.01268] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 05/17/2019] [Indexed: 12/16/2022] Open
Abstract
Accumulating evidence on the role of Thrombospondin-1 (TSP-1) in the immune response has emerged during the last years. In spite of the importance of TSP-1 not only as anti-angiogenic factor but also as an immunomodulatory molecule, studies on the role of TSP-1 in psoriasis have been neglected. TSP-1 and CD47 expression were analyzed in skin samples from psoriasis patients and control subjects using RT-PCR and immunofluorescence. Expression of these molecules was also evaluated in peripheral blood CD4+ T cells, moDCs, and circulating primary DCs. The functional role of TSP-1/CD47 signaling axis in psoriasis was assessed in Th17 and Treg differentiation assays. Additionally, small interfering RNA assays specific to TSP-1 were performed in CD4+ T cells and monocyte derived DC to specifically evaluate the function of this protein. Lesional skin of psoriasis patients expressed lower TSP-1 and CD47 mRNA levels compared to non-lesional skin or skin from controls. Immunofluorescence staining revealed decreased expression of CD47 in CD45+ dermal cells from psoriasis samples compared to control subjects. Peripheral CD4+ T cells and circulating primary DCs from psoriasis also expressed lower levels of CD47 compared to controls. Although no significant differences were detected in TSP-1 expression in CD4+ T cells and moDCs between patients and controls, TSP-1 expression in psoriasis patients inversely correlated with disease activity evaluated by the Psoriasis Area and Index Activity. Furthermore, exogenous TSP-1 inhibited Th17 differentiation and stimulated the differentiation of CD4+ T cells toward Treg cells. Furthermore, RNA interference specific for TSP-1 confirmed the role of this molecule as a negative regulator of T cell activation. Because of the impact of TSP-1/CD47 signaling axis in Th17 and Treg differentiation, a dysregulated expression of these molecules in the immune cells from psoriasis patients may favor the exacerbated inflammatory response in this disease.
Collapse
Affiliation(s)
- Pedro Rodríguez-Jiménez
- Department of Dermatology, Instituto de Investigación Sanitaria Princesa, Hospital Universitario la Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Pablo Chicharro
- Department of Dermatology, Instituto de Investigación Sanitaria Princesa, Hospital Universitario la Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Mar Llamas-Velasco
- Department of Dermatology, Instituto de Investigación Sanitaria Princesa, Hospital Universitario la Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Danay Cibrian
- Department of Immunology, Instituto de Investigación Sanitaria Princesa, Hospital Universitario la Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Laura Trigo-Torres
- Department of Immunology, Instituto de Investigación Sanitaria Princesa, Hospital Universitario la Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Alicia Vara
- Department of Immunology, Instituto de Investigación Sanitaria Princesa, Hospital Universitario la Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - María Jiménez-Fernández
- Department of Immunology, Instituto de Investigación Sanitaria Princesa, Hospital Universitario la Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Javier Sevilla-Montero
- Department of Immunology, Instituto de Investigación Sanitaria Princesa, Hospital Universitario la Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Maria J Calzada
- Department of Immunology, Instituto de Investigación Sanitaria Princesa, Hospital Universitario la Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Francisco Sánchez-Madrid
- Department of Immunology, Instituto de Investigación Sanitaria Princesa, Hospital Universitario la Princesa, Universidad Autónoma de Madrid, Madrid, Spain.,CIBER de Enfermedades Cardiovasculares, Institututo de Salud Carlos III, Madrid, Spain
| | - Hortensia de la Fuente
- Department of Immunology, Instituto de Investigación Sanitaria Princesa, Hospital Universitario la Princesa, Universidad Autónoma de Madrid, Madrid, Spain.,CIBER de Enfermedades Cardiovasculares, Institututo de Salud Carlos III, Madrid, Spain
| | - Esteban Daudén
- Department of Dermatology, Instituto de Investigación Sanitaria Princesa, Hospital Universitario la Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
14
|
Saban DR, Hodges RR, Mathew R, Reyes NJ, Yu C, Kaye R, Swift W, Botten N, Serhan CN, Dartt DA. Resolvin D1 treatment on goblet cell mucin and immune responses in the chronic allergic eye disease (AED) model. Mucosal Immunol 2019; 12:145-153. [PMID: 30279513 PMCID: PMC6301119 DOI: 10.1038/s41385-018-0089-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 08/17/2018] [Accepted: 09/06/2018] [Indexed: 02/04/2023]
Abstract
Severe, chronic eye allergy is an understudied, vision-threatening condition. Treatments remain limited. We used a mouse model of severe allergic eye disease (AED) to determine whether topical application of the pro-resolution mediator Resolvin D1 (RvD1) terminates the response. AED was induced by injection of ovalbumin (OVA) followed by topical challenge of OVA daily. RvD1 was applied topically prior to OVA. Clinical symptoms were scored. Eye washes were assayed for MUC5AC. After 7 days, eyes were removed and the number of goblet cells, T helper cell responses and presence of immune cells in draining lymph nodes and conjunctiva determined. Topical RvD1 treatment significantly reduced symptoms of AED. RvD1 did not alter the systemic type 2 immune response in the lymph nodes. AED increased the total amount of goblet cell mucin secretion, but not the number of goblet cells. RvD1 prevented this increase, but did not alter goblet cell number. Absolute numbers of CD4 + T cells, total CD11b + myeloid cells, eosinophils, neutrophils, and monocytes, but not macrophages increased in AED versus RvD1-treated mice. We conclude that topical application of RvD1 reduced the ocular allergic response by local actions in conjunctival immune response and a decrease in goblet cell mucin secretion.
Collapse
Affiliation(s)
- Daniel R. Saban
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC,Department of Immunology, Duke University School of Medicine, Durham, NC
| | - Robin R. Hodges
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Harvard Medical School, Boston, MA
| | - Rose Mathew
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC
| | - Nancy J. Reyes
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC
| | - Chen Yu
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC
| | - Rebecca Kaye
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Harvard Medical School, Boston, MA
| | - William Swift
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Harvard Medical School, Boston, MA
| | - Nora Botten
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Harvard Medical School, Boston, MA,Faculty of Medicine, University of Oslo, Oslo, Norway,Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Charles N. Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Darlene A. Dartt
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Harvard Medical School, Boston, MA,Corresponding author: Darlene Dartt, 20 Staniford Street, Boston, MA 02114, 617-912-0272,
| |
Collapse
|